Cocycles and cocycle categories
Short exact sequences: abelian kernels

Suppose that
E: e5A—G5 H—e

is a short exact sequence of groups with A abelian.

Choose a section o : H — G of p such that o(e) =
e. Then we find the following;:

1) o induces a homomorphism p, : H — Aut(A)
(an action of H on A), defined by

p(h)(a) = o(h)ac(h) .

The morphism (action) p, independent of the choice
of o.

Fix a choice of action v : H — Aut(A): consider
only those extensions such that p, = .

2) plo(zy)) = plo(x)a(y)), so that
c(x, y)o(z,y) = o(x)o(y)
for some unique ¢(x,y) € A. ¢(z,y) is a morphism
c(,y)
o(xy) == a(z)o(y)
in the translation category EgA.
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3) Here'’s a picture:

o(wyz) o(zy)o(z)
clage)]| |e@)
o(w)o(yz) g(x)o(y)o(z)

o(x)c(y,z)o(x)

To put it a different way, there is an identity
£ C(y7 Z) o C(Iy, Z) + C(Jﬁ, yZ) o C(Zlf, y) =0
so that the function

c:HxH—=A

defines a 2-cocycle in the chain complex hompy(FH, A)
determined by the action v, and hence defines an
element in

[E] = [d] € H*(H, A)
associated to the H-module A.
4) This element [E] is independent of the “class” of

E. If there is a picture of group homomorphisms

Gp
TN

AT ol
\Gfﬁ

H

and o and ¢’ are normalized sections for p, p/, then

ps =P, H— Aut(A) and o'(x) = h(x)0o(x) for
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a unique function h : H — A such that h(e) = 0.
There is a diagram

h(zy)

Oo(xy)
C(%?J)J{ ic’(
Oo(x)0o(y) et a’(x)@a(y)xT(y)a’(x)a’

In particular,
d(x,y) = c(x,y) + = - h(y) — h(zy) + h(z)

so that ¢(z,y) — c(z,y) is a coboundary. We have
therefore found a function

¢ : Ext. (H,A) — H*(H,A).
where Ext, (H, A) is the set of equivalence classes
of those extensions with corresponding action ~.

5) The function ¢ is surjective: any cocycle ¢(z, y)
determines a group law on A X H, with

(a,) - (byy) = (a(x - b)c(z,y), xy).

The projection (a,z) — x defines a group homo-
morphism with normalized section o(z) = (e, x),
and the 2-cocycle associated to o is c.

6) If h : H — A is a normalized chain such that
d(z, y)h(zy) = (z - hy)h(z)c(z,y)
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(ie. if ¢ — ¢ = §(h)) then the assignment

(a,z) — (ah(z), )

defines a homomorphism A x H — A x H from
the group structure determined by ¢’ to the group
structure determined by ¢ which respects inclusion
of A and projection onto H. In effect,

(ah(z), )(bh(y),y) = (ah(z)(x - (bW(y))c(x, y), zy)
= (a(z - b)h(z)(z - h(y))c(z,y), zy)
= (a(z - b)c(z,y)h(zy), vY).

We have proved

Theorem: There is a bijection

H*(H, A) = Ext,(H, A)

Some comments:

1) H*(H, A) is H-equivariant homotopy classes of
maps [*, K (A, 2)] so that this bijection gives a ho-
motopy classification of Ext.(H, A).

2) There is a category Ext,(H, A) whose objects
are the short exact sequences E' as above with in-
duced morphism ~ : H — Aut(A), and whose
morphisms are the commutative diagrams of group



homomorphisms

e—A G-L-H—¢

I VR

e A G’ H e

p/

Ext.(H, A) is a groupoid, and the Theorem says
that there is a bijection

H*(H, A) = moExt. (H, A).

Short exact sequences: non-abelian ker-
nels

Much of the foregoing does not work if the kernel is
non-abelian. Suppose given a short exact sequence

E: esK-sGLHooe

with K non-abelian. Then first of all, H*(H, K)

doesn’t make any sense.

The automorphisms Aut(K) of the kernel obvi-
ously have to figure into the story, but we have to
take a more sophisticated approach.

1) Aut(K) is the 2-groupoid of automorphisms of
K and their homotopies.

There is one 0-cell of Aut(K), denoted by *, the
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1-cells g : * — * are the automorphisms of K, and
the 2-cells are the homotopies of automorphisms.

Explicitly, a 2-cell @ : g — ¢’ is an element a € K
such that

ag(x)a™ = ¢'(x), forall x € K.
Think of the picture
g(x)

P

* *
ai la
* *
g'(x)

Aut(K) has a “horizontal” law of composition for
2-cells: given b : h — h’, then

bh(a)h(g(x))h(a)""b~" = bh(g' ()b~ = h'¢'(x),
so the composite 2-cell is bh(a) : hg — h'q’.
2) From the short exact sequence F

e K >G5 H—e

one finds a 2-groupoid p with one O-cell * and a 1-
cell g : ¥ — x for every element g € GG. The 2-cells
of p are those pairs (g, ¢') such that p(g) = p(q');
in such a case (g, ¢’) is a 2-cell from g to ¢

The horizontal law of composition for 2-cells in p
is the only thing that it could be.
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3) We also have associated to E a canonical picture
of 2-groupoid morphisms

p—E- Aut(K)
wEig

H
g p — H sends l-cells g : x — * to p(g)
x — * and sends 2-cells (g, ¢’) to identity 2-cells
(p(9),p(¢"). mg is a weak equivalence since all
homotopy fibres are trivial groupoids.
The 2-groupoid morphism Fr : p — Aut(K)
sends a 1-cell g : * — * to conjugation by g:
¢y T+ grg~ ', and sends the 2-cell (g, ¢') to the
homotopy ¢y 1 : ¢y — ¢y defined by conjugation
by g € K.
This picture is a canonical example of a cocycle in

the category of 2-groupoids which is defined on H
and takes values in the object Aut(K).



Cocycles
Suppose that X, Y are spaces.

H(X,Y) = category whose objects are all pairs of
maps (f, g)

xdzsy
where f is a weak equivalence. A morphism « :

(f,9) = (f,¢") of H(X,Y) is a commutative di-

agram
/ i \
\ /
H(X,Y) is the category of cocycles from X
to Y.
moH (X,Y') = class of path components of H(X,Y).
There is a function

Qﬁ:ﬂ-OH(X?Y)%[XvY] (f)g)Hgf_l
Theorem: The canonical map ¢ : moH (X,Y) —
|X, Y] is a bijection for all X and Y.

Lest you think that I've done away with homotopy
theory, suppose that f ~ ¢g: X — Y. Then there



Is a picture

where A is the homotopy. Then

(ix, f) ~ (pr,h) ~ (1x, g)
Thus f +— [(1x, f)] defines a function
b T(X,Y) = mH(X,Y)

If X has the good manners to be cofibrant, then
the function ) is inverse to ¢. More generally,
there are a couple of things to prove.

The Theorem holds in extreme generality, specifi-
cally in any model category which is right proper
(weak equivalences pull back to weak equivalences
along fibrations), and such that weak equivalences
are closed under finite products.

Examples: spaces, simplicial sets, presheaves of
simplicial sets, spectra, presheaves of spectra, any
localizations of such, and ... 2-groupoids



Example: Suppose that A is a non-degenerate
symmetric bilinear form over Q (or any field of
characteristic # 2). Then up to isomorphism of
forms over Q, A is diagonal, so we can assume
that A is a non-singular diagonal matrix, such as

20 0
A=103 0
00 —1

A form represented by a diagonal matrix is iso-
morphic to the trivial form over a field L/Q if all
the entries have square roots in L. Thus there is a
finite Galois extension L/Q with Galois group G
such that there is an isomorphism B : 1, — A of
forms: in other words there is a non-singular ma-

trix B over L such that BYB = A. In the case
above

V2 0 0
B=|0 V30
0 0 7

does the trick. The matrices g(B), g € G, also
define isomorphisms of forms g(B) : 1,, = A, since
g(B)''g(B) = A. The composite isomorphisms

1
, S4B

are therefore automorphisms of the trivial form,
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and are therefore in the group O, (L). The assign-
ment

f(g9) = Bg(B)™!

defines a cocycle f : G — O,(L) in a traditional
sense:

o f(e) = I, and

o f(gh) = Bgh(B)™" = Bg(B) 'g(B)gh(B)™" =

(Bg(B)"")g(BMB)™") = f(g)g(f(h)).

The function f can be viewed as a morphism of
simplicial schemes

EG x¢ Sp(L) -1~ BO,

y

Sp(Q)

The Borel construction EG x g Sp(L) is the Cech
resolution associated to the étale cover Sp(L) —
Sp(Q), and the vertical map determines a weak
equivalence of simplicial sheaves for the étale topol-

ogy on Sp(Q).
Theorem: Suppose that K is a field of charac-
teristic # 2. Then there are natural bijections

mo(non-deg. symm. bil. forms and isomorphisms)

= moH (%, BO,) = [, BO,]
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Back to group theory:;
Associating the cocycle
P Aut (K)
ﬂ-Elg
H

to a short exact sequence
e-K—->GLH H—e
defines a functor
Ext(H, K) — H.(H, Aut(K))

(NB: 0(g)z0(g9)~t = 0(gxg™') = grg™! for z €
K) where the cocycles live in pointed 2-groupoids.

Theorem: This functor induces a bijection
moExt(H, K) = moH,(H, Aut(K))

= [H, Aut(K)).

= [BH, BAut(K)),.

Remark: A cocycle

AL~ Aut(K)

|-

H
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determines a unique homomorphism (“band”) H —
Out(K'), which does not vary with refinement of
pointed cocycles.

Sketch Proof: Given a pointed cocycle
AL Aut(K),

Wlﬁ

H
the base point x € Ay determines a 2-groupoid
homomorphism A(x,z) — H which is surjective
on l-cells. In fact, the 2-cells of A(x,z) are the
pairs g, h : © — x such that w(g) = mw(h). The
cocycle F' can therefore be canonically replaced by
its restriction to A(z,x) at the base point x, and
the 2-groupoid A(x,x) can be canonically identi-
fied with a 2-groupoid p, arising from a surjective
group homomorphism p : L — H with 2-cells con-
sisting of pairs (g, h) such that p(g) = p(h). L is
the group of 1-cells of A(x, x).
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