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Cosimplical spaces

The finite sets
n = {0, 1, . . . , n}, n ≥ 0,

and the order-preserving functions θ : m→ n define a category ∆,
called the ordinal number category.

A functor X : ∆op → Set (contravariant on ∆) is called a
simplicial set.

“Space” = “simplicial set”.

A cosimplicial object in C is a covariant functor ∆→ C. A
cosimplicial space is a cosimplicial object in spaces (simplicial
sets).
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Examples

1) If X and Y are simplicial sets then

n 7→ hom(Xn,Y )

defines a cosimplicial space, used to analyze the function
complex hom(X ,Y ).

2) If X is a simplicial scheme and Y is a simplicial sheaf, then

n 7→ hom(Xn,Y ) = Y (Xn)

is a cosimplicial space, used to analyze function complexes in
simplicial sheaves.

Example: if U → ∗ is a hypercover then whether or not the
map

Y (∗)→ hom(U,Y )

is a weak equivalence is a type of descent question for Y .
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Examples 2

3) Given an adjoint pair of functors

F : sSet � sSet : G ,

then iterates of the composite GF and the canonical
adjunction maps define a cosimplicial space

GF (X ) ⇒
←

GFGF (X ) . . .

which is often a resolution of X along the unit map
η : X → GF (X ). The same applies for sheaf or presheaf
categories: the Godement resolution is an example.

4) If X : I → sSet is a (small) diagram of spaces then the
homotopy inverse limit is usually constructed from a
cosimplicial space with

n 7→
∏

i0→···→in

X (in).
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Examples 3

5) The finite ordinal numbers n are posets, hence categories, and
there is a cosimplicial space ∆ with

n 7→ B(n) = ∆n.

This is a fat point in cosimplicial spaces: all ∆n are
contractible.

Cosimplicial spaces were introduced by Bousfield and Kan [1] in the
early 1970s, as a technical device in their construction of homology
completions of spaces. The homotopy theory of cosimplicial spaces
was was an early application of Quillen model structures.
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Model structures

We will discuss two model structures on cosimplicial spaces:

1) Bousfield-Kan structure: the weak equivalences are maps
X → Y such that X n → Y n is a weak equivalence of spaces
for all n ≥ 0; the cofibrations A→ B are levelwise
monomorphisms which induce isomorphisms
lim←−n

An ∼= lim←−n
Bn.

2) injective structure: the weak equivalences are defined
levelwise; the cofibrations are levelwise monomorphisms.

Fibrations for both structures are defined by a right lifting property
with respect to trivial cofibrations. The fibrations for the
Bousfield-Kan structure are the Bousfield-Kan fibrations and the
fibrations for the injective structure are the injective fibrations.

Fact: Every injective fibration is a Bousfield-Kan fibration.

Rick Jardine Cosimplicial spaces and cocycles



History

Injective model structures for diagram categories (like cosimplicial
spaces) were introduced by Alex Heller before the advent of
simplicial sheaf homotopy theory (Joyal’s letter to Grothendieck
and the “Simplicial presheaves” paper), but most applications have
been in simplicial sheaves and presheaves.

Injective structures are essentially sheaf theoretic.
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Inverse limits

Suppose that A is a cosimplicial space.

Bousfield and Kan write

A−1 = lim←−
n

An,

and call it the maximal augmentation of A.

From a sheaf-theoretic point of view this object is the space Γ∗A of
global sections of A.

Fact: The inverse limit lim←−n
An is the equalizer of the structure

maps
d0, d1 : A0 ⇒ A1.

These maps are induced by ordinal number maps d0, d1 : 0→ 1
which pick out the numbers 1 and 0 respectively.
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Homotopy inverse limits

The applications of the homotopy theory of cosimplicial spaces are
all about derivations of the inverse limit, aka. global sections. Also
for the homotopy theory of simplicial sheaves.

Homotopy inverse limits are easily constructed from injective
model structures on diagrams.

Example: if X is a cosimplicial space, it has an injective fibrant
model j : X → Y (weak equivalence with Y injective fibrant), and
then the homotopy inverse limit of X is defined by

holim←−−−∆X = lim←−
n

Y n.

Classically, holim←−−−∆X = hom(B(∆/?),X ), is same: B(∆/?)→ ∗
is weak equiv.
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The Tot complex

X is Bousfield-Kan fibrant. Then Bousfield and Kan define

Tot(X ) := hom(∆,X ),

in terms of the standard diagram-theoretic function complex:

hom(∆,X )n = hom(∆×∆n,X ).

Let j : X → Y be an injective fibrant model for X . Then Y is
Bousfield-Kan fibrant and the maps

hom(∆,X )→ hom(∆,Y )← hom(∗,Y ) = lim←−
n

Y n

are weak equivalences.

Lemma

There is a natural weak equivalence

Tot(X ) ' holim←−−−∆X

for Bousfield-Kan fibrant objects X .
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Discrete objects

Here’s another fact which is imported from sheaf theory:

Lemma

Suppose that X is a cosimplicial set. Then the corresponding
cosimplicial space is injective fibrant.

Proof: Suppose that A→ B is a trivial cofibration. Then the map
π0A→ π0B of cosimplicial sets is an isomorphism, and the lift
exists in the diagram

A //

��

π0A //

��

X

B // π0B

==

Analog: Suppose that F is a sheaf, identified with a simplicial
sheaf. Then F is injective fibrant.
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Cocycles

Consequence: There are injective fibrant cosimplicial spaces with
empty inverse limit, eg. ∆0 = {∆n

0}.

This can be a bit disconcerting, but there’s a workaround which
involves cocycles.

A cocycle is a diagram

∗ g←−
'

U
f−→ X

in cosimplicial spaces, and a morphism of cocycles is a diagram

U'
xxrrrrrr

��

&&MMMMMM

∗ X

V
'

ffLLLLLL
88qqqqqq

The corresponding category is called the cocycle category (from
∗ to X ), and is denoted by h(∗,X ).
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Cocycles 2

Theorem

The assigment

[∗ g←−
'

U
f−→ X ] 7→ fg−1

defines a bijection
π0h(∗,X ) ∼= [∗,X ].

Corollary

The space holim←−−−∆X is non-empty if and only if X has a cocycle

∗ g←−
'

U
f−→ X .

Proof: Suppose that j : X → Y is an injective fibrant model. Then

π0h(∗,X ) ∼= π0h(∗,Y ) ∼= [∗,Y ],

which is homotopy classes of maps ∗ → lim←−∆
Y since Y is injective

fibrant.
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Cocycles 3

Theorem

Suppose that the cosimplicial space Y is a diagram of Kan
complexes, let Y → Z be an injective fibrant model. There is a
weak equivalence Bh(X ,Y ) ' hom(X ,Z ).

we/X is the category of weak equivalences U
'−→ X .

There is a fibre sequence

hom(X ,Z )→ holim−−−→ U
'−→X

hom(U,Z )→ B(we/X )op ' ∗.

The map

holim−−−→ U
'−→X

hom(U,Y )→ holim−−−→ U
'−→X

hom(U,Z )

is a weak equivalence, since all maps

Bh(X ,Y )→ Bh(X ,Y ∆n
)→ Bh(X ,Z ∆n

)

are weak equivalences.
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Cosimplicial groupoids

Cosimplicial spaces are everywhere, as are cosimplicial groupoids:
for a cosimplicial space X the assignment

n 7→ π(X n)

(fundamental groupoid of X n) defines a cosimplicial groupoid
π(X ), called the fundamental groupoid of X .

Sheaf theory suggests that one controls the homotopy type of a
cosimplicial groupoid H with the cosimplicial space BH: a map
G → H is a weak equivalence (respectively fibration) if the map
BG → BH is a weak equivalence (respectively injective fibration)
of cosimplicial spaces.

These definitions give the category of cosimplicial groupoids a
model structure.
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Stacks

Not every cosimplicial groupoid H has a Bousfield-Kan fibrant
classifying space BH (by a calculation). Thus, not all cosimplicial
groupoids are injective fibrant.

The cosimplicial groupoids H which are fibrant for the injective
model structure above are special — they are called stacks, and an
injective fibrant model G → H is called a stack completion of G .

Rick Jardine Cosimplicial spaces and cocycles



Torsors

Suppose that H is a cosimplicial groupoid.

An H-diagram consists of diagrams Xn : Hn → Set, n ≥ 0, which
fit together along the cosimplicial structure maps of H.

Alternatively, X consists of a cosimplicial set map π : X → Ob(H)
together with an H-action

Mor(H)×s X
m //

��

X

π

��
Mor(H)

t
// Ob(H)

which is associative and respects identities.

An H-diagram X determines a map holim−−−→ HX → BH.

The diagram X is an H-torsor if the map

holim−−−→ HX → ∗

is a weak equivalence.
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Torsors 2

Maps of H-torsors are natural transformations of H-diagrams.

All such maps are isomorphisms since the diagrams

X //

��

holim−−−→ HX

��
Ob(H) // BH

are homotopy cartesian. H − tors denotes the resulting groupoid.

Every H-torsor X has a canonical cocycle

∗ '←− holim−−−→ HX → BH,

and there is a canonical cocycle functor H − tors→ h(∗,BH).

Fact: The canonical cocycle functor has a left adjoint.
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Non-abelian H1

Theorem

Suppose that H is a cosimplicial groupoid. There is a weak
equivalence

B(H − tors) ' Bh(∗,BH),

and so there is an isomorphism

H1(∆,H) := π0(H − tors) ∼= [∗,BH].

Of course, BH might not have cocycles and so there might not be
any H-torsors.
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Theorem

There is a weak equivalence

s : Bh(∗,BH)→ hom(∆,BH)

for each cosimplicial groupoid H.

Corollary

There is an isomorphism

π0hom(∆,BH) ∼= [∗,BH]

for each cosimplicial groupoid H.

In particular, [∗,BH] can be identified with naive homotopy classes
of maps ∆→ BH, whether H is fibrant or not.

hom(∆,BH) is a groupoid, weakly equivalent to global sections of
the stack completion of H.
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Setup for Theorem

Suppose U ' ∗ is cosimplicial groupoid. U0 6= ∅ so choose vertex
v : ∆0 → BU0. v uniquely extends to a cosimplicial groupoid map
v : ∆ = π(∆)→ U since all groupoids Un are trivial. Any two
v ,w : ∆→ U are uniquely isomorphic. Pick xU : ∆→ U for all U
such that U ' ∗.

hom(∆,BH) ∼= B(H∆).

Define s : h(∗,H)→ H∆ by sending the cocycle

∗ '←− U
f−→ H

to the composite

∆
xU−→ U

f−→ H.

Show that the composition

H − tors
'−→ h(∗,U)

s−→ H∆

is weak equivalence of groupoids.
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Abelian cohomology

Cosimplicial objects A in simplicial abelian groups are
Bousfield-Kan fibrant as cosimplicial spaces.

There are isomorphisms

[∗,A] ∼= π0hom(∆,A) ∼= πch(NZ∆,NA)

for all such A. There is an isomorphism

Hn(∆,F ) := [∗,K (F , n)] ∼= π0hom(∆,K (F , n)) ∼= Hn(F )

for all cosimplicial abelian groups F .

If j : K (F , n)→ Z is an injective fibrant model for K (F , n), then

πj lim←−
∆

Z ∼=

{
Hn−j(F ) if 0 ≤ j ≤ n, and

0 if j > n.
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Descent spectral sequence

The descent spectral sequence for π∗ holim←−−− nX for a cosimplicial
space X takes the form

E s,t
2 = HsπtX , t ≥ s.

This is the Bousfield-Kan spectral sequence for the homotopy
groups of “Tot(X )”.

The descent spectral sequence for X comes from the Postnikov
tower construction

P1X ← P2X ← . . .

which is applied levelwise.
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Stack cohomology

There is a natural weak equivalence P1X → Bπ(X ); let
π(X )→ Γ(X ) be a stack completion for the fundamental
groupoid. Then the transition maps PnX → Pn−1X are fibred over
the stack completion in the sense that there is a diagram

PnX //

  @
@@

@@
@@

@ Pn−1X

}}zz
zz

zz
zz

Bπ(X )

��
BΓ(X )
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k-invariants

Form the sequence

PnX → Pn−1X → Pn−1X/PnX →Pn+1(Pn−1X/PnX )

' K (πnX , n + 1)

as Γ(X )-diagrams. Then we have fibre sequences

PnX → Pn−1X
kn−→ K (πnX , n + 1)

of Γ(X )-diagrams. Taking homotopy colimits gives a homotopy
cartesian diagram

PnX //

��

BΓ(X )

��
Pn−1X

kn∗
// holim−−−→ Γ(X )K (πnX , n + 1)

kn is the k-invariant. It defines an element in the stack coh. group

[Pn−1X ,K (πnX , n + 1)]Γ(X ).
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