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Geometric concurrency

Basic idea (V. Pratt, 1991): represent the simultaneous
execution of processors a and b as a picture (2-cell)

∗ b //

�#

∗

∗
a

OO

b
// ∗

a

OO

Simultaneous action of multiple processors is represented by higher
dimensional cubes.

Restrictions on the system arising from shared resources are
represented by removing cubical cells of varying dimensions, so one
is left with a cubical subcomplex K ⊂ �N of an N-cell, where N is
the number of processors.
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Higher dimensional automata

Higher dimensional automata are cubical subcomplexes K ⊂ �N of
the “standard” N-cell �N .

States are objects (vertices), and “execution paths” are morphisms
of the “path category” P(K ).

Execution paths are equivalence classes of combinatorial paths
through the complex. Executions paths between states x and y are
the morphisms P(K )(x , y).

Basic problem: Compute P(K )(x , y).
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Example: the Swiss flag
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A=(a1,b1)

a //
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Cells

The n-cell �n is the poset

�n = P(n),

the set of subsets of the totally ordered set n = {1, 2, , . . . , n}.

There is a unique poset isomorphism

φ : P(n)
∼=−→ 1×n,

where 1 is the 2-element poset 0 ≤ 1. Here,

A
φ7→ (ε1, . . . , εn)

where εi = 1 if and only if i ∈ A.

We use the ordering of n to specify the poset isomorphism φ.
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The box category

Suppose that A ⊂ B ⊂ n. The interval [A,B] ⊂ P(n) is defined by

[A,B] = {C | A ⊂ C ⊂ B}.

There are canonical poset maps

P(m) ∼= P(B − A)
∼=−→ [A,B] ⊂ P(n).

where m = |B − A|. These compositions are the coface maps
d : �m ⊂ �n.

There are also co-degeneracy maps s : �n → �r , determined by
subsets A ⊂ n, where |A| = r , and such that s(B) = B ∩ A.

The cofaces and codegeneracies are the generators for the box
category � consisting of the posets �n, n ≥ 0, subject to the
cosimplicial identities.
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Cubical sets

A cubical set is a functor X : �op → Set.

�n 7→ Xn, and Xn is the set of n-cells of X .

The collection of all such functors and natural transformations
between them is the category cSet of cubical sets.

Examples

1) The standard n-cell �n is the functor hom( ,�n) represented
by �n = P(n) on the box category �.

The n-cells of a cubical set X can be identified with maps
σ : �n → X .

2) Deleting the top cell from �n gives the boundary ∂�n.

There are 2 maximal faces of ∂�n for each i ∈ n: [{i}, n],
[∅, {1, . . . , î , . . . , n}].

3) The cubical horn un(i ,ε) is defined by deleting a top dim. face
from ∂�n.
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Higher dimensional automata

A finite cubical complex is a subcomplex K ⊂ �n. It is
completely determined by cells

�r ⊂ K ⊂ �n

where the composites are cofaces.

Equivalently, K is a set of intervals [A,B] ⊂ P(n) which is closed
under taking subintervals.

A cell (interval) is maximal if r = |B − A| is maximal wrt these
constraints.

Finite cubical complexes are higher dimensional automata.
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Triangulation

There is a triangulation functor

| · | : cSet→ sSet,

with |�n| := B(P(n)) ∼= B(1×n) ∼= (∆1)×n.

B(C ) is the nerve of a category C : B(C )n is the set

a0 → a1 → · · · → an

The triangulation |K | is defined by

|K | = lim−→
�n→K

|�n| = lim−→
�n→K

B(1×n) ∼= lim−→
[A,B]∈K

B([A,B]).

NB: K , L simplicial complexes, then K × L is a simplicial complex,
by finding a (compatible) total ordering on the vertices K0 × L0.
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Examples

1) |�2| = B(1×2) = B(P(2)):

(0, 1) // (1, 1)

(0, 0)

OO

//

::

(1, 0)

OO
{2} // {1, 2}

∅

OO

//

::

{1}

OO

2) |�1 ×�1| has 1-skeleton

(0, 1) // (1, 1)

(0, 0)

OO

//

::

(1, 0)

OO

with non-degenerate 2-cells P(2)→ P(1)× P(1) given by the
canonical isomorphism P(2) ∼= P(1)× P(1) and its twist. Thus

|�1 ×�1| ' S2 ∨ S1
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Standard homotopy theory

Say that a monomorphism of cubical sets is a cofibration.

A map X → Y of cubical sets is a weak equivalence if the
induced map f∗ : |X | → |Y | is a weak equivalence of simplicial
sets.

Fibrations of cubical sets are defined by a right lifting property
with respect to all trivial cofibrations.

Theorem 1.

1) With these definitions the category cSet has the structure of
a proper, closed (cubical) model category.

2) The adjoint functors

| · | : cSet � sSet : S

define a Quillen equivalence.

The right adjoint S is the singular functor.
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Path category (fundamental category)

The nerve functor B : cat→ sSet has a left adjoint

P : sSet→ cat,

called the path category functor. Most often see τ1(X ) = P(X ).

P(X ) is the category generated by the 1-skeleton sk1(X ) (a
graph), subject to the relations:

1) s0(x) is the identity morphism for all vertices x ∈ X0,

2) the triangle

x0
d2(σ)//

d1(σ) !!

x1
d0(σ)��

x2

commutes for all 2-simplices σ : ∆2 → X .
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Execution paths

Suppose that K ⊂ �n is an HDA, with states (vertices) x , y . Then

P(|K |)(x , y)

is the set of execution paths from x to y .

P(K ) := P(|K |) is the path category of the cubical complex K .

P(K ) can be defined directly for K : it is generated by the graph
sk1(K ), subject to the relations given by s0(x) = 1x for vertices x ,
and by forcing the commutativity of

x∅ //

�� ##

x{1}

��
x{2} // x{1,2}

for each 2-cell σ : �2 ⊂ K of K .

Rick Jardine Homotopy theory and concurrency



Preliminary facts

Lemma 2.

sk2(X ) ⊂ X induces P(sk2(X )) ∼= P(X ) for simplicial sets (or
cubical complexes) X .

Lemma 3.

ε : P(BC )→ C is an isomorphism for all small categories C .

Lemma 4.

There is an isomorphism G (P(X )) ∼= π(X ) for all simplicial sets X .

G (P(X )) is the free groupoid on the category P(X ).
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The path 2-category

L = finite simplicial complex: P(L) is the path component
category of a 2-category P2(L).

P2(L) consists of categories P2(L)(x , y), x , y ∈ L.
The objects (1-cells) are paths of non-deg. 1-simplices

x = x0 → x1 → · · · → xn = y

of L. The morphisms of P2(L)(x , y) are composites of the pictures

x0
// . . . // xi−1

!!

//

��

xi+1
// . . . // xn

xi

==

where the displayed triangle bounds a non-deg. 2-simplex.
Compositions are functors

P2(L)(x , y)× P2(L)(y , z)→ P2(L)(x , z)

defined by concatenation of paths.
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Theorem 5.

Suppose that L is a finite simplicial complex. Then there is an
isomorphism

π0P2(L) ∼= P(L).

π0P2(L) is the path component category of the 2-category
P2(L). Its objects are the vertices of L, and

π0P2(L)(x , y) = π0(BP2(L)(x , y)).

Slogan: P2(L) is a “resolution” of the path category P(L).
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The algorithm

Here’s an algorithm for computing P(L) for L ⊂ ∆N :

1) Find the 2-skeleton sk2(L) of L (vertices, 1-simplices,
2-simplices).

2) Find all paths (strings of 1-simplices)

ω : v0
σ1−→ v1

σ2−→ . . .
σk−→ vk

in L.

3) Find all morphisms in the category P2(L)(v ,w) for all vertices
v < w in L (ordering in ∆N).

4) Find the path components of all P2(L)(v ,w), by
approximating path components by full connected
subcategories, starting with a fixed path ω.

Code: Graham Denham (Macaulay 2), Mike Misamore (C).
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Example: the necklace

Let L ⊂ ∆40 be the subcomplex

1

��

3

��

39

  
0

@@

// 2

@@

// 4 . . . 38

>>

// 40

This is 20 copies of the complex ∂∆2 glued together. There there
are 220 morphisms in P(L)(0, 40).

The listing of morphisms of P(L) consumes 2 GB of disk.

Moral: The size of the path category P(L) can grow exponentially
with L.
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Complexity reduction

Suppose that L ⊂ K ⊂ ∆N .

L is a full subcomplex of K if the following hold:

1) L is path-closed in K , in the sense that, if there is a path

v = v0 → v1 → · · · → vn = v ′

in K between vertices v , v ′ of L, then all vi ∈ L,

2) if all the vertices of a simplex σ ∈ K are in L then the simplex
σ is in L.

Lemma 6.

Suppose that L is a full subcomplex of K . Then the functor
P(L)→ P(K ) is fully faithful.

ie. if x , y ∈ L then P(L)(x , y) = P(K )(x , y).
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Examples

∂∆2
d0

⊂ Λ3
0 and ∂∆2

d3

⊂ Λ3
3 are full subcomplexes.

Suppose that i ≤ j in N. K [i , j ] is the subcomplex of K such
that σ ∈ K [i , j ] if and only if all vertices of σ are in the
interval [i , j ] of vertices v such that i ≤ v ≤ j . K [i , j ] is a full
subcomplex of K .

Suppose that v ≤ w are vertices of K . Let K (v ,w) be the
subcomplex of K consisting of simplices whose vertices appear
on a path from v to w . K (v ,w) is a full subcomplex of K .

Construct K (v ,w) from K [v ,w ] by deleting sources and sinks.

A vertex v is a source of K if there are no 1-simplices u → v in K .
(0 is a source of Λ3

0)

A vertex z is a sink if there are no 1-simplices z → w in K . (3 is a
sink of Λ3

3)
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Corners

Suppose that K ⊂ �n is a cubical complex. Say that a vertex x is
a corner of K if it belongs to only one maximal cell.

Lemma 7 (Misamore).

Suppose that x is a corner of K , and let Kx be the subcomplex of
cells which do not have x as a vertex. Then the induced functor

P(Kx)→ P(K )

is fully faithful.
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Examples

1) The cubical horn (0, 1) // (1, 1)

(0, 0)

OO

(1, 0)

OO
has a sink but no corners.

2) The Swiss flag • //

�#
• // • //

�#
•

• //

OO

∗
OO

∗
OO

// •
OO

• //

OO

�#
∗ ∗ //

�#
•
OO

• //

OO

• //

OO

• //

OO

•
OO

has 6 corners, 1 sink, 1 source.
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Going beyond

1) The algorithm depends on having an entire HDA in storage, on
a computer system that is powerful enough to analyze it.

2) We want local to global methods to study large (aka.
“infinite”) models with patching techniques.

3) Nobody has any idea of what higher homotopy invariants should
mean for higher dimensional automata, or even what the
appropriate homotopy theory should be.

One suggestion: Joyal’s theory of quasi-categories.

K 7→ P(K ) is a quasi-category invariant, but beware:

If K → L is a quasi-category weak equivalence then P(K )→ P(L)
is an equivalence of categories.
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The size parameter

The assignment A 7→ |A| defines a poset map P(N)→ N.

If K ⊂ �N then the composite t

|K | → B(P(N))→ BN

|A| is the number of steps the system took to reach state A, by
whatever path. t is the “size parameter”.

Suppose that m < n are natural numbers. K (m, n) is the
subcomplex of K whose cells have vertices A such that
m ≤ |A| ≤ n.

Fact: K (m, n) is a full subcomplex of K , so P(K (m, n))→ P(K )
is fully faithful by Lemma 6.

The complexes K (m, n) define a coarse “topology” on K .
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Refinement

Suppose that the poset map α : P(n)→ P(N) is a monomorphism
that preserves meets and joins.

[A,B] in P(n) determines an interval [α(A), α(B)] in P(N), and α
restricts to a poset monomorphism α : [A,B]→ [α(A), α(B)] (not
a coface).

α preserves inclusion and intersections of intervals.

The subcomplex Kα ⊂ P(N) is generated by the intervals
[α(A), α(B)], and there is a diagram of simp. set maps

|K | α∗ //

��

|Kα|
��

BP(n) α
// BP(N)

Kα is a refinement of K .

Lemma 8.

The functor α∗ : P(K )→ P(Kα) is fully faithful.
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Frontier subcomplex

K ⊂ �N , finite cubical complex.

K0 = AtB, with t(v) < t(w) for all v ∈ A and w ∈ B. Let A and
B be the corr. full subcomplexes of K . Suppose that P(A) and
P(B) are computed.

The frontier subcomplex L (of |K |) is generated by 1-cells and
2-cells which have vertices in both A and B.

Example: if σ : x → y has x ∈ A and y ∈ B, then σ ∈ L.

Composition with σ defines a map

σ∗ : P(A)(u, x)× P(B)(y , v)→ P(K )(u, v).
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An example

Black: t(F ) ≤ 7, Red: t(F ) ≥ 8. Total t: 14.
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Relations

Suppose that ω : ∆1 ×∆1 → L is defined by 2-simplices ω0 and ω1

such that d1ω0 = d1ω1 and d2(ω0) ∈ A and d0(ω1) ∈ B. One of
the 2-simplices ω0 or ω1 could be degenerate.

σ(0, 1)
α1 // σ(1, 1)

q1

%%
u

p1 99

p0 %%

v

σ(0, 0) α0

//

A

OO

ω0

ω1

>>

σ(1, 0)
q0

99B

OO

There are induced maps

ω0 : P(A)(u, σ(0, 0))×P(B)(σ(1, 1), v)→ P(A)(u, σ(0, 0))×P(B)(σ(1, 0), v)

and

ω1 : P(A)(u, σ(0, 0))×P(B)(σ(1, 1), v)→ P(A)(u, σ(0, 1))×P(B)(σ(1, 1), v)
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Computation

ω0, ω1 define the parallel pair of arrows of a coequalizer diagram

⊔
ω:∆1×∆1→L

P(A)(u, σ(0, 0))× P(B)(σ(1, 1), v) ⇒
⊔

σ:x→y ∈ L

P(A)(u, x)× P(B)(y, v)

→ P(K)(u, v).

ie. P(K )(u, v) is a set of equivalence classes for a relation on the
set ⊔

σ:x→y ∈ L

P(A)(u, x)× P(B)(y , v),

defined in a very specific way.

Conclusion: P(K ) is computable from P(A) and P(B), together
with incidence relations defined by the frontier subcomplex L.
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