Diagrams and torsors J.F. Jardine
Cocycles
Suppose that X, Y are spaces.

H(X,Y) = category whose objects are all pairs of
maps (f, g)
xLzsy
where f is a weak equivalence. A morphism « :
(f,9) — (f',¢") of H(X,Y) is a commutative di-
agram
Z
L i
f\

g
a\Y
Z’{

H(X,Y) is the category of cocycles from X
to Y.

“Example”: V) — x is a sheaf epi (arising from

X

a covering) and G is a sheaf of groups. Cocycles on
Vo with coefficients in G' are simp. presheaf maps

x «— C(Vy) — BG

where C(Vj) = Cech resolution for the cover. The
present definition is an expansion of this idea.



moH (X, Y) = class of path components of H(X,Y").
There is a function

¢:mH(X,Y) = [X.Y] (f,g)rg-f"

Theorem: The canonical map ¢ : moH(X,Y) —
[ X, Y] is a bijection for all X and Y.

Lest you think that I've done away with the homo-
topy theory in this statement, suppose that f ~
g : X — Y. Then there is a picture

X

where A is the homotopy. Then
(iXa f) ~ (pn h) ~ (1ng)
Thus f — [(1x, f)] defines a function
¢ : W(Xa Y) - 7TO[{(}() Y)

If X has the good manners to be cofibrant, then
the function %) is inverse to ¢. More generally,
there are a couple of things to prove:



Lemma 1: Suppose a : X — X' and §:Y —
Y’ are weak equivalences. Then

(o, B)s : moH(X,Y) — moH (X', Y")
is a bijection.

Lemma 2: Suppose that Y is fibrant and X is
cofibrant. Then the canonical map

¢ mH(X,Y)— [X,Y]
is a bijection.
The Theorem is a formal consequence. The re-
sult holds in extreme generality, specifically in any
model category which is right proper (weak equiv-
alences pull back to weak equivalences along fibra-

tions), and such that weak equivalences are closed
under finite products.

Examples: spaces, simplicial sets, presheaves of
simplicial sets, spectra, presheaves of spectra, any
localizations.



Proof of Lemma 1 (f,g) € H(X',Y') isamap
(f,9): Z — X'xY'st. fisaweak equivalence.

There is a factorization

Z—L W

m l(pX/’pY/)

X' 'xY'
s.t. 7 is a triv. cofibration and (px, py’) is a fibra-
tion. py is a weak equivalence.

Form the pullback

W, (ax3)« e

(pépp%})l i(thpY/)
X X Y?MX’ x Y’

(p%, py) is afibration and (a X (3). is a weak equiv-
alence (since av x (3 is a weak equivalence, and by
right properness). p% is also a weak equivalence.

(f,g) — (p%,p}) defines a function
ToH (X' Y'") — myH(X,Y)

which is inverse to (a, ). (]



Proof of Lemma 2 7(X, YY) = naive homotopy
classes.

m(X,Y) — | X,Y] is a bijection since X is cofi-
brant and Y is fibrant.

We have seen that the assignment f — [(1x, f)]
defines a function

Y m(X,Y) - mH(X,Y)
and there is a diagram

(X, V) moH(X,Y)

|9

X, Y]

/

[t suffices to show that v is surjective, or that any
object X L 7 % Y isin the path component of
some a pair X & X 5 Y for some map k.

Form the diagram

VA
X/j\j

Y
Th

V 0

where 7 is a triv. cofibration and p is a fibration;
6 exists because Y is fibrant.



X is cofibrant, so the trivial fibration p has a sec-
tion o, and so there is a commutative diagram

X o
X

Y
V17\‘/'9

The composite fo is the required map k. ]

X

Proof of Theorem There are weak equivalences
m: X' — Xand j:Y — Y’ such that X’ and Y’
are cofibrant and fibrant, respectively.

moH(X,Y)—2~[X,Y]
(Lﬁ*lg glj*

moH(X,Y) 2~ [X,Y]
(w,l)*Tg glw*

moH (X', Y") % (X', Y]

(1, 4)« and (m, 1), are bijections by the first Lemma,
and ¢ is a bijection by the second. ]



Non-abelian cohomology

GG = sheaf of groups (on some small Grothendieck
site).

A G-torsor is a sheaf X with a free G-action such
that X/G = % in the sheaf category.

Example: Suppose that GG is a topological group
and that Y is a topological space. Every principal
G-bundle X — Y (ie. X has free G-action such
that X/G = Y) represents a G-torsor on op |y =
site of open subsets of Y, and conversely. G rep-
resents a sheaf of groups hom( , G) on op |y, and
Y represents the terminal sheaf % on op |y.

Recall that the Borel construction EG x ¢ X is the
nerve B(EgX) of the translation category: objects
are elements x € X and the morphisms g : z — y
are group elements such that g-x = y. This is a
special case of the homotopy colimit construction,
which will come up later. The object that we are
interested in is actually a simplicial sheaf which is
constructed as the nerve of a sheaf of categories
section by section, as described.

In general, if I is a small category the nerve BT of
I is the simplicial set whose n-simplices are strings



of arrows

ag — a1 — -+ — Qy

in I. The face map d; forgets about a;, either
by composing the arrows around it or dropping
it from the list altogether (for ay and a,). The
degeneracies are insertions of identities.

If G is a group, BG is the nerve of the category
having one object and one morphism for every el-
ement of the group. Exercise: BG = EG X *.

EG = B(G/%), where G/ is the category of ar-

Tows g : % — x in G.

Fact: G x X — X is a free action means precisely
that the canonical map EG xg X — X/G is a
local weak equivalence.

Thus, X is a G-torsor iff EG xqg X — *is a local
weak equivalence.

G — Tors is the category of G-torsors and G-
equivariant maps. It is a groupoid:

A map f : X — Y of G-torsors is induced on
fibres by the map of local fibrations

EG X(;X EGXGY

~_
BG




Then f : X — Y is a weak equiv. of constant
simplicial sheaves, hence an isomorphism.

A construction:

Suppose * < Y % BG is a cocycle, form pullback
pb(Y) —Y

|k

pb(Y') has a G-action (from EG), and the map
EG xgph(Y) — Y

is a weak equivalence. The square is htpy cartesian
where Y (U) # (), so that pb(Y) — 7o pb(Y) is a
G-equivariant weak equiv.

(7o pb(Y") is the sheaf of path components of the
simplicial sheaf pb(Y), in this case identified with
a constant simplicial sheaf.]

The maps

EG xgmypb(Y) «— EG Xgpb(Y) = Y ~ %

are weak equivs. Then 7y pb(Y') is a G-torsor.
A functor

H (%, BG) — G — Tors
is def. by (x < Y — BG) — mypb(Y).
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A functor
G — Tors — H(x, BG) :
is def. by X — (x < EG xg X — BQG).

Theorem: These functors induce bijections
[x, BG] = o H (%, BG) = my(G—Tors) = H'(C, G).

%, BG] means morphisms in the homotopy cate-
gory of simplicial sheaves (or presheaves). The re-
sult holds over arbitrary small Grothendieck sites,
and is about 20 years old. Unlike the original proof,
you have heard no references to hypercovers or pro
objects — this proof is really quite simple, modulo
the simplicial sheaf homotopy theory technology.

Here’s where it all came from:

k = a field of characteristic # 2.
%, BO,] = H,y(k,Oy)

and H%(k,O,) is isomorphism classes of non-deg.
sym. bilinear forms of rank n over k. Thus, any
such form « defines a morphism [a] : x — BO,,
in the homotopy category for simplicial sheaves on
the étale site for k. There is a calculation

H'(BO,,7./2) = H*(k, Z/2)[HW:, ..., HW,)
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where HW,; is a polynomial generator of degree i,
Any form « therefore determines a ring homomor-
phism

o HY(BO,,7)2) — H'(k,Z,)2)
HW;(a) = o*(HW;) defines the " Hasse-Witt

class of aw. These higher Hasse-Witt classes coin-
cide with the old Delzant Stiefel-Whitney classes.
In particular, HW1(«) = det - o and HW5(«) is
the classical Hasse-Witt invariant.
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Diagrams and torsors

Suppose that G is a group. Simplicial X sets with
G-action are diagrams (ie. functors) X @ G —
sSet, where G is identified with a category (or
groupoid) with one object * and a morphism ¢ :
*x — * for every element g € G.

Now consider functors X : I — S of simplicial
sets defined on a fixed index category I. I usually
say that such a thing is an [-diagram in simplicial
sets.

X is a diagram of equivalences if every 1 —
on I induces a weak equiv. X (i) — X (7).

Example: If p : X — BI is a fibration, then the
diagram i — pb(X)(i) defined by the pullbacks

ph(X)(1) — X

)

B(I/i)— BI
is a diagram of equivalences.

Here I/i is the (slice) category whose objects are
all arrows 5 — 1 of I.
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1) There is a derived pullback functor

Rpb:S/BI — S! = {dias. of equivalences}
defined by applying pb to fibrant replacements.
2) The map holim ; pb(X) — X is a weak equiv-
alence, whether p is a fibration or not.

IfY : I — Set is a diagram of sets, then there is
a category E7Y with objects (i, x) with x € Y (7).
A morphism « : (i,2) — (j,y) is a morphism
a : 1 — 7 of I such that a,(x) = y.

The homotopy colimit holim ;X for a diagram X :
I — sSet in simplicial sets is, effectively, B(E7.X).

Lemma: (Quillen) X : I — S a dia. of equiva-
lences. Then

| |

AV BI

is homotopy cartesian, for all objects ¢ € I.

?

This means that, if you replace the map holim ; X —
BI by a fibration, then X () is weakly equivalent
to the corresponding fibre over ¢ € Bl,.

Cor. If X is a dia. of equivs. and Z — BI is
a fibrant replacement for holim ;. X — BI, then
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there are weak equivs. of I-diagrams

X « pb(holim ; X') — pb(Z).

The derived pullback Rpb and homotopy colimit
functors induce an equivalence

holim : Ho(S"), ~ Ho(S/BI) : Rpb

An I-torsor is a diagram of equivalences X : [ —
S such that holim ; X — * is a weak equivalence.
In other words a dia. of equivalences X : I — S
is an [-torsor if holim ;X determines a cocycle

% < holim ; X — BI

Proposition: The derived pullback R pb and ho-
motopy colimit functors induce bijections

mo(I — Tors) = moH (%, BI) = [x, BI]
Of course, you can prove by hand that [, BI| =
mol (path components in I), so this doesn’t seem
like such a big deal.
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What we have, though, is a definition of I-torsor
and a homotopy classification of I-torsors, and these
admit wild generalization (subject to assigning mean-
ing to the terms):

1) I = presheaf of categories on an arbitrary site
(eg. torsors for sheaves of groupoids, construction
of the associated stack for a sheaf of groupoids)

2) I = presheaf of categories enriched in simplicial
sets on an arbitrary site( “higher torsor” case)

3) I = presheaf of categories (enriched in simplicial
sets) in a proper f-local structure on an arbitrary
site, eg. diagrams and enriched diagrams in mo-
tivic homotopy theory (motivic torsors)

The constructions of torsors and higher torsors
for sheaves of groupoids and simplicial groupoids
were developed over the the last 2-3 years (Jardine,
Luo). The expansion of these ideas to arbitrary di-
agrams is new and unexpected.

15



