
Diagrams and torsors J.F. Jardine

Cocycles

Suppose that X, Y are spaces.

H(X, Y ) = category whose objects are all pairs of

maps (f, g)

X
f←− Z

g−→ Y

where f is a weak equivalence. A morphism α :

(f, g)→ (f ′, g′) of H(X, Y ) is a commutative di-

agram

Zf
wwoooooo g

''OOOOOO

α
��

X Y

Z ′f ′
ggOOOOOO

g′
77pppppp

H(X, Y ) is the category of cocycles from X

to Y .

“Example”: V0 → ∗ is a sheaf epi (arising from

a covering) and G is a sheaf of groups. Cocycles on

V0 with coefficients in G are simp. presheaf maps

∗ '←− C(V0)→ BG

where C(V0) = Čech resolution for the cover. The

present definition is an expansion of this idea.
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π0H(X, Y ) = class of path components ofH(X, Y ).

There is a function

φ : π0H(X, Y )→ [X, Y ] (f, g) 7→ g · f−1

Theorem: The canonical map φ : π0H(X, Y )→
[X, Y ] is a bijection for all X and Y .

Lest you think that I’ve done away with the homo-

topy theory in this statement, suppose that f '
g : X → Y . Then there is a picture

X
f

$$HHHHHHHHHH
1

zzvvvvvvvvvv

d0
��

X X × Iproo h // Y

X
1

ddHHHHHHHHHH g

::vvvvvvvvvv
d1

OO

where h is the homotopy. Then

(iX , f) ∼ (pr, h) ∼ (1X , g)

Thus f 7→ [(1X , f)] defines a function

ψ : π(X, Y )→ π0H(X, Y )

If X has the good manners to be cofibrant, then

the function ψ is inverse to φ. More generally,

there are a couple of things to prove:
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Lemma 1: Suppose α : X → X ′ and β : Y →
Y ′ are weak equivalences. Then

(α, β)∗ : π0H(X, Y )→ π0H(X ′, Y ′)

is a bijection.

Lemma 2: Suppose that Y is fibrant and X is

cofibrant. Then the canonical map

φ : π0H(X, Y )→ [X, Y ]

is a bijection.

The Theorem is a formal consequence. The re-

sult holds in extreme generality, specifically in any

model category which is right proper (weak equiv-

alences pull back to weak equivalences along fibra-

tions), and such that weak equivalences are closed

under finite products.

Examples: spaces, simplicial sets, presheaves of

simplicial sets, spectra, presheaves of spectra, any

localizations.
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Proof of Lemma 1 (f, g) ∈ H(X ′, Y ′) is a map

(f, g) : Z → X ′× Y ′ s.t. f is a weak equivalence.

There is a factorization

Z
j //

(f,g) $$JJJJJJJJJJ W
(pX′ ,pY ′)��

X ′ × Y ′

s.t. j is a triv. cofibration and (pX ′, pY ′) is a fibra-

tion. pX ′ is a weak equivalence.

Form the pullback

W∗
(α×β)∗ //

(p∗X ,p
∗
Y )

��

W
(pX′ ,pY ′)��

X × Y
α×β

//X ′ × Y ′

(p∗X , p
∗
Y ) is a fibration and (α×β)∗ is a weak equiv-

alence (since α × β is a weak equivalence, and by

right properness). p∗X is also a weak equivalence.

(f, g) 7→ (p∗X , p
∗
Y ) defines a function

π0H(X ′, Y ′)→ π0H(X, Y )

which is inverse to (α, β)∗.
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Proof of Lemma 2 π(X, Y ) = naive homotopy

classes.

π(X, Y ) → [X, Y ] is a bijection since X is cofi-

brant and Y is fibrant.

We have seen that the assignment f 7→ [(1X , f)]

defines a function

ψ : π(X, Y )→ π0H(X, Y )

and there is a diagram

π(X, Y )
ψ //

∼= ''PPPPPPPPPPPP
π0H(X, Y )

φ
��

[X, Y ]

It suffices to show that ψ is surjective, or that any

object X
f←− Z

g−→ Y is in the path component of

some a pair X 1←− X k−→ Y for some map k.

Form the diagram

Zf
wwoooooo g

''NNNNNN

j
��

X Y

V
p

ggOOOOOO
θ

77

where j is a triv. cofibration and p is a fibration;

θ exists because Y is fibrant.
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X is cofibrant, so the trivial fibration p has a sec-

tion σ, and so there is a commutative diagram

X1
wwoooooo θσ

''OOOOOO

σ
��

X Y

V
p

ggOOOOOO
θ

77

The composite θσ is the required map k.

Proof of Theorem There are weak equivalences

π : X ′ → X and j : Y → Y ′ such that X ′ and Y ′

are cofibrant and fibrant, respectively.

π0H(X, Y )
φ //

(1,j)∗ ∼=
��

[X, Y ]

j∗∼=
��

π0H(X, Y ′)
φ // [X, Y ′]

π∗∼=
��

π0H(X ′, Y ′)

(π,1)∗ ∼=
OO

φ

∼= // [X ′, Y ′]

(1, j)∗ and (π, 1)∗ are bijections by the first Lemma,

and φ is a bijection by the second.
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Non-abelian cohomology

G = sheaf of groups (on some small Grothendieck

site).

A G-torsor is a sheaf X with a free G-action such

that X/G ∼= ∗ in the sheaf category.

Example: Suppose that G is a topological group

and that Y is a topological space. Every principal

G-bundle X → Y (ie. X has free G-action such

that X/G ∼= Y ) represents a G-torsor on op |Y =

site of open subsets of Y , and conversely. G rep-

resents a sheaf of groups hom( , G) on op |Y , and

Y represents the terminal sheaf ∗ on op |Y .

Recall that the Borel construction EG×GX is the

nerveB(EGX) of the translation category: objects

are elements x ∈ X and the morphisms g : x→ y

are group elements such that g · x = y. This is a

special case of the homotopy colimit construction,

which will come up later. The object that we are

interested in is actually a simplicial sheaf which is

constructed as the nerve of a sheaf of categories

section by section, as described.

In general, if I is a small category the nerve BI of

I is the simplicial set whose n-simplices are strings
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of arrows

a0 → a1 → · · · → an

in I . The face map di forgets about ai, either

by composing the arrows around it or dropping

it from the list altogether (for a0 and an). The

degeneracies are insertions of identities.

If G is a group, BG is the nerve of the category

having one object and one morphism for every el-

ement of the group. Exercise: BG = EG×G ∗.
EG = B(G/∗), where G/∗ is the category of ar-

rows g : ∗ → ∗ in G.

Fact: G×X → X is a free action means precisely

that the canonical map EG ×G X → X/G is a

local weak equivalence.

Thus, X is a G-torsor iff EG×GX → ∗ is a local

weak equivalence.

G − Tors is the category of G-torsors and G-

equivariant maps. It is a groupoid:

A map f : X → Y of G-torsors is induced on

fibres by the map of local fibrations

EG×G X //

$$IIIIIIIII
EG×G Y

zzvvvvvvvvv

BG
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Then f : X → Y is a weak equiv. of constant

simplicial sheaves, hence an isomorphism.

A construction:

Suppose ∗ '←− Y α−→ BG is a cocycle, form pullback

pb(Y ) //

��

Y
α

��

EG π
//BG

pb(Y ) has a G-action (from EG), and the map

EG×G pb(Y )→ Y

is a weak equivalence. The square is htpy cartesian

where Y (U) 6= ∅, so that pb(Y ) → π̃0 pb(Y ) is a

G-equivariant weak equiv.

[π̃0 pb(Y ) is the sheaf of path components of the

simplicial sheaf pb(Y ), in this case identified with

a constant simplicial sheaf.]

The maps

EG×G π̃0 pb(Y )← EG×G pb(Y )→ Y ' ∗

are weak equivs. Then π̃0 pb(Y ) is a G-torsor.

A functor

H(∗, BG)→ G−Tors

is def. by (∗ '←− Y → BG) 7→ π̃0 pb(Y ).
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A functor

G−Tors→ H(∗, BG) :

is def. by X 7→ (∗ '←− EG×G X → BG).

Theorem: These functors induce bijections

[∗, BG] ∼= π0H(∗, BG) ∼= π0(G−Tors) = H1(C, G).

[∗, BG] means morphisms in the homotopy cate-

gory of simplicial sheaves (or presheaves). The re-

sult holds over arbitrary small Grothendieck sites,

and is about 20 years old. Unlike the original proof,

you have heard no references to hypercovers or pro

objects — this proof is really quite simple, modulo

the simplicial sheaf homotopy theory technology.

Here’s where it all came from:

k = a field of characteristic 6= 2.

[∗, BOn] ∼= H1
et(k,On)

and H1
et(k,On) is isomorphism classes of non-deg.

sym. bilinear forms of rank n over k. Thus, any

such form α defines a morphism [α] : ∗ → BOn

in the homotopy category for simplicial sheaves on

the étale site for k. There is a calculation

H∗et(BOn,Z/2) ∼= H∗et(k,Z/2)[HW1, . . . , HWn]
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where HWi is a polynomial generator of degree i,

Any form α therefore determines a ring homomor-

phism

α∗ : H∗et(BOn,Z/2)→ H∗et(k,Z/2)

HWi(α) = α∗(HWi) defines the ith Hasse-Witt

class of α. These higher Hasse-Witt classes coin-

cide with the old Delzant Stiefel-Whitney classes.

In particular, HW1(α) = det · α and HW2(α) is

the classical Hasse-Witt invariant.
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Diagrams and torsors

Suppose that G is a group. Simplicial X sets with

G-action are diagrams (ie. functors) X : G →
sSet, where G is identified with a category (or

groupoid) with one object ∗ and a morphism g :

∗ → ∗ for every element g ∈ G.

Now consider functors X : I → S of simplicial

sets defined on a fixed index category I . I usually

say that such a thing is an I-diagram in simplicial

sets.

X is a diagram of equivalences if every i→ j

on I induces a weak equiv. X(i)→ X(j).

Example: If p : X → BI is a fibration, then the

diagram i 7→ pb(X)(i) defined by the pullbacks

pb(X)(i) //

��

X
p

��
B(I/i) //BI

is a diagram of equivalences.

Here I/i is the (slice) category whose objects are

all arrows j → i of I .
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1) There is a derived pullback functor

R pb : S/BI → SIe = {dias. of equivalences}
defined by applying pb to fibrant replacements.

2) The map holim−−−→ I pb(X) → X is a weak equiv-

alence, whether p is a fibration or not.

If Y : I → Set is a diagram of sets, then there is

a category EIY with objects (i, x) with x ∈ Y (i).

A morphism α : (i, x) → (j, y) is a morphism

α : i→ j of I such that α∗(x) = y.

The homotopy colimit holim−−−→ IX for a diagram X :

I → sSet in simplicial sets is, effectively,B(EIX).

Lemma: (Quillen) X : I → S a dia. of equiva-

lences. Then

X(i) //

��

holim−−−→ I X

��

∆0
i

//BI

is homotopy cartesian, for all objects i ∈ I .
This means that, if you replace the map holim−−−→ IX →
BI by a fibration, then X(i) is weakly equivalent

to the corresponding fibre over i ∈ BI0.
Cor. If X is a dia. of equivs. and Z → BI is

a fibrant replacement for holim−−−→ IX → BI , then
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there are weak equivs. of I-diagrams

X ← pb(holim−−−→ IX)→ pb(Z).

The derived pullback R pb and homotopy colimit

functors induce an equivalence

holim−−−→ : Ho(SI)e ' Ho(S/BI) : R pb

An I-torsor is a diagram of equivalencesX : I →
S such that holim−−−→ I X → ∗ is a weak equivalence.

In other words a dia. of equivalences X : I → S

is an I-torsor if holim−−−→ IX determines a cocycle

∗ '←− holim−−−→ IX → BI

Proposition: The derived pullback R pb and ho-

motopy colimit functors induce bijections

π0(I −Tors) ∼= π0H(∗, BI) ∼= [∗, BI ]

Of course, you can prove by hand that [∗, BI ] ∼=
π0I (path components in I), so this doesn’t seem

like such a big deal.

14



What we have, though, is a definition of I-torsor

and a homotopy classification of I-torsors, and these

admit wild generalization (subject to assigning mean-

ing to the terms):

1) I = presheaf of categories on an arbitrary site

(eg. torsors for sheaves of groupoids, construction

of the associated stack for a sheaf of groupoids)

2) I = presheaf of categories enriched in simplicial

sets on an arbitrary site(“higher torsor” case)

3) I = presheaf of categories (enriched in simplicial

sets) in a proper f -local structure on an arbitrary

site, eg. diagrams and enriched diagrams in mo-

tivic homotopy theory (motivic torsors)

The constructions of torsors and higher torsors

for sheaves of groupoids and simplicial groupoids

were developed over the the last 2-3 years (Jardine,

Luo). The expansion of these ideas to arbitrary di-

agrams is new and unexpected.
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