
Simplicial sheaves, cocycles and torsors

J.F. Jardine

Simplicial sheaves

Suppose that C is a small Grothendieck site, which

typically gives rise to one of the standard topolo-

gies for a (nice) scheme S.

This includes standard issue things like

1) the Zariski site Zar|S of open subsets U ⊂ S.

2) the étale site et|S of étale maps U → S, with

the étale topology, in which coverings are étale

maps V → U which are surjective on points

(faithfully flat), or the Nisnevich topology, in

which the coverings are étale maps V → U

such that all maps Sp(K) → U lift to V if K

is a field.

2) the finite étale site fet|S with finite étale maps

U → S and finite étale covers V → U — this

produces a variant of Galois theory.

4) “big” sites whose objects are scheme homomor-

phisms T → S which are locally of finite type,

but subject to a cardinality bound on both the

points of T and sections of the corresponding

sheaf of rings OT . These sites can be inflicted
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with any of the standard geometric topologies,

so that one has the big Zariski site (Sch|)Zar
the big étale site (Sch|S)et or the big Nisnevich

site (Sm|S)Nis. This last thing is usually not

too useful, and one usually restricts to smooth

S-schemes, where S is very nice, like the spec-

trum Sp(k) of a perfect field k.

A sheaf on a site C is a contravariant functor Cop →
Set which satisfies a patching condition determined

by the topology on C. A presheaf on C is just a

contravariant functor. In many cases the repre-

sentable functors hom( , U) are sheaves (eg. this

is a consequence of the theorem of faithfully flat

descent, for the étale topology), they are always

presheaves.

A simplicial sheaf (resp. simplicial presheaf) X

is a simplicial object in the category of sheaves

(resp. presheaves). In other words, X is a con-

travariant functor ∆op → Shv(C), where ∆ is the

category of finite ordinal numbers n = {0, 1, . . . , n}
and the order preserving maps between them.

Examples:

1) Every simplicial setK determines a “constant”

simplicial presheaf K with K(U) = K for all

2



U ∈ C. The associated sheaf K̃ is the constant

simplicial sheaf, also denoted by Γ∗(K), or by

K. The functor Γ∗ is left adjoint to the global

sections functor.

All standard simplices ∆n = hom( ,n) have

associated constant simplicial sheaves Γ∗∆n.

2) Any small category A has a nerve BA, which

is a simplicial set with

BAn = hom(n, A),

which is the set of strings of arrows

a0 → a1 → · · · → an

of length n in A. Examples include the nerve

(classifying space) BG of a group G, thought

of as a groupoid with one object, and the Borel

construction

EG×G X = B(EGX)

for a group action G × X → X . EGX is

a groupoid whose objects are the members of

X and the morphisms x → y are the group

elements g such that g · x = y.

Elements of BGn can be identified with ele-

ments of the product G×n if G is a group.
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These constructions are functorial, so that any

sheaf (resp. presheaf) of categories A deter-

mines a simplicial sheaf (resp. simplicial presheaf)

BA. An algebraic group H represents (usu-

ally) a sheaf of groups on a geometric site,

and the classifying “space” BH is a simplicial

sheaf. If H × F → F is an action on a sheaf

(usually scheme) F , then the Borel construc-

tion EH ×H F is a simplicial sheaf.

3) Suppose that p : V → U is a function. Then

there is a groupoid G(p) whose objects are the

elements of V and whose morphisms x→ y are

the pairs of elements (x, y) such that p(x) =

p(y). The corresponding nerve BG(p) is the

Čech resolution C(p)

V, V ×U V, V ×U V ×U V, . . .

associated to the function p. There is a canon-

ical simplicial set map C(V ) → U (U is a

constant simplicial set), which is a weak equiv-

alence (of associated CW -complexes) if p is

surjective.

Again, this function is functorial, and so any

sheaf epimorphism (ie. covering) U → F de-

termines a simplicial sheaf map C(U) → F
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which is a local weak equivalence in the sense

that it induces a weak equivalence

C(Ux) = C(U)x → Fx

in all stalks. This how Čech resolutions always

arise.

Example 1. Suppose that L/k is a finite Galois

extension with Galois group G. Then Sp(L) →
Sp(k) is covering for the étale topology, and one

can show that there is an isomorphism of simplicial

sheaves

C(Sp(L)) ∼= EG×G Sp(L) = B(EG Sp(L))

for the étale topology. There is a canonical map

EG×G Sp(L)→ BG.

I say that the sheaf of groupoids EG Sp(L) is the

Galois groupoid for L/k.

The map

EG×G Sp(L)→ ∗
is a local weak equivalence for simplicial sheaves

on the étale site et|K , because Sp(k) represents

the point on that site.

I’ll repeat this: a simplicial sheaf (or presheaf) map

X → Y is a local weak equivalence if it induces
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weak equivalences of simplicial sets

Xx → Yx

in all stalks. That is, if you have a theory of

stalks — you may not have this, eg. flat topology,

in which case there’s a “fat point” construction,

called Boolean localization, which you use instead.

Local weak equivalences can also be described in-

ternally by sheaves of homotopy groups, with a

little care.

There are a multitude of Quillen model structures

on categories of simplicial sheaves sShv(C) or sim-

plicial presheaves sPre(C) for which the weak equiv-

alences are the local weak equivalences. I won’t

describe these, except to say that the injective

structures have all monomorphisms as cofibra-

tions, and then the injective fibrations are what

they are, which is always a bit mysterious.

There is a time honoured method, due to Quillen,

of constructing a homotopy category from a model

structure, which amounts to formally inverting the

local weak equivalences. Example: morphisms

[X, Y ]

in the original homotopy category of topological
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spaces are ordinary homotopy classes of mapsX →
Y if X and Y are CW -complexes.

Local weak equivalences are non-abelian analogs of

quasi-isomorphisms, and the homotopy categories

arising from simplicial sheaves (or presheaves) are

non-abelian derived categories. I use the nota-

tion [X, Y ] for morphisms from X to Y in any

homotopy category.

Cocycles

I want to give you a take on constructing elements

of [X, Y ] for simplicial sheaves X and Y

(or presheaves — there’s no difference, because

a simplicial presheaf is locally weakly equivalent,

even locally isomorphic, to its associated sheaf).

Suppose I give you a picture (cocycle)

X
g←−
'
U

f−→ Y

where g is a local weak equivalence. Then g is

inverted in the homotopy category, and so the as-

signment (g, f ) 7→ f · g−1 defines a function from

pictures to elements of [X, Y ]. If there is a com-
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mutative diagram

Ug
'xxqqqqqq

θ
��

f
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X Y

U ′g′
'ffMMMMMM

f ′
88rrrrrr

(1)

then θ is a local weak equivalence and

f · g−1 = f · θ−1g′−1 = f ′ · g′−1

in the set [X, Y ]. The cocycles (g, f ) are the ob-

jects, and the diagrams (1) are the morphisms of a

category h(X, Y ), called the cocycle category, or

the category of cocycles from X to Y .

We have just shown that there is a well defined

function

φ : π0h(X, Y )→ [X, Y ],

and here is the basic result:

Theorem 2. The map φ is a bijection.

The Theorem is proved by invoking formal non-

sense about the injective model structure: it is

right proper, and the class of local weak equiva-

lences is closed under finite products. There is such

a result for any model category satisfying these two

conditions, and such things abound in nature. The

motivic model structure is an example.
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If you like formal homotopy theory, this result is a

special, practical outcome of the Dwyer-Kan the-

ory of hammock localizations, but was discovered

independently.

Example 3. Suppose thatG is a topological group

and that X is some space. Then G represents a

sheaf of groups on the open subsets of X . Sup-

pose that Uα ⊂ X is an open cover of X . Set

U = tαUα, and then the inclusions Uα ⊂ X to-

gether induce a covering U → ∗ of the one-point

sheaf on op|X . The Čech resolution C(U) for this

covering has the form

t Uα, tα,β Uα ∩ Uβ, tα,β,γ Uα ∩ Uβ ∩ Uγ, . . .

and a map f : C(U) → BG is a cocycle in the

classical sense: it is determined by sections

fα,β ∈ G(Uα ∩ Uβ)

such that the composition law holds for the various

restrictions in G(Uα ∩Uβ ∩Uγ), etc., because f is

induced by a map of groupoids. The corresponding

picture

∗ '←− C(U)
f−→ BG

is a member of the cocycle category h(∗, BG).
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Example 4. Suppose thatH is an algebraic group

defined over a field k, and that L/k is a finite Ga-

lois extension with Galois group G. A morphism

f : EG×G Sp(L)→ BH

consists of a function f : G → H(L) which again

satisfies the classical cocycle conditions

f (hg) = g∗(f (h))f (g).

In effect, the diagram

1L
g //

hg %%JJJJJJ g
g∗(h)��

hg

commutes in the Galois groupoid EG Sp(L). Any

such map f determines a cocycle

∗ '←− EG×G Sp(L)
f−→ BH.

Remark 5. The cocycle category construction

was originally informed by these classical exam-

ples, but it is thoroughly modern in the sense that

the map g in a cocycle

X
g←−
'
U

f−→ Y

can be any local weak equivalence. The map g

does not have to be anything like a hypercover (as

is the map C(U)→ ∗ because C(U) is a presheaf

of Kan complexes).
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Remark 6. Theorem 2 is a generalized version

of the Verdier hypercovering theorem, in which we

compute path components of cocycle categories in-

stead of relying on filtered colimit constructions as-

sociated to hypercovers, which constructions can

be quite fussy.

Non-abelian cohomology

G = sheaf of groups.

A G-torsor is a sheaf X with a free G-action which

is also transitive in the sense that X/G ∼= ∗ in the

sheaf category.

Example 7. Suppose thatG is a topological group

and that Y is a topological space. Every principal

G-bundle X → Y (ie. X has free G-action such

that X/G ∼= Y ) represents a G-torsor on op |Y =

site of open subsets of Y , and conversely. G rep-

resents a sheaf of groups hom( , G) on op |Y , and

Y represents the terminal sheaf ∗ on op |Y .

Fact: G×X → X is a free action means precisely

that the canonical map EG ×G X → X/G is a

local weak equivalence.

Definition: X is a G-torsor iff EG×GX → ∗ is

a local weak equivalence.
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Example 8. L/k finite Galois extension with Ga-

lois group G: Sp(L) is a G-torsor on et|Sp(k).
G − Tors is the category of G-torsors and G-

equivariant maps. It is a groupoid:

A map f : X → Y of G-torsors is induced on

fibres by the map of local fibrations (stalkwise Kan

fibrations)

EG×G X //

$$IIIIIIIII
EG×G Y

zzvvvvvvvvv

BG

Then f : X → Y is a weak equiv. of constant

simplicial sheaves, hence an isomorphism.

Now, here’s a basic construction:

Suppose ∗ '←− Y
α−→ BG is a cocycle, form pullback

pb(Y ) //

��

Y
α

��

EG π
//BG

pb(Y ) has a G-action (from EG), and the map

EG×G pb(Y )→ Y

is a local weak equivalence. The square is htpy

cartesian, so that pb(Y )→ π̃0 pb(Y ) is a G-equiv.

local weak equivalence.
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[π̃0 pb(Y ) is the sheaf of path components of the

simplicial sheaf pb(Y ), in this case identified with

a constant simplicial sheaf.]

The maps

EG×G π̃0 pb(Y )← EG×G pb(Y )→ Y ' ∗

are local weak equivs, so π̃0 pb(Y ) is a G-torsor.

A functor

h(∗, BG)→ G−Tors

is defined by

(∗ '←− Y → BG) 7→ π̃0 pb(Y ).

A functor

G−Tors→ h(∗, BG) :

is defined by

X 7→ (∗ '←− EG×G X → BG).

I call this the “canonical cocycle” functor. It is

right adjoint to the “pullback” functor.

Theorem 9. These functors induce bijections

[∗, BG] ∼= π0h(∗, BG) ∼= π0(G−Tors) = H1(C, G).

Theorem 9 holds over arbitrary small Grothendieck

sites, and is 25 years old. Unlike the original proof,
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you have heard no references to hypercovers or pro

objects.

Example 10. Suppose that k is a field with char(k) 6=
2. Let On be the algebraic group of isometries

of the trivial bilinear form of rank n. A non-

degenerate symmetric bilinear form β of rank n

over k can be identified with a map β : ∗ → BOn

in the homotopy category for simplicial sheaves on

et|k. There is an isomorphism

H∗et(BOn,Z/2) ∼= H∗et(k,Z/2)[HW1, . . . , HWn]

where deg(HWi) = i. The form (homotopy class)

β determines a map

β∗ : H∗et(BOn,Z/2)→ H∗et(k,Z/2)

and β∗(HWi) =: HWi(β) are the higher Hasse-

Witt invariants of β (Delzant Stiefel-Whitney classes).

HW2(β) is the classical Hasse-Witt invariant of β,

and HW1(β) is the determinant.
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There is a corresponding result for sheaves of groupoids

H . An (internal) H-diagram consists of a sheaf

map F → Ob(H), with an H-action

F ×Ob(H) Mor(H) //

��

F

��

Mor(H)
t

// Ob(H)

which is associative, and has two-sided identities.

This is the same thing as a system of diagrams

F (U) : H(U) → Set which respect restriction

(and such that the presheaf U 7→ F (U) is a sheaf),

and so one can form the homotopy colimit con-

struction

holim−−−→H F → BH.

An H-torsor is an H diagram F in sheaves such

that the map holim−−−→H F → ∗ is a local weak equiv-

alence. The category H −Tors of H-torsors is a

groupoid, and we have the following:

Theorem 11. There is a natural bijection

[∗, BH ] ∼= π0(H −Tors)

The proof is a generalization of the proof of Theo-

rem 9.

The ideas generalize further: torsors are defined

for sheaves of categories A, and there is an iden-
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tification of [∗, BA] with path components of the

category of weak equivalences of A-torsors, suit-

ably defined.

Example 12. Suppose thatG is a sheaf of groups

and that X is a sheaf with G-action. A G-torsor

over X is a G-equivariant map P → X where P is

a G-torsor. A map of such things is a commutative

diagram of G-equivariant maps

P
θ //

��444444 P ′

��������

X

and of course θ is an isomorphism.

If P → X is a G-torsor over X , then the maps

∗ '←− EG×G P → EG×G X → BG

define a cocycle, ie. a member of h(∗, EG×GX).

Given a cocycle ∗ '←− U → EG×GX , then pulling

back over EG defines G-equivariant maps

π̃0(pb(U))→ π̃0 pb(EG×G X)
∼=−→ X

giving a G-torsor over X . These constructions are

inverse to each other, giving a bijection

π0(G-torsors over X) ∼= [∗, EG×G X ].
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Stacks and homotopy theory

The injective model structure for simplicial sheaves

restricts to a model structure for sheaves of groupoids,

essentially because the fundamental groupoid func-

tor preserves local weak equivalences.

A map G → H of sheaves of groupoids is a local

weak equivalence (aka. Morita equivalence) if the

induced map BG → BH is a local weak equiva-

lence of simplicial sheaves. The map p : G → H

is a fibration if the induced map BG→ BH is an

injective fibration. In particular, G is fibrant if and

only if BG is injective fibrant. All fibrant objects

are stacks in that they satisfy effective descent.

All stacks H satisfy homotopy theoretic descent,

in that if H → K is a fibrant model then all maps

BH(U)→ BK(U) (in sections) are weak equiva-

lences.

Thus, every fibrant model G→ H defines a stack

completion for G. We can therefore, in practice,

identify the homotopy type of a sheaf (or presheaf)

of groupoids with the sectionwise homotopy type

of its associated stack.

If G → H is a stack completion, then there is an
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isomorphism

[∗, BG] ∼= π0Γ∗H,

where Γ∗ is global sections.

Example 13. The stack completion of the sheaf

of groupoids EGX is the quotient stack X/G. Ex-

ample 12 says that the classical description of the

quotient stack is exactly right from the homotopy

theoretic point of view.

Lemma 14. G and H are locally weakly equiv-

alent if and only if they are Morita equivalent.

G and H are Morita equivalent if and only if there

are maps

G← K → H

such that the induced maps

BG← BK → BH

are local trivial fibrations (aka. hypercovers, also:

Morita morphisms which are essential equivalences).

Such maps are in particular local weak equiva-

lences, so G and H are locally weakly equivalent

if they are Morita equivalent.

Suppose that f : G → H is a local weak equiva-
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lence. Then the cocycle

G
1←−
'
G

f−→ H

determines a commutative diagram

G
j //

(1,f) $$IIIIIIIIII K
p

��

G×H
where p = (p1, p2) is a fibration and j is a weak

equivalence. Both maps p1, p2 are local trivial fi-

brations, so that G and H are Morita equivalent.

19



Appendix:

1) Proof of Theorem 2

Lemma 1: Suppose α : X → X ′ and β : Y →
Y ′ are weak equivalences. Then

(α, β)∗ : π0H(X, Y )→ π0H(X ′, Y ′)

is a bijection.

Lemma 2: Suppose that Y is fibrant and X is

cofibrant. Then the canonical map

φ : π0H(X, Y )→ [X, Y ]

is a bijection.

Proof of Lemma 1 (f, g) ∈ H(X ′, Y ′) is a map

(f, g) : Z → X ′× Y ′ s.t. f is a weak equivalence.

There is a factorization

Z
j //

(f,g) $$JJJJJJJJJJ W
(pX′ ,pY ′)��

X ′ × Y ′

s.t. j is a triv. cofibration and (pX ′, pY ′) is a fibra-

tion. pX ′ is a weak equivalence.
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Form the pullback

W∗
(α×β)∗ //

(p∗X ,p
∗
Y )

��

W
(pX′ ,pY ′)��

X × Y
α×β

//X ′ × Y ′

(p∗X , p
∗
Y ) is a fibration and (α×β)∗ is a weak equiv-

alence (since α × β is a weak equivalence, and by

right properness). p∗X is also a weak equivalence.

(f, g) 7→ (p∗X , p
∗
Y ) defines a function

π0H(X ′, Y ′)→ π0H(X, Y )

which is inverse to (α, β)∗.

Proof of Lemma 2 π(X, Y ) = naive homotopy

classes.

π(X, Y ) → [X, Y ] is a bijection since X is cofi-

brant and Y is fibrant.

We have seen that the assignment f 7→ [(1X , f )]

defines a function

ψ : π(X, Y )→ π0H(X, Y )

and there is a diagram

π(X, Y )
ψ //

∼= ''PPPPPPPPPPPP
π0H(X, Y )

φ
��

[X, Y ]
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It suffices to show that ψ is surjective, or that any

object X
f←− Z

g−→ Y is in the path component of

some a pair X
1←− X

k−→ Y for some map k.

Form the diagram

Zf
wwoooooo g

''NNNNNN

j
��

X Y

V
p

ggOOOOOO
θ

77

where j is a triv. cofibration and p is a fibration;

θ exists because Y is fibrant.

X is cofibrant, so the trivial fibration p has a sec-

tion σ, and so there is a commutative diagram

X1
wwoooooo θσ

''OOOOOO

σ
��

X Y

V
p

ggOOOOOO
θ

77

The composite θσ is the required map k.

Proof of Theorem 1: There are weak equiva-

lences π : X ′ → X and j : Y → Y ′ such that X ′
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and Y ′ are cofibrant and fibrant, respectively.

π0H(X, Y )
φ //

(1,j)∗ ∼=
��

[X, Y ]

j∗∼=
��

π0H(X, Y ′)
φ // [X, Y ′]

π∗∼=
��

π0H(X ′, Y ′)

(π,1)∗ ∼=
OO

φ

∼= // [X ′, Y ′]

(1, j)∗ and (π, 1)∗ are bijections by the first Lemma,

and φ is a bijection by the second.
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