Simplicial sheaves, cocycles and torsors
J.F. Jardine

Simplicial sheaves

Suppose that C is a small Grothendieck site, which
typically gives rise to one of the standard topolo-
gies for a (nice) scheme S.

This includes standard issue things like

1) the Zariski site Zar|g of open subsets U C S.

2) the étale site et|g of étale maps U — S, with
the étale topology, in which coverings are ¢étale
maps V' — U which are surjective on points
(faithfully flat), or the Nisnevich topology, in
which the coverings are étale maps V. — U
such that all maps Sp(K) — U lift to V if K
is a field.

2) the finite étale site fet|gs with finite étale maps
U — S and finite étale covers V' — U — this
produces a variant of Galois theory:.

4) “big” sites whose objects are scheme homomor-
phisms 7" — .S which are locally of finite type,
but subject to a cardinality bound on both the
points of T" and sections of the corresponding
sheaf of rings Op. These sites can be inflicted
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with any of the standard geometric topologies,
so that one has the big Zariski site (Sch|)za,
the big étale site (Schlg)e or the big Nisnevich
site (Sm|s)nis- This last thing is usually not
too useful, and one usually restricts to smooth
S-schemes, where S is very nice, like the spec-
trum Sp(k) of a perfect field k.

A sheafon asite C is a contravariant functor C% —
Set which satisfies a patching condition determined
by the topology on C. A presheaf on C is just a
contravariant functor. In many cases the repre-
sentable functors hom( ,U) are sheaves (eg. this
is a consequence of the theorem of faithtully flat
descent, for the étale topology), they are always
presheaves.

A simplicial sheaf (vesp. simplicial presheaf) X
is a simplicial object in the category of sheaves
(resp. presheaves). In other words, X is a con-
travariant functor A — Shv(C), where A is the
category of finite ordinal numbersn = {0,1,...,n}
and the order preserving maps between them.

Examples:

1) Every simplicial set K determines a “constant”
simplicial presheaf K with K(U) = K for all
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U € C. The associated sheaf K is the constant
simplicial sheaf, also denoted by I™(K), or by
K. The functor I'* is left adjoint to the global
sections functor.

All standard simplices A" = hom( ,n) have

associated constant simplicial sheaves [""A".

2) Any small category A has a nerve BA, which
is a simplicial set with

BA, =hom(n, A),
which is the set of strings of arrows
apg — a1 —> -+ — Qy

of length n in A. Examples include the nerve
(classifying space) BG of a group G, thought
of as a groupoid with one object, and the Borel
construction

EG XgX = B(E(;X)

for a group action G X X — X. FEgX is
a groupoid whose objects are the members of
X and the morphisms x — y are the group
elements g such that g - x = y.

Elements of BG,, can be identified with ele-
ments of the product G*" if G is a group.
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These constructions are functorial, so that any
sheaf (resp. presheaf) of categories A deter-
mines a simplicial sheaf (resp. simplicial presheaf)
BA. An algebraic group H represents (usu-
ally) a sheaf of groups on a geometric site,
and the classifying “space” BH is a simplicial
sheaf. If H x F' — F'is an action on a sheaf
(usually scheme) F', then the Borel construc-
tion EH Xy F'is a simplicial sheaf.

3) Suppose that p : V' — U is a function. Then
there is a groupoid G(p) whose objects are the
elements of V' and whose morphisms x — y are
the pairs of elements (z,y) such that p(z) =
p(y). The corresponding nerve BG(p) is the
Cech resolution C/(p)

V,VXU‘/,VXUVXUV,...

associated to the function p. There is a canon-
ical simplicial set map C(V) — U (U is a
constant simplicial set), which is a weak equiv-
alence (of associated C'W-complexes) if p is
surjective.

Again, this function is functorial, and so any
sheaf epimorphism (ie. covering) U — F de-
termines a simplicial sheaf map C(U) — F
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which is a local weak equivalence in the sense
that it induces a weak equivalence

in all stalks. This how Cech resolutions always
arise.

Example 1. Suppose that L/k is a finite Galois
extension with Galois group G. Then Sp(L) —
Sp(k) is covering for the étale topology, and one
can show that there is an isomorphism of simplicial
sheaves

C'(Sp(L)) = EG xg Sp(L) = B(EgSp(L))
for the étale topology. There is a canonical map
EG x¢Sp(L) — BG.

[ say that the sheaf of groupoids Fg Sp(L) is the
Galois groupoid for L/k.
The map

EG x¢Sp(L) — *

is a local weak equivalence for simplicial sheaves
on the étale site et|x, because Sp(k) represents
the point on that site.

I'll repeat this: a simplicial sheaf (or presheaf) map
X — Y is a local weak equivalence if it induces
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weak equivalences of simplicial sets
Xy = Yy

in all stalks. That is, if you have a theory of
stalks — you may not have this, eg. flat topology,
in which case there’s a “fat point” construction,
called Boolean localization, which you use instead.
Local weak equivalences can also be described in-
ternally by sheaves of homotopy groups, with a
little care.

There are a multitude of Quillen model structures

on categories of simplicial sheaves sShv(C) or sim-

plicial presheaves s Pre(C) for which the weak equiv-
alences are the local weak equivalences. I won’t

describe these, except to say that the injective

structures have all monomorphisms as cofibra-

tions, and then the injective fibrations are what

they are, which is always a bit mysterious.

There is a time honoured method, due to Quillen,
of constructing a homotopy category from a model
structure, which amounts to formally inverting the
local weak equivalences. Example: morphisms

X, Y]
in the original homotopy category of topological
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spaces are ordinary homotopy classes of maps X —
Y if X and Y are CW-complexes.

Local weak equivalences are non-abelian analogs of
quasi-isomorphisms, and the homotopy categories
arising from simplicial sheaves (or presheaves) are
non-abelian derived categories. 1 use the nota-
tion [ X, Y] for morphisms from X to Y in any
homotopy category.

Cocycles

[ want to give you a take on constructing elements
of [ X, Y] for simplicial sheaves X and Y

(or presheaves — there’s no difference, because
a simplicial presheaf is locally weakly equivalent,
even locally isomorphic, to its associated sheaf).

Suppose [ give you a picture (cocycle)
xLuly

where ¢ is a local weak equivalence. Then g is
inverted in the homotopy category, and so the as-
signment (g, f) — f - ¢! defines a function from
pictures to elements of [ X, Y]. If there is a com-



mutative diagram

g /
X/_l\
\ /
gy

then @ is a local weak equivalence and

fg —felll—f/'g/_l
in the set [X,Y]. The cocycles (g, f) are the ob-
jects, and the diagrams (1) are the morphisms of a

category h(X,Y), called the cocycle category, or
the category of cocycles from X to Y.

We have just shown that there is a well defined
function

¢ mh(X,Y) — [X,Y],
and here 1s the basic result:
Theorem 2. The map ¢ 1s a bijection.

The Theorem is proved by invoking formal non-
sense about the injective model structure: it is
right proper, and the class of local weak equiva-
lences is closed under finite products. There is such
a result for any model category satisfying these two
conditions, and such things abound in nature. The
motivic model structure is an example.
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If you like formal homotopy theory, this result is a
special, practical outcome of the Dwyer-Kan the-
ory of hammock localizations, but was discovered
independently:.

Example 3. Suppose that GG is a topological group
and that X is some space. Then G represents a
sheaf of groups on the open subsets of X. Sup-
pose that U, C X is an open cover of X. Set
U = u,U,, and then the inclusions U, C X to-
gether induce a covering U — * of the one-point
sheaf on op|x. The Cech resolution C(U) for this
covering has the form

LU, Lo.s UaﬂUg, Ua, 8,y UaﬂUgﬂUfy, .

and a map f : C(U) — BG is a cocycle in the
classical sense: it is determined by sections

fap € G(U,NU3)

such that the composition law holds for the various
restrictions in G(U, NUg N U,), etc., because f is
induced by a map of groupoids. The corresponding
picture

« < COU) L BG
is a member of the cocycle category h(x, BG).



Example 4. Suppose that H is an algebraic group
defined over a field k, and that L/k is a finite Ga-
lois extension with Galois group GG. A morphism

f:EG x¢Sp(L) — BH

consists of a function f : G — H(L) which again
satisfies the classical cocycle conditions

f(hg) = g*(f(h))f(g).
In effect, the diagram

commutes in the Galois groupoid Eg Sp(L). Any
such map f determines a cocycle

« & EG x¢Sp(L) & BH.

Remark 5. The cocycle category construction
was originally informed by these classical exam-
ples, but it is thoroughly modern in the sense that
the map g in a cocycle

x<Ludy
can be any local weak equivalence. The map g
does not have to be anything like a hypercover (as

is the map C'(U) — * because C(U) is a presheaf
of Kan complexes).
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Remark 6. Theorem 2 is a generalized version
of the Verdier hypercovering theorem, in which we
compute path components of cocycle categories in-
stead of relying on filtered colimit constructions as-
sociated to hypercovers, which constructions can
be quite fussy.

Non-abelian cohomology
(G = sheaf of groups.

A G-torsor is a sheaf X with a free G-action which
is also transitive in the sense that X/G = * in the
sheaf category:.

Example 7. Suppose that GG is a topological group
and that Y is a topological space. Every principal
G-bundle X — Y (ie. X has free G-action such
that X/G = 'Y) represents a G-torsor on op |y =
site of open subsets of Y, and conversely. G rep-
resents a sheaf of groups hom( ,G) on op |y, and
Y represents the terminal sheaf * on op |y

Fact: G x X — X is a free action means precisely
that the canonical map FG xg X — X/G is a
local weak equivalence.

Definition: X is a G-torsor ift EG xg X — % 1s
a local weak equivalence.
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Example 8. L/k finite Galois extension with Ga-
lois group G: Sp(L) is a G-torsor on et |gpz)-

G — Tors is the category of G-torsors and G-
equivariant maps. It is a groupoid:

A map f: X — Y of G-torsors is induced on
fibres by the map of local fibrations (stalkwise Kan
fibrations)

EG X(;X EGXGY

~
BG

Then f : X — Y is a weak equiv. of constant
simplicial sheaves, hence an isomorphism.

Now, here’s a basic construction:

Suppose * < Y % BG is a cocycle, form pullback
pb(Y) —Y

|k

pb(Y') has a G-action (from EG), and the map
EG x¢ pb(Y) — Y

is a local weak equivalence. The square is htpy
cartesian, so that pb(Y') — 7y pb(Y') is a G-equiv.
local weak equivalence.

12



(7o pb(Y") is the sheaf of path components of the
simplicial sheaf pb(Y), in this case identified with
a constant simplicial sheaf.]

The maps
EG xgmypb(Y) <= EG Xgpb(Y) = Y ~
are local weak equivs, so 7y pb(Y’) is a G-torsor.

A functor
h(x, BG) — G — Tors
is defined by
(* < Y — BG) s 7yph(Y).
A functor
G — Tors — h(x, BG) :
is defined by
X = (x < EG x¢ X — BGQ).

[ call this the “canonical cocycle” functor. It is
right adjoint to the “pullback” functor.

Theorem 9. These functors induce bijections
[+, BG] = myh(x, BG) = my(G—Tors) = H'(C, G).

Theorem 9 holds over arbitrary small Grothendieck
sites, and is 25 years old. Unlike the original proof,
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you have heard no references to hypercovers or pro
objects.

Example 10. Suppose that k is a field with char (k) #
2. Let O, be the algebraic group of isometries

of the trivial bilinear form of rank n. A non-
degenerate symmetric bilinear form 3 of rank n
over k can be identified with a map 8 : * — BO,,

in the homotopy category for simplicial sheaves on
et|r. There is an isomorphism

H:(BOWwZ/2) = Hy(k, Z/2)HW,, ... HW,]

where deg( HW;) = i. The form (homotopy class)
[ determines a map

p*: H(BO,,Z/2) — H(k,7Z/2)

and B*(HW;) =: HW;() are the higher Hasse-
Witt invariants of 5 (Delzant Stiefel-Whitney classes).
HWs(5) is the classical Hasse-Witt invariant of /3,
and HW1(f) is the determinant.
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There is a corresponding result for sheaves of groupoids
H. An (internal) H-diagram consists of a sheaf
map F' — Ob(H), with an H-action

F XOb(H) MOI(H) F

|

Mor(H ) ————Ob(H)

which is associative, and has two-sided identities.
This is the same thing as a system of diagrams
F(U) : H{U) — Set which respect restriction
(and such that the presheaf U +— F(U) is a sheaf),
and so one can form the homotopy colimit con-
struction

holimg y ¥ — BH.

An H-torsoris an H diagram F' in sheaves such
that the map }m g F' — xis a local weak equiv-
alence. The category H — Tors of H-torsors is a
groupoid, and we have the following:

Theorem 11. There s a natural bijection
x, BH| = my(H — Tors)

The proof is a generalization of the proof of Theo-
rem 9.

The ideas generalize further: torsors are defined
for sheaves of categories A, and there is an iden-
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tification of [x, BA| with path components of the

category of weak equivalences of A-torsors, suit-
ably defined.

Example 12. Suppose that G is a sheaf of groups
and that X is a sheaf with G-action. A G-torsor
over X is a G-equivariant map P — X where P is
a G-torsor. A map of such things is a commutative
diagram of G-equivariant maps

P\X/P’

and of course 6 is an isomorphism.

If P— X is a G-torsor over X, then the maps
x+ < EG xq P — EG x¢ X — BG

define a cocycle, ie. a member of h(x, EG xg X).
Given a cocycle ¥ <— U — EG x ¢ X, then pulling
back over EG defines G-equivariant maps

Fo(pb(U)) = 7o pb(EG x¢ X) = X

giving a G-torsor over X. These constructions are
inverse to each other, giving a bijection

mo(G-torsors over X) = [x, EG xg X].
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Stacks and homotopy theory

The injective model structure for simplicial sheaves
restricts to a model structure for sheaves of groupoids,
essentially because the fundamental groupoid func-
tor preserves local weak equivalences.

A map G — H of sheaves of groupoids is a local
weak equivalence (aka. Morita equivalence) if the
induced map BG — BH is a local weak equiva-
lence of simplicial sheaves. The map p : G — H
is a fibration if the induced map BG' — BH is an
injective fibration. In particular, G is fibrant if and
only if BG is injective fibrant. All fibrant objects
are stacks in that they satisfy effective descent.

All stacks H satisfy homotopy theoretic descent,
in that if H — K is a fibrant model then all maps

BH(U) — BK(U) (in sections) are weak equiva-
lences.

Thus, every fibrant model G — H defines a stack
completion for G. We can therefore, in practice,
identify the homotopy type of a sheaf (or presheaf)
of groupoids with the sectionwise homotopy type
of its associated stack.

If G — H is a stack completion, then there is an
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isomorphism
%, BG] = mol'.H,
where I', is global sections.

Example 13. The stack completion of the sheaf
of groupoids F¢ X is the quotient stack X/G. Ex-
ample 12 says that the classical description of the
quotient stack is exactly right from the homotopy
theoretic point of view.

Lemma 14. G and H are locally weakly equiv-
alent if and only if they are Morita equivalent.

G and H are Morita equivalent if and only if there

are maps
G+~ K—H

such that the induced maps
BG + BK — BH

are local trivial fibrations (aka. hypercovers, also:
Morita morphisms which are essential equivalences).
Such maps are in particular local weak equiva-
lences, so G and H are locally weakly equivalent
if they are Morita equivalent.

Suppose that f : G — H is a local weak equiva-

18



lence. Then the cocycle
1 S
G+~ G—=H
determines a commutative diagram

G—1 K

o

G x H

where p = (p1, p2) is a fibration and j is a weak
equivalence. Both maps pi, po are local trivial fi-
brations, so that G and H are Morita equivalent.
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Appendix:
1) Proof of Theorem 2

Lemma 1: Suppose @ : X — X' and 8:Y —
Y’ are weak equivalences. Then

(a, B)s : mH(X,Y) = moH(X',Y")
is a bijection.

Lemma 2: Suppose that Y is fibrant and X is
cofibrant. Then the canonical map

¢ mH(X,Y)— [X,Y]
is a bijection.

Proof of Lemma 1 (f,g) € H(X',Y') isamap
(f,g9): Z — X' xY'st. fisaweak equivalence.

There is a factorization

Z—L W

m l(pX/’pY/)

X' xY'

s.t. 7 is a triv. cofibration and (px, py’) is a fibra-
tion. py is a weak equivalence.
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Form the pullback
W* (O‘Xﬁ)* W
(p},pik/)l l(pr,py/)
X XY 25X 'xY’

(p%, py) is afibration and (a x ). is a weak equiv-
alence (since av x (8 is a weak equivalence, and by
right properness). p% is also a weak equivalence.

(f,9) — (p%, Py ) defines a function
T H (X', Y") = moH(X,Y)
which is inverse to («, 5)s. (]

Proof of Lemma 2 7(X, YY) = naive homotopy
classes.

m(X,Y) — [X,Y] is a bijection since X is cofi-
brant and Y is fibrant.

We have seen that the assignment f — [(1x, f)]
defines a function

Y m(X,)Y) = mH(X,Y)
and there is a diagram

(X, Y) L mH(X,Y)

=N

X, Y]

2
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It suffices to show that v is surjective, or that any
object X L 7% Y isin the path component of
some a pair X & X 5y for some map k.

Form the diagram

f/Zj\g

YP\ Vv """97

where 7 is a triv. cofibration and p is a fibration;

X Y

0 exists because Y is fibrant.

X is cofibrant, so the trivial fibration p has a sec-
tion o, and so there is a commutative diagram

R
X e
Vp\‘/@

The composite fo is the required map k. ]

Y

Proof of Theorem 1: There are weak equiva-
lences m: X' — X and j : Y — Y’ such that X’
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and Y’ are cofibrant and fibrant, respectively.

moH(X,Y)—2~[X,Y]
(Lﬁ*lg glj*

moH(X,Y) 2~ [X,Y]
(w,l)*Tg glw*

moH (X', Y") % X', Y]

(1, 4)« and (m, 1), are bijections by the first Lemma,
and ¢ is a bijection by the second. ]
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