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Étale site of a field

k a field, with k ↪→ k.

Consider all k ⊂ L ⊂ k (defined by elements), L/k finite, separable,
ie. L = k(α1, . . . , αn), αi ∈ k , defined by separable polynomials.

Fink : all finite separable extensions L/k , k-alg. morphisms L→ L′.

A presheaf (of sets) on Fink is a covariant functor
E : Fink → Set.

E is an étale sheaf if, for every finite Galois extension N/L in Fink

with Galois group H, there is a bijection

E (L)
∼=−→ E (N)H .

tH Sp(N) ∼= Sp(N)×Sp(k) Sp(N) ⇒ Sp(N)
π−→ Sp(L) (1)

def. by action of H on N, sheaf coequalizer for étale cover π.
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Stalks

Sheaves and presheaves E have stalks at geo. point k ⊂ k .

The stalk E (k) of a presheaf E is the filtered colimit

E (k) = E (ksep) = lim−→
L⊂k fin. sep.

E (L).

If E is a presheaf, set

Ẽ (L) = E (k)GL = lim−→
N/L fin. Gal.

E (N)G(N/L).

Pro-group GL = { G (N/L) } is the absolute Galois group of L.

η : E (L)→ Ẽ (L) define the associated sheaf map η : E → Ẽ .

η induces an isom. of stalks E (k)
∼=−→ Ẽ (k), since (1) pulls back to

(split) presheaf coequalizer over Sp(N).
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Schemes and sheaves

Every k-scheme S represents a sheaf on Fink :

S(L) = homk(Sp(L), S)

S(L) is the set of L-points of S .

S(N) def. by solutions α1, . . . , αn ∈ N of f (x1, . . . , xn) = 0.

If H = Gal(N/L), then H acts on the αi (hence on the N-points of
S), and fixes the αi if and only if they live in L.

Thus
S(L) ∼= S(N)H ,

and S is a sheaf.
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Examples

1) Gln is the algebraic group of n × n invertible matrices over k ,
defined as a scheme by

Gln = Sp(k[xi ,j ]det).

Gln(L) is the group of (n × n) invertible matrices in L.

The stalk is Gln(ksep).

2) If N/k is a finite Galois extension, then Sp(N) represents a
sheaf, with

Sp(N)(L) = homk(N, L).

The stalk
Sp(N)(k) = hom(N, k) ∼= Gal(N/k)

3) X a set. The constant presheaf Γ∗X has Γ∗X (L) = X .
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Simplicial presheaves and sheaves

A simplicial presheaf X on Fink is a covariant functor
Fink → sSet.

A simplicial sheaf is a simplicial presheaf X such that each
presheaf Xn is a sheaf.

Examples:

1) Gln is a sheaf of groups. BGln is a simplicial sheaf, with
p-simplices Gl×pn .

1.5) If H is a sheaf of groups (or groupoids, or categories), then
BH is a simplicial sheaf.

2) BGl = lim−→n
BGln is a simplicial presheaf.

3) The terminal simplicial presheaf ∗ on Fink , rep. by Sp(k).

∗(L) is a one-point set: there is only one k-alg. morphism k → L.
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A trick

f : E → F a function.

Groupoid E/f : objects E , and a unique map x → y if and only if
f (x) = f (y).

There are simplicial set maps

B(E/f )
∼−→ f (E ) ⊂ F .

If f : E → F is surjective, then B(E/f )→ F is a weak
equivalence.

This construction is absolutely functorial, hence applies to
presheaves and sheaves.

Gives all Čech resolutions: if π : U → X is covering (aka. sheaf
epi), then B(U/π) = Č (U), and is the simplicial sheaf

. . . // //// U ×F U //// U
π // V : Č (U)

'−→ V .

Rick Jardine Galois cohomological descent



Čech resolution for Galois extension L/k

G = Gal(L/k) finite. π : Sp(L)→ ∗ is an étale cover (surjective in
stalks).

In N-sections, objects are morphisms L→ N (if they exist). Any
two determine a unique picture

L
''

σ∈Gal(L/k)
��

N

L

77

Eπ = EG (Sp(L)(N)) is translation category for action of G on
Sp(L)(N), and

B(EG Sp(L)) = EG ×G Sp(L)→ ∗

is a weak equivalence in sections for which there are maps L→ N.

{EG Sp(L)} is the abs. Galois groupoid, with EG Sp(L)→ G ,
EG ×G Sp(L)→ BG = Γ∗BG .
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Homotopy theory

Model structure on s Pre(Fink) = category of simplicial presheaves
on Fink :

Cofibrations are monomorphisms. The stalkwise (or local) weak
equivalences are those X → Y which induce weak equivalences
X (k)

'−→ Y (k) of stalks. The fibrations are injective fibrations.

There is a similarly defined model structure on s Shv(Fink), which
is Quillen equivalent:

L2 : s Pre(Fink) � s Shv(Fink) : u.

Examples: 1) η : X → X̃ is a stalkwise isomorphism, hence a
stalkwise equivalence.

2) G = Gal(L/k): EG ×G Sp(L)→ ∗ is a stalkwise. equiv. (also
hypercover)
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Cohomology

1) [Sp(L),K (F , n)] ∼= Hn
et(L,F ) for finite separable extensions L/k

and abelian sheaves F .

This applies to k: Hn
et(k ,F ) ∼= [∗,K (F , n)].

2) If H is an algebraic group over k , then

[∗,BH] ∼= {iso. classes of H-torsors}
=: H1

et(k,H).

2.5) If L/k is a finite Galois extension with Galois group G , then
Sp(L)→ ∗ is a non-trivial G -torsor. There is a cocycle

∗ '←− EG ×G Sp(L)→ BG ,

and Sp(L) does not have global sections L→ k .

BG = Γ∗BG is a constant simplicial sheaf.
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Function complexes

There is a function complex construction hom(X ,Y ), with

hom(X ,Y )p = {X ×∆p → Y }
If Z is injective fibrant and X → Y a stalkwise weak equiv., then

hom(Y ,Z )→ hom(X ,Z )

is a weak equivalence of simplicial sets, by formal nonsense.

Lemma 1.

The map

Z (k) ∼= hom(∗,Z )→hom(EG ×G Sp(L),Z )

∼= holim←−−− G Z (L) = Z (L)hG

is a weak equivalence if Z is injective fibrant.

Proof.

EG ×G Sp(L)→ ∗ is a stalkwise weak equivalence.
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Finite descent

If L/k finite Gal. with Gal. group G and Z is injective fibrant then
there is a weak equiv.

Z (k) ∼= hom(∗,Z )
'−→ hom(EG ×G Sp(L),Z ) ∼= holim←−−− G Z (L)

i.e.: Z (k) = htpy fixed points space for the action of G on Z (L).

Same statement: injective fibrant simplicial presheaves Z “satisfy
finite Galois descent”.

If X is a presheaf of Kan complexes, say that X satisfies finite
descent if all induced maps

X (k) ∼= hom(∗,X )→ hom(EG ×G Sp(L),X )

are weak equivalences.
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Galois descent

An injective fibrant model for X is a stalkwise weak equivalence
j : X → Z with Z injective fibrant.

Say that X satisfies descent (or Galois cohomological descent), if
some (hence any) injective fibrant model j : X → Z is a
sectionwise weak equivalence, i.e. induces weak equivalences

X (L)
'−→ Z (L)

of simplicial sets for all L ∈ Fink .

Facts: 1) A stalkwise weak equivalence Z →W of injective fibrant
objects is a sectionwise equivalence.

2) Any two injective fibrant models of a fixed object X are
sectionwise weakly equivalent.

Example: All injective fibrant objects satisfy descent.
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Descent implies finite descent

Lemma 2.

Suppose that a presheaf of Kan complexes X on Fink satisfies
descent. Then X satisfies finite descent.

Proof.

If X satisfies descent, and j : X → Z is a fibrant model, then there
is a diagram

X (k) //

' j

��

holim←−−− G X (L)

'j∗
��

Z (k) '
// holim←−−− G Z (L)
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Galois cohomology

Lemma 3.

Suppose that A is an abelian sheaf on Fink . Then

Hn
et(k ,A) ∼= lim−→

L/k Gal

Hn hom(EG ×G Sp(L),A)

= Ȟn(Gk ,A) (classical Galois cohomology).

Sketch: • Ȟ∗(Gk ,B) = 0 for abelian presheaves J st. B̃ = 0, e.g.
all homology sheaves of cokernel of an injective resolution A→ I .

• Ȟ∗(Gk ,A) = 0 for simplicial abelian presheaves st. H̃k(A) = 0
for all k and A has only finitely many non-trivial homology
presheaves.

• The map

hom(∗,Tr(I [−p]))→ hom(EG ×G Sp(L),Tr(I [−p]))

is quasi-iso, since EG ×G Sp(L)→ ∗ is stalkwise weak equiv.
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Galois hypercohomology

Define a Galois hypercohomology space

Ȟ(G ,E ) = lim−→
G=Gal(L/k)

hom(EG ×G Sp(L),E )

for any presheaf of Kan complexes E on Fink .

There is a canonical map

φ : E (k)→ Ȟ(G ,E ),

induced by all EG ×G Sp(L)→ ∗.

φ is not a weak equivalence in general.

Example: E = K (A, n) for abelian sheaves A s.t. Hn
Gal(k ,A) 6= 0.
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Comparisons

Take an injective fibrant model j : E → Z . There is a diagram

E (k) //

j∗ ��

Ȟ(G ,E )

j∗��
Z (k) '

// Ȟ(G ,Z )

The bottom map is a weak equivalence since Z is injective fibrant.

Dream: Pretend that j∗ : Ȟ(G ,E )→ Ȟ(G ,Z ) is a weak
equivalence (eg. E = K (A, n)).

If E satisfies finite descent, then j∗ : E (k)→ Z (k) is a weak equiv.

Wakeup: It’s not clear that the Galois hypercohomology invariant
E 7→ Ȟ(G ,E ) preserves stalkwise equivalence.
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Postnikov sections

Theorem 4.

Suppose f : E → F is a stalkwise weak equiv. on Fink such that
E ,F have only finitely many non-trivial presheaves of homotopy
groups. Then

Ȟ(G ,E )→ Ȟ(G ,F )

is a weak equivalence.

Corollary 5.

Suppose that E has only finitely many non-trivial presheaves of
homotopy groups, and that j : E → Z is an injective fibrant model
on Fink . Then the induced map

Ȟ(G ,E )→ Ȟ(G ,Z )

is a weak equivalence.
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Postnikov sections, II

Here is how Corollary 4 is proved:

If X → PnX is a sectionwise weak equivalence and j : X → Z is an
injective fibrant model, then Z → PnZ is a sectionwise weak
equivalence. Apply Theorem 3 to the map j : X → Z

Reason: If j : K (A, n)→ Z is an injective fibrant model, then

πiZ (L) ∼=

{
Hn−i
Gal (L,A) if 0 ≤ i ≤ n,

0 if i > n.

Remark: If H is a sheaf of groupoids, then Ȟ(G ,BH) is global
sections of the associated stack.
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An application

Suppose E is a locally connected presheaf of Kan complexes on
et|k whose sheaves of homotopy groups are `-primary torsion.
Suppose that k has finite Galois cohomological dimension with
respect to `-primary torsion sheaves. (eg. (K/`)n, n > 0.)

Suppose that j : E → ZE is the injective fibrant model functor.

Look at the diagram of simplicial sets

Ȟ(G ,PnE )
'
j∗
// Ȟ(G ,ZPnE )

PnE (k)

α

OO

j // ZPnE (k)

' α

OO

E (k)

p

OO

j
// ZE (k)

p′

OO
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Some observations

1) j∗ is a weak equivalence by the Corollary.

2) The indicated map α is a weak equivalence, since ZPnE is
injective fibrant.

3) Letting n vary gives a diagram of pro-objects.

The map p is a pro-equivalence by definition, while the map p′ is a
pro-equivalence since the homotopy group sheaves of E are
`-torsion and k has finite Galois cohomological dimension with
respect to `-torsion sheaves.

4) It follows that the map j : E (k)→ ZE (k) is a pro-equivalence if
and only if either

j∗ : P∗E (k)→ ZP∗E (k)

is a pro-equivalence, or (equivalently) the maps

PnE (k)→ Ȟ(G ,PnE )

define a pro-equivalence.
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5) One can show that j : E (k)→ ZE (k) is a pro-equivalence if and
only if it is a weak equivalence of spaces.

6) Thus j : E (k)→ ZE (k) is a weak equivalence if and only if the
map

PnE (k)→ Ȟ(G ,PnE )

is a pro-equivalence.

This last statement is a pro-version of the finite descent property
for E .
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Pro-equivalences

A map f : X → Y of pro-objects is an EH-equivalence if

lim−→
j

[Yj ,Z ]→ lim−→
i

[Xi ,Z ]

is a bijection for all fibrant Z . (EH: Edwards-Hastings).

f is a pro-equivalence if P∗X → P∗Y is an EH-equivalence.

Lemma 6.

Suppose that f : X → Y is a map of spaces such that
P∗X → P∗Y is a pro-equivalence. Then f is a weak equivalence.

Proof.

PnX → PnP∗X is an EH-equivalence and Pn preserves
EH-equivalences. Then PnX → PnY is an EH-equivalence and
hence a weak equivalence for all n.
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