
Galois descent and pro objects

J.F. Jardine

Suppose that k is a field, and let et|k be its finite

étale site. This category consists of all schemes

U = Sp(L1) t · · · t Sp(Ln)

where each Li/k is a finite separable extension,

and all k-scheme (equivalently k-algebra) maps be-

tween them.

A simplicial presheaf X : et|opk → sSet on

et|k is a contravariant functor defined on et|k which

takes values in simplicial sets, and a morphism

of simplicial presheaves is a natural transfor-

mation of such functors. I usually write

sPre(et|k)
for the category of simplicial presheaves on this

site.

Example: the mod ` algebraic K-theory presheaf

K/`0, which is defined by U 7→ K/`(U)0, where

` is a prime distinct from the characteristic of k.

This is the “space” at level 0 of the mod ` algebraic

K-theory presheaf of spectraK/`, which is defined

in the stable category by the cofibre sequence

K
×`−→ K → K/`
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The homotopy groups πjK/`
0(U) are the mod `

K-groups Kj(U,Z/`) of the scheme U . For the

record, there is a weak equivalence

K0(U) ' ΩBQP(U),

where BQP(U) is Quillen’s algebraic K-theory

space which is associated to the exact category

P(U) of vector bundles on U .

There is an injective model structure for sim-

plicial presheaves on the étale site et|k, for which

the cofibrations are the monomorphisms, the (lo-

cal) weak equivalences are defined stalkwise, and

the fibrations, the injective fibrations, are defined

by a right lifting property. Here, a map X → Y is

a local weak equivalence if the induced map

lim−→
L/k

X(L)→ lim−→
L/k

Y (L)

is a weak equivalence of simplicial sets, where L

varies within the finite Galois extensions L/k in a

fixed algebraic closure (geometric point) of k. The

local weak equivalences very much depend on the

étale topology.

Injective fibrant objects Z, while difficult to “see”,

have the magic propery that the homotopy groups
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πkZ(k) in global sections (indeed, in all sections)

can be recovered from étale cohomology via an

étale cohomological descent spectral sequence.

Every simplicial presheaf X on et|k has an injec-

tive fibrant model j : X → GX , which is a

local weak equivalence such that GX is injective

fibrant. We say that X satisfies étale descent

if the map j is a sectionwise weak equivalence in

the sense that all maps

X(U)→ GX(U)

are weak equivalences of simplicial sets.

What we really want to know, in applications, is

the extent to which the map

X(k)→ GX(k)

in global sections is a weak equivalence.

This question seems more naive than the full de-

scent question, but typically answers about the

map in global sections depend on conditions on

the Galois cohomological dimension of k, which are

the same across the full étale site et|k. Thus, the

global sections question is, in practice, equivalent

to a full descent problem.

3



In this context, here’s a reformulation of the Lichten-

baum-Quillen conjecture for algebraic K-theory:

Conjecture: Suppose that k is a field and that

` > 2 is a prime which is distinct from the charac-

teristic of k. Suppose that k has finite Galois co-

homological dimension d with respect to `-torsion

sheaves. Then the map

Ki(k,Z/`) = πiK/`
0(k)→ πiGK/`

0(k) =: Ket
i (k,Z/`)

is an isomorphism if i ≥ d− 1.

Remark: This conjecture is known to be a con-

sequence of the Bloch-Kato conjecture [6], which

is “proved” with motivic techniques. This was not

the original formulation of the conjecture: étale

K-theory and the comparison map were originally

defined by quite different models (étale homotopy

theory of Friedlander, Dwyer-Friedlander [2]), and

the map was originally thought to be an isomor-

phism in high but unspecified degrees. The bound

d− 1 was introduced much later.

Remark: There is an ` = 2 version of this con-

jecture, in which cohomological dimension is re-

placed by virtual cohomological dimension. This

was proved by Ostvaer and Rosenschon [5], as a

consequence of the Milnor conjecture (mod 2 ver-

4



sion of Bloch-Kato) which was proved by Voevod-

sky.

One effect of the success of the motivic approach is

that the Galois cohomological approach to Lichten-

baum-Quillen (which arose from Thomason’s de-

scent theorem for Bott periodic K-theory) was

completely dropped in the mid 1990s. There were

also problems with the technical methods of the

day that nobody could completely solve at the

time. This talk addresses one of them.

The Galois cohomological approach to étale de-

scent for fields is based on a construction of a model

for the global sections of the injective fibrant model

GX of a simplicial presheaf X , which I will now

describe.

Suppose that L/k is a finite Galois extension of k

with Galois group G = G(L/k) (inside the cho-

sen geometric point for k). Then the correspond-

ing scheme homomorphism Sp(L) → Sp(k) is an

étale cover for Sp(k), and represents a sheaf epi-

morphism Sp(L)→ ∗ onto the terminal object in

sheaves on the étale site et|k.
In general, if f : X → Y is a function then there

is a groupoid whose objects are the elements of
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X and whose morphisms are the pairs (x, x′) such

that f (x) = f (x′). This groupoid has trivial au-

tomorphism groups and path components isomor-

phic to the set f (X). Write C(f ) for the cor-

responding nerve. The construction is functorial,

so we can apply it in all sections to the sheaf map

Sp(L)→ ∗ to give a simplicial sheaf C(L). This is

the Čech resolution for the covering (this is the way

that all Čech resolutions are constructed). It’s a

consequence of elementary Galois theory that there

is a functorial isomorphism of simplicial sheaves

C(L) ∼= EG×G Sp(L)

The simplicial sheaf map C(L)→ ∗ is a local weak

equivalence, and is otherwise known as a (special

type of) hypercover, because C(L) is a diagram of

Kan complexes and is therefore locally fibrant.

Some culture: 1) The object C(L) is the nerve

of a sheaf of groupoids EG Sp(L) which is defined

by the action of the Galois group G on the sheaf

Sp(L). As such it is a homotopy theoretic model

for the étale quotient stack.

2) The construction is functorial, and the assign-

ment L 7→ EG(L) Sp(L) is a pro object in simpli-

cial groupoids, which I call the absolute Galois
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groupid. There are canonical functorial compari-

son maps

EG(L) Sp(L)→ Γ∗G(L)

or

EG(L)G(L) Sp(L)→ Γ∗BG(L)

which relate the absolute Galois groupoid to the

absolute Galois group.

The Čech resolution C(L) is representable by a

simplicial scheme which is étale over k in all sim-

plicial degrees, so we are entitled to a cosimplicial

space X(C(L)) for any simplicial presheaf X , and

such a thing gives rise to a homotopy type

holim←−−−mX(Cm(L)) = TotY (C(L)) ' hom(C(L), Y ),

(here, X → Y is a sectionwise fibrant model ofX).

We can let the finite Galois extension L/k vary

within the geometric point — the corresponding

diagram is filtering, and so there is a filtered colimit

lim−→
L/k

holim←−−−m X(Cm(L)),

and a canonical map

X(k)→ lim−→
L/k

holim←−−−m X(Cm(L)).
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Just by the way it’s constructed, it looks like there

is a Galois cohomological descent spectral sequence

for the thing on the right: it should be a colimit

of Bousfield-Kan spectral sequences for cosimpli-

cial objects. But this is a variant of the “canonical

mistake”, because the Bousfield-Kan spectral se-

quences for the objects

holim←−−−m X(Cm(L))

are defined by towers of fibrations, and it’s not

clear at all that the homotopy inverse limit of the

filtered colimit of those towers coincides with the

filtered colimit of the homotopy inverse limits.

Even worse, it not obvious that the construction

lim−→
L/k

holim←−−−m X(Cm(L))

is an invariant of local weak equivalences in X .

The construction works if X has only finitely

many non-trivial presheaves of homotopy groups.

Here’s the theorem:

Theorem: Suppose that f : X → Y is a local

weak equivalence between simplicial presheaves on

et|K such that X and Y have only finitely many

non-trivial presheaves of homotopy groups. Then
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the induced map

lim−→
L/k

holim←−−−m X(C(L)m)
f∗−→ lim−→

L/k

holim←−−−m Y (C(L)m)

is a weak equivalence.

Warning: When I say that X has only finitely

many non-trivial presheaves of homotopy groups,

I mean that the map X → PnX to the nth Post-

nikov section is a sectionwise equivalence for some

n.

Corollary: Suppose thatX has only finitely many

non-trivial presheaves of homotopy groups, and

that j : X → GX is an injective fibrant model

for X on et|k. Then the induced map

lim−→
L/k

holim←−−−mX(C(L)m)
j∗−→ lim−→

L/k

holim←−−−mGX(C(L)m)

is a weak equivalence.

Proof: If X → PnX is a sectionwise weak equiv-

alence, then GX → PnGX is a sectionwise weak

equivalence.

We’ve known this for some time: it’s a consequence

of the fact that if GK(A, n) is an injective fibrant

model of the Eilenberg-Mac Lane object associated
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to a sheaf A, then there is an isomorphism

πiGK(A, n)(L) ∼=

{
Hn−i
et (L,A) if 0 ≤ i ≤ n, and

0 otherwise.

Remark: Actually, the Theorem and its Corol-

lary could have been proved twenty years ago: the

proof is really just a matter of being careful with

cosimplicial objects and various model structures

of diagram categories. These results were known,

and there were easier proofs, for presheaves of spec-

tra which are bounded below and additive in some

sense (as are Postnikov sections of algebraic K-

theory). The spectrum level statement was a step

in the proof of Thomason’s descent theorem for

Bott periodic K-theory.

Note: The Corollary for X = BG, where G is a

sheaf of groupoids, gives yet another construction

of global sections of the étale stack associated to

G.

An application

Now suppose that X is a simplicial presheaf on

et|k whose étale sheaves of homotopy groups are `-

torsion. Suppose that k has finite Galois cohomo-

logical dimension with respect to `-torsion sheaves.
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Look at the diagram

lim−→L/k
holim←−−−mPnX(C(L)m) j∗

'
// lim−→L/k

holim←−−−mGPnX(C(L)m)

PnX(k)

α
OO

j //GPnX(k)

' α
OO

X(k)

p
OO

j
//GX(k)

p′
OO

in simplicial sets, where the indicated (filtered) col-

imits are indexed on the finite Galois extensions

L/k.

Remarks:

1) The indicated map j∗ is a weak equivalence by

the Corollary.

2) The indicated map α is a weak equivalence,

since GPnX satisfies is injective fibrant: there are

weak equivalences

holim←−−−m(C(L)m, GPnX)

' hom(C(L), GPnX) ' hom (∗, GPnX)
∼= GPnX(k).

3) Letting n vary gives a diagram of pro objects.

The map p is a pro equivalence by definition, while

the map p′ is a pro equivalence since the homotopy
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group sheaves of X are `-torsion and k has finite

Galois cohomological dimension with respect to `-

torsion sheaves.

4) It follows that the map j : X(k) → GX(k) is

a pro equivalence if and only if either

j∗ : P∗X(k)→ GP∗X(k)

is a pro equivalence, or (equivalently) the maps

PnX(k)→ lim−→
L/k

holim←−−−mPnX(C(L)m)

define a pro equivalence.

5) We’ll see below that j : X(k)→ GX(k) is a pro

equivalence if and only if it is a weak equivalence

of spaces.

6) Thus j : X(k)→ GX(k) is a weak equivalence

if and only if the map

PnX(k)→ lim−→
L/k

holim←−−−mPnX(C(L)m)

is a pro equivalence.

Homotopy theory of pro objects

The previous discussion depends on a description

of homotopy types of pro objects, which now exists

in vast generality.
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Let pro− sPre(C) be the category of pro objects

in simplicial presheaves on a small Grothendieck

site C.

The cofibrations are monomorphisms of pro −
sPre(C). A pro map f : X → Y is a (Edwards-

Hastings) weak equivalence if the induced func-

tion

lim−→
j

[Yj, Z]→ lim−→
i

[Xi, Z]

is a bijection for all injective fibrant simplicial presheaves

Z. Fibrations are defined by a right lifting prop-

erty.

Examples: Pointwise local weak equivalences of

I-diagrams are weak equivalences. Maps defined

by cofinal functors are weak equivalences. Ordi-

nary local weak equivalences of simplicial presheaves

are weak equivalences of the pro category.

Theorem: With these definitions, the category

pro−sPre(C) has the structure of a proper closed

simplicial model category.

1) I call this model structure the Edwards-Hastings

model structure. It generalizes the model structure

that they constructed for pro objects in simplicial

sets. They did not describe the weak equivalences
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the same way. Other people call this the “strict

structure”.

2) The fibrations can be understood: they are re-

tracts of injective fibrations for contravariant dia-

grams on cofinite strongly directed sets (any two

objects have an upper bound, and every object has

only finitely many subobjects).

Suppose that X is a pro object. There is a natural

map η : X → P∗X , where P∗Xi is the Postnikov

tower of Xi.

Here are some facts:

A4: The functor X 7→ P∗X preserves Edwards-

Hastings weak equivalences.

A5: The maps η, P∗(η) : P∗X → P∗P∗X are

Edwards-Hastings equivalences.

A6: Suppose given a pullback

A //

��

X
p

��

B // Y

such that p is a fibration, and the maps P∗B →
P∗Y and Y → P∗Y are Edwards-Hastings equiva-

lences. Then P∗A→ P∗X is an Edwards-Hastings

equivalence.

14



Say that a map X → Y is a pro equivalence if

P∗X → P∗Y is an Edwards-Hastings equivalence.

Cofibrations are monomorphisms, as before, and

pro fibrations are defined by a right lifting prop-

erty.

Theorem: The category pro−sPre(C), together

with the cofibrations, pro equivalences and pro fi-

brations, satisfies the axioms for a proper closed

model category.

The proof is a matter of rolling the Bousfield-Fried-

lander tape. One can do the same with n-types. I

learned this trick from Georg Biedermann [1].

Here’s how the theory works, in part:

Lemma: If a map f : Z → W of simplicial

presheaves is a pro equivalence, then it is a local

weak equivalence.

Proof: The induced map

P∗Z → P∗W

of pro-objects is a weak equivalence for the Edwards-

Hastings structure, while the natural map Z →
P∗Z induces an Edwards-Hastings equivalence

PnZ → PnP∗Z.
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The induced map

PnP∗Z → PnP∗W

is an Edwards-Hastings weak equivalence for all

n ≥ 0 by subtle formal nonsense (Lemma 24 of

[4]), and it follows that all maps

PnZ → PnW

are Edwards-Hastings weak equivalences, and hence

local weak equivalences of simplicial presheaves. It

follows that f : Z → W is a local weak equiva-

lence.
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