Homotopy classification of gerbes
J.F. Jardine

Cocycles
Suppose that X, Y are spaces.

H(X,Y) = category whose objects are all pairs of
maps (f, g)

xdzsy
where f is a weak equivalence. A morphism « :
(f,9) = (f',d) of H(X,Y) is a commutative di-

agram
Ty
AR
H(X,Y) is the category of cocycles from X
to Y.

“Example”: V[ — * is a sheaf epi (arising from
a covering) and G is a sheaf of groups. Cocycles on
Vo with coefficients in G are simp. presheaf maps

x+ & C(Vy) = BG

where C(Vp) = Cech resolution for the cover. The
present definition is an expansion of this idea.



moH (X, Y) = class of path components of H(X,Y").
There is a function

¢ mH(X,Y) = [X,Y] (f.g)mrg-f
Theorem: The canonical map ¢ : moH (X,Y) —
[ X, Y] is a bijection for all X and Y.

Lest you think that I've done away with the homo-
topy theory in this statement, suppose that f ~
g : X — Y. Then there is a picture

X
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XX x1hly

Tl 4

X
where A is the homotopy. Then
(ix, f) ~ (pr;h) ~ (1x,9)
Thus f +— [(1x, f)] defines a function
Y om(X,Y) = mH(X,Y)

If X has the good manners to be cofibrant, then
the function %) is inverse to ¢. More generally,
there are a couple of things to prove:



Lemma 1: Suppose a : X — X' and 8:Y —
Y’ are weak equivalences. Then

(o, B)y : ToH(X,Y) = moH(X',Y)
is a bijection.

Lemma 2: Suppose that Y is fibrant and X is
cofibrant. Then the canonical map

¢ mH(X,Y) = [X,Y]
is a bijection.
The Theorem is a formal consequence. The re-
sult holds in extreme generality, specifically in any
model category which is right proper (weak equiv-
alences pull back to weak equivalences along fibra-

tions), and such that weak equivalences are closed
under finite products.

Examples: spaces, simplicial sets, presheaves of
simplicial sets, spectra, presheaves of spectra, any
localizations.



Proof of Lemma 1 (f,g) € H(X',Y') isamap
(f,g9): Z — X' xY'st. fisaweak equivalence.

There is a factorization
Z— W

% l(pX/,py/)

X' xY'

s.t. j is a triv. cofibration and (px, py’) is a fibra-
tion. py is a weak equivalence.

Form the pullback

W* (axﬁ)* W

(p%py) l l(p X/ Pyt)

X xY—=X'xY'
axf

(p%, Py ) is afibration and (a x ), is a weak equiv-
alence (since av x (8 is a weak equivalence, and by
right properness). p% is also a weak equivalence.

(f,9) — (p%, Py ) defines a function
ToH(X")Y') = mgH(X,Y)

which is inverse to («, 5)s. (]



Proof of Lemma 2 7(X, YY) = naive homotopy
classes.

©(X,Y) — | X,Y] is a bijection since X is cofi-
brant and Y is fibrant.

We have seen that the assignment f — [(1x, f)]
defines a function

Y m(X,Y) = mH(X,Y)
and there is a diagram

(X, V) moH(X,Y)

Ty )

X, Y]

2

[t suffices to show that v is surjective, or that any
object X L 7% visin the path component of
some a pair X & X 5y for some map k.

Form the diagram

where 7 is a triv. cofibration and p is a fibration;
6 exists because Y is fibrant.



X is cofibrant, so the trivial fibration p has a sec-
tion o, and so there is a commutative diagram

P
N Voo
The composite Ao is the required map k. ]

X

Proof of Theorem There are weak equivalences
m: X — Xand j:Y — Y’ such that X’ and Y’
are cofibrant and fibrant, respectively.

Tl (X,Y)—2~[X,Y]
(1,j)*l% glj*
moH (X, Y") 2~ [X, Y]
(w,l)*Tg glﬂ*

>~

T H(X',Y")-5-[X", Y]

(1, 7)« and (7, 1), are bijections by the first Lemma,
and ¢ is a bijection by the second. O



Non-abelian cohomology

G = sheaf of groups (on some small Grothendieck
site).

A G-torsor is a sheaf X with a free G-action such
that X/G = x in the sheaf category.

Recall that the Borel construction EG x ¢ X is the
nerve B(FEqgX) of the translation category: objects
are elements x € X and the morphisms g : ¢ — y
are group elements such that g - x = y.

Fact: G x X — X is a free action means precisely
that the canonical map FG xg X — X/G is a
local weak equivalence.

Thus, a sheaf X with G-action is a G-torsor iff
EG x¢ X — % is a local weak equivalence.

G — Tors is the category of G-torsors and G-
equivariant maps. It is a groupoid:

A map f : X — Y of G-torsors is induced on
fibres by the map of local fibrations

EG XgX EG X(;Y
\ /
BG

Then f : X — Y is a weak equiv. of constant
simplicial sheaves, hence an isomorphism.
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A construction:

Suppose * < Y % BG is a cocycle, form pullback
pb(Y) ——Y

|k

pb(Y) has a G-action (from EG), and the map
EG xgph(Y) = Y

is a weak equivalence. The square is htpy cartesian
where Y (U) # (), so that pb(Y) — 7o pb(Y) is a
G-equivariant weak equiv.

(7o pb(Y") is the sheaf of path components of the
simplicial sheaf pb(Y), in this case identified with
a constant simplicial sheaf.]

The maps

EG xgmpb(Y) < EG xgpb(Y) = Y >~ %

are weak equivs. Then 7y pb(Y) is a G-torsor.
A functor

H (%, BG) — G — Tors
is def. by (x < Y — BG) — 7 ph(Y).
A functor

G — Tors — H(x, BG) :
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is def. by X = (¥ < EG xg X — BG).

Theorem: These functors induce bijections
(¥, BG] = myH (%, BG) = 7y(G—Tors) = H'(C, G).

%, BG] means morphisms in the homotopy cate-
gory of simplicial sheaves (or presheaves). The re-
sult holds over arbitrary small Grothendieck sites,
and is about 20 years old. Unlike the original proof,
you have heard no references to hypercovers or pro
objects — this proof is really quite simple, modulo
the simplicial sheaf homotopy theory technology.

Classification of gerbes

A gerbe is a stack G which is locally path con-
nected in the sense that 7y(G) = *. Stacks are
really just homotopy types, so one may as well
say that a gerbe is a locally connected sheaf (or
presheaf) of groupoids.

“More generally”, suppose that E is a sheaf. An
E-gerbe is a map G — FE of sheaves of groupoids
which induces an isomorphism 7y(G) = E. One
can, however, view an f/-gerbe as an ordinary gerbe
on the site fibred over the sheaf E, so we'll stick
to the locally path connected case.



A morphism of gerbes is a weak equivalence
G—H

of sheaves of groupoids. Write gerbe for the cor-
responding category:.

Write Grp for the (big!) presheaf of 2-groupoids
whose objects are sheaves of groups, 1-cells are iso-
morphisms of sheaves of groups, and whose 2-cells
are the homotopies of isomorphisms of sheaves of
groups. Write H(x, Grp) for the category of co-
cycles

A—Grp

]

*
where A is a sheaf of 2-groupoids.

Theorem: There is a bijection
moH (x, Grp) = my(gerbe).

To get a cocycle from a gerbe G, write G for the 2-
groupoid whose objects and 1-cells are the objects
and morphisms of G, respectively, and say that
there is a unique 2-cell &« — [ between any two
arrows o, 8 . x — .
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There is a canonical equivalence G — *, and a
map F(G) : G — Grp which associates to €
G(U) the sheaf G(z, x) of automorphisms of z on
C/U, associates to a : © — y the isomorphism
G(z,z) — G(y,y) defined by conjugation by «,
and associates to a 2-cell @« — 3 the homotopy
defined by conjugation by Ba~!.

Thus there is a canonical cocycle
G %Grp

|

*

which is associated to a gerbe G.

The association is only functorial up to homotopy:
given a morphism of gerbes 6 : G — H there is an
induced morphism of 2-groupoids

0:G— H
which is defined by 6 on 0O-cells and 1-cells. One
uses the list of induced isomorphisms

G, 5 Hy

(0 is a weak equivalence, and G, H are sheaves of
groupoids) to construct a homotopy

h:Gx1— Grp
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from F(G) to F(H)H. This means that there are
relations
F(G)~h~ F(H) ~ F(H)

in the cocycle category, so that F'(G) and F(H)
represent the same element of myH(E, Grp). In
particular there is a well-defined function

mo(E — gerbe) — moH (E, Grp).
To go backwards, suppose given a cocycle

A-L-Grp

]

*

in 2-groupoids. Then F' assigns a group G, to each
0-cell , homomorphism «, : G, — G, to each 1-
cell « : x — y and a homotopy hy : a, — By to
each 2-cell 8 : @ — B. We can identify hy with an
element of G, so that

hoah, ' = B,

We can use this data to define a “Grothendieck
construction” E4F" as follows: E4F' is a category
such that

e the objects of K4 F are the O-cells of A,
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e the morphisms of E4F' are the pairs

(@:z—y,9)
with a a 1-cell of A and g € G, subject to the
relation

(v, 9) ~ (B, k)

if there is a 2-cell 6 : o — 8 with khy = g.
Composition in the category is defined by

(&, B)][(g, )] = [(EB.(9), Ba)]
(one checks that this is well-defined).

Then there are other observations:
e [/, F is a groupoid since A is a 2-groupoid.
e There is a canonical functor
E F 5 1A,

where m9A is the fundamental groupoid of A
and 7 is the functor [(g, )] — [a].

e One checks that 7z induces an isomorphism in
path components, so that E4F' is a gerbe.

e This construction is functorial.

The moral is that E4F' is a gerbe for each cocy-
cle F', and the assignment F' +— E4F' defines a
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function
moH (x, Grp) — my(gerbe).

This function is inverse to the canonical cocycle
function

mo(gerbe) — moH (%, Grp).

which was defined above.

There are other results of this type, which involve
smaller objects and are therefore homotopy theo-
retic.

Suppose that G is a gerbe, and let G, be the
presheaf of 2-groupoids whose O-cells over U € C
are the sheaves G, of automorphisms of objects
x € G(U). The l-cells of G, are the isomor-
phisms of sheaves of groups, and the 2-cells are
the homotopies. In other words G, is a full sub-
object of Grp which happens to be a presheaf of
2-groupoids. Note as well that the canonical cocy-
cle

F(G): G — Grp
factors through a cocycle

F(G): G — G,

taking values in G,. Then one can prove:
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Theorem: The canonical cocycle construction in-
duces a bijection

moH (%, G.) = my(gerbes locally equivalent to 7).

Of course, there is also a bijection

%, dBG,| = moH (%, Gy)
so the Theorem gives a homotopy classification of
gerbes locally equivalent to G' up to equivalence.

The key point in the proof is that any presheaf F' of
groups locally isomorphic to presheaves of groups
in G determines a full presheaf of groupoids F, C
Grp and containing G,. Further, the inclusion
G, C F, is a weak equivalence.

One could further: the gerbes locally equivalent to
G with band L € H'(C, Out(G,)) are classified by
cocycles in the homotopy fibre of the map

G, — Ouwt(Gy) = mo(G.).
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