
Homotopy classification of gerbes

J.F. Jardine

Cocycles

Suppose that X, Y are spaces.

H(X, Y ) = category whose objects are all pairs of

maps (f, g)

X
f←− Z

g−→ Y

where f is a weak equivalence. A morphism α :

(f, g)→ (f ′, g′) of H(X, Y ) is a commutative di-

agram

Zf
ww

g
''

α
��

X Y

Z ′f ′
gg

g′
77

H(X, Y ) is the category of cocycles from X

to Y .

“Example”: V0 → ∗ is a sheaf epi (arising from

a covering) and G is a sheaf of groups. Cocycles on

V0 with coefficients in G are simp. presheaf maps

∗ '←− C(V0)→ BG

where C(V0) = Čech resolution for the cover. The

present definition is an expansion of this idea.
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π0H(X, Y ) = class of path components ofH(X, Y ).

There is a function

φ : π0H(X, Y )→ [X, Y ] (f, g) 7→ g · f−1

Theorem: The canonical map φ : π0H(X, Y )→
[X, Y ] is a bijection for all X and Y .

Lest you think that I’ve done away with the homo-

topy theory in this statement, suppose that f '
g : X → Y . Then there is a picture

X
f

$$

1

zz
d0
��

X X × Iproo h // Y

X
1

dd

g

::

d1

OO

where h is the homotopy. Then

(iX , f ) ∼ (pr, h) ∼ (1X , g)

Thus f 7→ [(1X , f )] defines a function

ψ : π(X, Y )→ π0H(X, Y )

If X has the good manners to be cofibrant, then

the function ψ is inverse to φ. More generally,

there are a couple of things to prove:
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Lemma 1: Suppose α : X → X ′ and β : Y →
Y ′ are weak equivalences. Then

(α, β)∗ : π0H(X, Y )→ π0H(X ′, Y ′)

is a bijection.

Lemma 2: Suppose that Y is fibrant and X is

cofibrant. Then the canonical map

φ : π0H(X, Y )→ [X, Y ]

is a bijection.

The Theorem is a formal consequence. The re-

sult holds in extreme generality, specifically in any

model category which is right proper (weak equiv-

alences pull back to weak equivalences along fibra-

tions), and such that weak equivalences are closed

under finite products.

Examples: spaces, simplicial sets, presheaves of

simplicial sets, spectra, presheaves of spectra, any

localizations.
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Proof of Lemma 1 (f, g) ∈ H(X ′, Y ′) is a map

(f, g) : Z → X ′× Y ′ s.t. f is a weak equivalence.

There is a factorization

Z
j //

(f,g) $$

W
(pX′ ,pY ′)��

X ′ × Y ′

s.t. j is a triv. cofibration and (pX ′, pY ′) is a fibra-

tion. pX ′ is a weak equivalence.

Form the pullback

W∗
(α×β)∗ //

(p∗X ,p
∗
Y ) ��

W
(pX′ ,pY ′)��

X × Y
α×β

//X ′ × Y ′

(p∗X , p
∗
Y ) is a fibration and (α×β)∗ is a weak equiv-

alence (since α × β is a weak equivalence, and by

right properness). p∗X is also a weak equivalence.

(f, g) 7→ (p∗X , p
∗
Y ) defines a function

π0H(X ′, Y ′)→ π0H(X, Y )

which is inverse to (α, β)∗.
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Proof of Lemma 2 π(X, Y ) = naive homotopy

classes.

π(X, Y ) → [X, Y ] is a bijection since X is cofi-

brant and Y is fibrant.

We have seen that the assignment f 7→ [(1X , f )]

defines a function

ψ : π(X, Y )→ π0H(X, Y )

and there is a diagram

π(X, Y )
ψ //

∼= ''

π0H(X, Y )

φ
��

[X, Y ]

It suffices to show that ψ is surjective, or that any

object X
f←− Z

g−→ Y is in the path component of

some a pair X
1←− X

k−→ Y for some map k.

Form the diagram

Zf
ww

g
''

j
��

X Y

Vp
gg

θ

77

where j is a triv. cofibration and p is a fibration;

θ exists because Y is fibrant.
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X is cofibrant, so the trivial fibration p has a sec-

tion σ, and so there is a commutative diagram

X1
ww

θσ
''

σ
��

X Y

Vp
gg

θ

77

The composite θσ is the required map k.

Proof of Theorem There are weak equivalences

π : X ′ → X and j : Y → Y ′ such that X ′ and Y ′

are cofibrant and fibrant, respectively.

π0H(X, Y )
φ //

(1,j)∗ ∼=
��

[X, Y ]

j∗∼=
��

π0H(X, Y ′)
φ // [X, Y ′]

π∗∼=
��

π0H(X ′, Y ′)

(π,1)∗ ∼=
OO

φ

∼= // [X ′, Y ′]

(1, j)∗ and (π, 1)∗ are bijections by the first Lemma,

and φ is a bijection by the second.
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Non-abelian cohomology

G = sheaf of groups (on some small Grothendieck

site).

A G-torsor is a sheaf X with a free G-action such

that X/G ∼= ∗ in the sheaf category.

Recall that the Borel construction EG×GX is the

nerveB(EGX) of the translation category: objects

are elements x ∈ X and the morphisms g : x→ y

are group elements such that g · x = y.

Fact: G×X → X is a free action means precisely

that the canonical map EG ×G X → X/G is a

local weak equivalence.

Thus, a sheaf X with G-action is a G-torsor iff

EG×G X → ∗ is a local weak equivalence.

G − Tors is the category of G-torsors and G-

equivariant maps. It is a groupoid:

A map f : X → Y of G-torsors is induced on

fibres by the map of local fibrations

EG×G X //

$$

EG×G Y
zz

BG

Then f : X → Y is a weak equiv. of constant

simplicial sheaves, hence an isomorphism.
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A construction:

Suppose ∗ '←− Y
α−→ BG is a cocycle, form pullback

pb(Y ) //

��

Y
α
��

EG π
//BG

pb(Y ) has a G-action (from EG), and the map

EG×G pb(Y )→ Y

is a weak equivalence. The square is htpy cartesian

where Y (U) 6= ∅, so that pb(Y ) → π̃0 pb(Y ) is a

G-equivariant weak equiv.

[π̃0 pb(Y ) is the sheaf of path components of the

simplicial sheaf pb(Y ), in this case identified with

a constant simplicial sheaf.]

The maps

EG×G π̃0 pb(Y )← EG×G pb(Y )→ Y ' ∗

are weak equivs. Then π̃0 pb(Y ) is a G-torsor.

A functor

H(∗, BG)→ G−Tors

is def. by (∗ '←− Y → BG) 7→ π̃0 pb(Y ).

A functor

G−Tors→ H(∗, BG) :
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is def. by X 7→ (∗ '←− EG×G X → BG).

Theorem: These functors induce bijections

[∗, BG] ∼= π0H(∗, BG) ∼= π0(G−Tors) = H1(C, G).

[∗, BG] means morphisms in the homotopy cate-

gory of simplicial sheaves (or presheaves). The re-

sult holds over arbitrary small Grothendieck sites,

and is about 20 years old. Unlike the original proof,

you have heard no references to hypercovers or pro

objects — this proof is really quite simple, modulo

the simplicial sheaf homotopy theory technology.

Classification of gerbes

A gerbe is a stack G which is locally path con-

nected in the sense that π̃0(G) ∼= ∗. Stacks are

really just homotopy types, so one may as well

say that a gerbe is a locally connected sheaf (or

presheaf) of groupoids.

“More generally”, suppose that E is a sheaf. An

E-gerbe is a map G→ E of sheaves of groupoids

which induces an isomorphism π̃0(G) ∼= E. One

can, however, view anE-gerbe as an ordinary gerbe

on the site fibred over the sheaf E, so we’ll stick

to the locally path connected case.
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A morphism of gerbes is a weak equivalence

G→ H

of sheaves of groupoids. Write gerbe for the cor-

responding category.

Write Grp for the (big!) presheaf of 2-groupoids

whose objects are sheaves of groups, 1-cells are iso-

morphisms of sheaves of groups, and whose 2-cells

are the homotopies of isomorphisms of sheaves of

groups. Write H(∗,Grp) for the category of co-

cycles

A //

'
��

Grp

∗
where A is a sheaf of 2-groupoids.

Theorem: There is a bijection

π0H(∗,Grp) ∼= π0(gerbe).

To get a cocycle from a gerbe G, write G̃ for the 2-

groupoid whose objects and 1-cells are the objects

and morphisms of G, respectively, and say that

there is a unique 2-cell α → β between any two

arrows α, β : x→ y.
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There is a canonical equivalence G̃ → ∗, and a

map F (G) : G̃ → Grp which associates to x ∈
G(U) the sheaf G(x, x) of automorphisms of x on

C/U , associates to α : x → y the isomorphism

G(x, x) → G(y, y) defined by conjugation by α,

and associates to a 2-cell α → β the homotopy

defined by conjugation by βα−1.

Thus there is a canonical cocycle

G̃
F (G)

//

'
��

Grp

∗
which is associated to a gerbe G.

The association is only functorial up to homotopy:

given a morphism of gerbes θ : G→ H there is an

induced morphism of 2-groupoids

θ̃ : G̃→ H̃

which is defined by θ on 0-cells and 1-cells. One

uses the list of induced isomorphisms

Gx
θ−→ Hθ(x)

(θ is a weak equivalence, and G,H are sheaves of

groupoids) to construct a homotopy

h : G̃× 1→ Grp
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from F (G) to F (H)θ̃. This means that there are

relations

F (G) ∼ h ∼ F (H)θ̃ ∼ F (H)

in the cocycle category, so that F (G) and F (H)

represent the same element of π0H(E,Grp). In

particular there is a well-defined function

π0(E − gerbe)→ π0H(E,Grp).

To go backwards, suppose given a cocycle

A F //

'
��

Grp

∗
in 2-groupoids. Then F assigns a group Gx to each

0-cell x, homomorphism α∗ : Gx → Gy to each 1-

cell α : x → y and a homotopy hθ : α∗ → β∗ to

each 2-cell θ : α→ β. We can identify hθ with an

element of Gy, so that

hθα∗h
−1
θ = β∗

We can use this data to define a “Grothendieck

construction” EAF as follows: EAF is a category

such that

• the objects of EAF are the 0-cells of A,

12



• the morphisms of EAF are the pairs

(α : x→ y, g)

with α a 1-cell of A and g ∈ Gy, subject to the

relation

(α, g) ∼ (β, k)

if there is a 2-cell θ : α→ β with khθ = g.

Composition in the category is defined by

[(k, β)][(g, α)] = [(kβ∗(g), βα)]

(one checks that this is well-defined).

Then there are other observations:

• EAF is a groupoid since A is a 2-groupoid.

• There is a canonical functor

EAF
πF−→ π0A,

where π0A is the fundamental groupoid of A

and πF is the functor [(g, α)] 7→ [α].

• One checks that πF induces an isomorphism in

path components, so that EAF is a gerbe.

• This construction is functorial.

The moral is that EAF is a gerbe for each cocy-

cle F , and the assignment F 7→ EAF defines a
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function

π0H(∗,Grp)→ π0(gerbe).

This function is inverse to the canonical cocycle

function

π0(gerbe)→ π0H(∗,Grp).

which was defined above.

There are other results of this type, which involve

smaller objects and are therefore homotopy theo-

retic.

Suppose that G is a gerbe, and let G∗ be the

presheaf of 2-groupoids whose 0-cells over U ∈ C
are the sheaves Gx of automorphisms of objects

x ∈ G(U). The 1-cells of G∗ are the isomor-

phisms of sheaves of groups, and the 2-cells are

the homotopies. In other words G∗ is a full sub-

object of Grp which happens to be a presheaf of

2-groupoids. Note as well that the canonical cocy-

cle

F (G) : G̃→ Grp

factors through a cocycle

F (G) : G̃→ G∗

taking values in G∗. Then one can prove:
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Theorem: The canonical cocycle construction in-

duces a bijection

π0H(∗, G∗) ∼= π0(gerbes locally equivalent to G).

Of course, there is also a bijection

[∗, dBG∗] ∼= π0H(∗, G∗)

so the Theorem gives a homotopy classification of

gerbes locally equivalent to G up to equivalence.

The key point in the proof is that any presheaf F of

groups locally isomorphic to presheaves of groups

in G determines a full presheaf of groupoids F∗ ⊂
Grp and containing G∗. Further, the inclusion

G∗ ⊂ F∗ is a weak equivalence.

One could further: the gerbes locally equivalent to

G with band L ∈ H1(C,Out(G∗)) are classified by

cocycles in the homotopy fibre of the map

G∗ → Out(G∗) = π0(G∗).
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