
Stacks and higher stacks

J.F. Jardine

Stacks

The theory of higher stacks starts with stack the-

ory, which is essentially the homotopy theory of

groupoids.

Let Gpd be the category of (pre)sheaves of groupoids.

Say that a map f : G→ H is a (local) weak equiv-

alence, respectively fibration, if the induced map

BG → BH is a local weak equivalence, respec-

tively injective fibration, of simplicial (pre)sheaves.

Cofibrations are defined by a left lifting property

with respect to trivial fibrations, and include all

maps π(A)→ π(B) of fundamental groupoids in-

duced by cofibrations (monomorphisms) A → B

of simplicial presheaves.

Then, with the injective model structure on sim-

plicial presheaves (which is cofibrantly generated)

in hand, it is relatively easy to show the following:

Theorem 1. With these definitions, Gpd has

the structure of a cofibrantly generated, right

proper, closed simplicial model category.

At first blush, stacks are essentially fibrant objects

for this model structure: an object G is a stack
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if it satisfies descent in the sense that any fibrant

model j : G → H is a sectionwise equivalence.

If G is a sheaf of groupoids, this criterion, which

comes from algebraic K-theory, is equivalent to

the effective descent criterion that geometers use.

It’s better, perhaps, to say that a stack is a local

homotopy type of presheaves of groupoids.

Here’s how we know we’re on the right track. Sup-

pose that G is a sheaf of groups and F is a sheaf

with a G-action. Say that F is a G-torsor if the

map EG×GF → ∗ is a local weak equivalence —

this is equivalent to the classical definition. Given

a G-torsor F , the picture

∗ '←− EG×G F → BG

is the canonical cocycle associated to F . This

cocycle construction has a left adjoint defined by

pullback over EG→ BG, and sets up the follow-

ing:

Theorem 2. There is an isomorphism

[∗, BG] ∼= π0(G− tors) = H1(C, G).

Remark 3. 1) Classical non-abelian H1 is a ho-

motopy theoretic invariant.

2) Torsors can be defined, via homotopy colim-
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its, for arbitrary sheaves of groupoids G: a G-

torsor is a G-diagram X in sheaves such that

the map holim−−−→ G X → ∗ is a local weak equiv-

alence. Then an analog of the Lemma holds in

this context too.

Simplicial groupoids

There are varying opinions on what a higher stack

should be.

The original idea was to see higher order cohomo-

logical (and homotopical) phenomena in algebraic

geometry. The early attempts by geometers (Gi-

raud and others) to do so in the 1970s are part of

the reason that topologists should have been glad

not to be algebraic geometers at the time. What

they created, however, was a geometric interpre-

tation for the classification of stacks in terms of

symmetries that took place in 2-groupoids. Many

modern approaches to the subject, starting with

Simpson, essentially throw in the towel geometri-

cally: a higher stack for Simpson and his followers

is just a simplicial presheaf.

As far as I’m concerned, there should still be sym-

metries.

My base category for higher stack theory is the
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category s0Gpd of groupoids enriched in simpli-

cial sets (or simplicial groupoids with discrete ob-

jects). These things have a history in homotopy

coherence theory, and we have had homotopy the-

oretic structures for them for a long time.

A map f : G→ H of s0Gpd is the obvious thing:

it’s a map of simplicial groupoids. The earliest

model structure is due to Dwyer and Kan: say

that

1) f is a weak equivalence if the map Mor(G)→
Mor(H) is a weak equivalence of simplicial sets

and f∗ : π0G→ π0H is an isomorphism,

2) f is a fibration if Mor(G)→ Mor(H) is a Kan

fibration and the map f : G0 → H0 is a fibra-

tion of groupoids.

Cofibrations are defined by a lifting property, as

before.

Theorem 4 (Dwyer-Kan). With these defini-

tions, s0Gpd has the structure of a cofibrantly

generated, right proper closed model category.

Something to notice: all objects of s0Gpd are

fibrant, since all simplicial groups are Kan com-

plexes.
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One can use an enriched version of Quillen’s The-

orem B (first written down by Moerdijk) to show

that there is a natural homotopy cartesian diagram

Mor(G) //

��

Ob(G)

��
Ob(G) //BG

for arbitrary G in s0Gpd, and this can be used to

show the following:

Theorem 5. A map G → H of s0Gpd is a

weak equivalence if and only if the map BG→
BH is a (diagonal) weak equivalence of bisim-

plicial sets.

It is also a consequence of the homotopy cartesian

statement that the connected components of

Mor(G) =
⊔

x,y∈Ob(G)

G(x, y)

are loop spaces of BG.

This is all good, but I can’t see how to promote

the Dwyer-Kan model structure to the sheaf the-

oretic context (despite the Joyal-Tierney paper).

To go further, I need the Eilenberg-Mac Lane W

construction, expressed in a civilized way.

5



Suppose that X is a simplicial set, and let xi de-

note the ith vertex of a simplex x : ∆n → X .

There is a graph ΓnX whose edges consist of (n+

1)-simplices x : x0 → x1.

The groupoidG(X)n is the free groupoid on Γn(X),

subject to requiring that s0(y) is the identity on y0.

To define simplicial structure maps, it’s convenient

to imagine simplicial sets as functors on finite to-

tally ordered posets P . Then the morphisms in

G(X)P are generated by simplices σ : ∆0∗P → X

with σ : σ(0)→ σ(1), where 1 is the minimal ele-

ment of P . Given a poset morphism θ : Q → P ,

there are poset morphisms θ̃, θ∗ : 0 ∗Q→ 0 ∗ P ,

which both restrict to θ on Q, and with θ̃(0) = 0

and θ∗(0) = 1. Then the composite

σ(0)
θ̃∗(σ)−−−→ σ(θ(1))

θ∗∗(σ)←−−− σ(1)

is θ∗(σ) in G(X)Q.

We therefore have a functor G : sSet→ s0Gpd.

The functor W : s0Gpd → sSet is its right ad-

joint:

W (H)P = hom(G(∆P ), H).

Let’s think about G(∆P ) for a minute. There are
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canonical factorizations

Q θ //

θ′ ��<<<<<<< P

P≥θ(0)

τ

AA�������

and

0 ∗Q (v,θ)
//

0∗θ′ $$IIIIIIIII P

0 ∗ P≥θ(0)
(v,τ)

==zzzzzzzzz

and one shows that

[(v, θ)] = (θ′)∗[(v, τ )]

in G(∆P ). Here (v, θ) sends 0 to v and is θ on Q,

and τ is the inclusion of the interval.

Any relation v ≤ w in P determines a canonical

map

m(v, w) = (v, τ ) : 0 ∗ P≥w → P

and any morphism G(∆P )→ H is completely de-

termined by the images of the corresponding maps

in G(∆P ).

Lemma 6. Suppose given H ∈ s0Gpd, objects

xi of H and morphisms α(i, j) : xi → xj of
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HP≥j such that all diagrams

xi
τ∗α(i,j)

//

α(i,k) ��6666666
xj

α(j,k)��������

xk

commute. Then the assignment

(u, θ) 7→ (θ′)∗(α(u, θ(0)))

defines a unique morphism G(∆P )→ H of s0Gpd.

In this way, W (H)P is identified with a collection

of P -cocycles in H .

Remark 7. The definition of W (H) via cocycles

can be extended to simplicial groupoids, and more

generally to simplicial categories A, for what it’s

worth. One can also use the cocycle approach to

define a natural map

dBA→ WA

for all simplicial categories A. If the string

x0
α1−→ x1

α2−→ . . .
αn−→ xn

in An is an n-simplex of dBA, then the morphisms

(dn0α1, . . . , d0αn)

define the corresponding cocycle.
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Now here’s what you can show:

Lemma 8. 1) The map dBH → WH is a weak

equivalence for all H ∈ s0Gpd.

2) The functor W takes fibrations of s0Gpd to

Kan fibrations.

3) The adjunction maps η : A → WG(A) and

ε : G(WH)→ H are weak equivalences.

This result allows you to define a new model struc-

ture on s0Gpd, for which the weak equivalences

are the ones we know, and a fibration is a map p :

G→ H such that the induced map WG→ WH

is a Kan fibration.

If i : A→ B is a cofibration (resp. trivial cofibra-

tion) of simplicial sets, then i∗ : G(A) → G(B)

is a cofibration (resp. trivial cofibration) for the

Dwyer-Kan structure, on account of the Lemma.

Also, if i is a trivial cofibration and

G(A) //

i∗
��

G

i′
��

G(B) //H

is a pushout in s0Gpd, then i′ has the left lift-

ing property with respect to all Dwyer-Kan fibra-

tions, and is therefore a trivial cofibration. This is
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enough to prove the following with standard small

object arguments:

Theorem 9. With these definitions, the cate-

gory s0Gpd has the structure of a right proper

closed model category.

TheW and Dwyer-Kan model structures on s0Gpd

are Quillen equivalent.

Presheaves

Write Pre(s0Gpd) for the category of presheaves

of groupoids enriched in simplicial sets on a site C.

I say that a map G → H of such presheaves

is a local weak equivalence if (equivalently)

BG → BH is a diagonal local weak equivalence

of bisimplicial presheaves ofWG→ WH is a local

weak equivalence of simplicial presheaves.

A map p : G → H is a fibration if the map

WG→ WH is an injective fibration of simplicial

presheaves.

Cofibrations are defined by a left lifting property

with respect to trivial fibrations.

Theorem 10. With these definitions Pre(s0Gpd)

has the structure of a right proper closed model

category.
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Suppose given a pushout diagram

G̃(A) //

i∗
��

G

i′
��

G̃(B) //H

in sheaves of groupoids enriched in simplicial sets,

where i : A → B is a local trivial cofibration of

simplicial sheaves. We need to show that the map

i′ is a local weak equivalence.

The functorW commutes with the formation of as-

sociated sheaves, so that the mapWG̃A→ WG̃B

is locally weakly equivalent toA→ B and is there-

fore a local weak equivalence, so G̃A → G̃B is a

local weak equivalence.

Suppose that π : Shv(B)→ Shv(C) is a Boolean

localization (or collection of all stalks). Then π∗W ∼=
Wπ∗ so that in the pushout

π∗G̃(A) //

i∗
��

π∗G̃

i′
��

π∗G̃(B) // π∗H̃

the map i∗ is a local weak equivalence. It is enough

to show that i′ is a local weak equivalence, be-

cause the map WG → WH of simplicial sheaves

is a local weak equivalence if and only if the map
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π∗WG̃ → π∗WH̃ is a local weak equivalence. It

therefore suffices to assume that our diagram lives

in sheaves on B.

We can also assume that A and B are locally fi-

brant. In effect, there is a diagram

G̃(A)
G̃η//

��

G̃WG̃(A)
ε̃ //

��

G̃(A)

��

G̃(B)
G̃η

// G̃WG̃B ε̃
// G̃(B)

The map WG̃(A)→ WG̃(B) has a factorization

WG̃(A)
j //

&&MMMMMMMMMM
X
p

��

WG̃(B)

in simplicial sheaves, where p is a trivial injective

fibration and j is a cofibration. Then the map

B → WG̃(B) lifts to X , and it follows that the

map i∗ : G̃(A) → G̃(B) is a retract of the map

j∗ : G̃WG̃(A) → G̃(X), which is induced by the

trivial cofibration j : WG̃(A) → X of locally fi-

brant simplicial sheaves.
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Finally, in the pushout diagram

G(A) //

i∗
��

G

��

G(B) //H ′

of presheaves of groupoids enriched in simplicial

sets on B, the map A → B is a sectionwise triv-

ial cofibration of simplicial sheaves because A and

B are locally fibrant, so that G(A) → G(B) is

a sectionwise trivial cofibration of presheaves of

groupoids enriched in simplicial sets. It follows

that the map G → H ′ is also a sectionwise triv-

ial cofibration, and so the map i′ : G → H of

associated sheaves is a local weak equivalence.

There are adjoint functors

π : s0Gpd � 2−Gpd : B

and these are promoted to adjoint functors

π : Pre(s0Gpd) � Pre(2−Gpd) : B

on the presheaf level. An object G of Pre(s0Gpd)

consists of a simplicial presheaf map (s, t) : Mor(G)→
Ob(G) × Ob(G) with a groupoid structure. The

corresponding fundamental groupoid object is the

induced groupoid morphism (s, t) : π(Mor(G))→
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Ob(G)×Ob(G), with the induced groupoid struc-

ture (the fundamental groupoid functor preserves

finite products).

A map f : G→ H of Pre(s0Gpd is a local weak

equivalence if and only if the simplicial presheaf

map Mor(G) → Mor(H) is a local weak equiv-

alence and the sheaf map π̃0G → π̃0H is an iso-

morphism. The fundamental groupoid functor pre-

serves local weak equivalences, so that if f is a lo-

cal weak equivalence, then so is the induced map

f∗ : Bπ(G)→ Bπ(H).

Say that a map f : G → H of Pre(2 − Gpd)

is a local weak equivalence (respectively fi-

bration) if the induced map BG → BH is a

local weak equivalence (respectively fibration) of

Pre(s0Gpd). Cofibrations are defined by a left

lifting property.

Theorem 11. With these definitions, the cate-

gory Pre(2−Gpd) has the structure of a right

proper closed model category.

We have to show that if i : A→ B is a trivial cofi-
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bration of simplicial presheaves and the diagram

πG(A) //

i∗
��

G

i′
��

πG(B) ////H

is a pushout, then the map i′ is a local weak equiv-

alence. This is easy: this diagram is obtained from

the pushout diagram

G(A) //

i∗
��

BG

i′′
��

G(B) //K

of Pre(s0Gpd) by applying the fundamental groupoid

functor π. The map i′′ is a local weak equivalence

and π preserves local weak equivalences.

πG(X) is the fundamental 2-groupoid of X .
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