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Path category

The nerve functor
B : cat→ sSet

is def. by BCn = hom(n,C ), where n is the poset

0→ 1→ · · · → n.

The path category functor P : sSet→ cat is the left adjoint of
the nerve:

P(X ) = lim−→
∆n→X

n.

Alternatively, P(X ) is the free category on the graph sk1 X ,
subject to the relations s0x = 1x and d1(σ) = d0(σ)d2(σ) for each
2-simplex σ : ∆2 → X .

x0
d2σ //

d1σ   

x1

d0σ

��
x2
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Preliminary facts

Lemma 1.

sk2(X ) ⊂ X induces P(sk2(X )) ∼= P(X ) for all simplicial sets X .

Lemma 2.

ε : P(BC )→ C is an isomorphism for all small categories C .

Lemma 3.

There is an isomorphism G (P(X )) ∼= π(X ) for all simplicial sets X .

G (P(X )) is the free groupoid on the category P(X ).
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Triangulation

There is a triangulation functor

| | : cSet→ sSet.

Every cubical set Y is a colimit of its cells �n → Y , and

|Y | := lim−→
�n→Y

|�n| = lim−→
�n→Y

B(1×n)

B(1×n) = (∆1)×n is a simplicial hypercube.

|�2| : (0, 1) // (1, 1)

(0, 0) //

OO ;;

(1, 0)

OO
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Path categories for cubical sets

1) K ⊂ �N is finite dimensional cubical complex:

P(K ) := P(|K |).

P(|K |) = lim−→
�n→Y

PB(1×n) = lim−→
�n→Y

1×n.

2) Internal definition:

P(K ) is the free category on sk1 K , subject to relations defined by
degeneracies and 2-cells.
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Geometric concurrency

Basic idea (V. Pratt, 1991): represent the simultaneous
execution of processors a and b as a picture (2-cell)

∗ b //

�#

∗

∗
a

OO

b
// ∗

a

OO

Simultaneous action of multiple processors rep. by hypercubes.

Restrictions on the system corr. to shared resources rep. by
removing cubical cells, so one has a cubical subcomplex K ⊂ �N

of an N-cell, N = number of processors.

K is a “higher dimensional automaton”.

Basic problem: Compute P(K )(x , y), “execution paths from state
x to state y”.
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Example: the Swiss flag

· · // · // · // · // · // · // · // · // •
y=(a2,b2)

b

OO

· ·

OO

· ·

OO

· · · · ·

OO

·

· ·

OO

// · // ·

OO

Ya

· · ·

OO

·

· ·
OO

· · ·
OO

·

· ·
OO

· · ·
OO

·

· ·
OO

· · · · // ·
OO

·

· // · //

OO

· // · // · // · // · // · //

OO

·
OO[c

·

•
OO

· · · · · · · · ·
x=(a1,b1)

a //
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Path 2-category

K = finite simplicial complex.

2-category “resolution” P2(K )→ P(K ): π0P2(x , y) = P(K )(x , y)

0-cells are vertices of K , 1-cells x → y are strings of nondegenerate
1-simplices of K

x = x0 → x1 → · · · → xn = y ,

and 2-cells are generated by non-degenerate 2-cells of K

x // . . . // xi−1
d1σ //

d2σ
## ��

xi+1
// . . . // y

xi
d0σ

;;

All data in P2(K ) is finite for a finite simplicial complex K .

Remark: ∃ algorithm to construct P2(K ) and compute P(K ).
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Computations

The necklace: L ⊂ ∆40 is the subcomplex

1

��

3

��

39
!!

0

@@

// 2

@@

// 4 . . . 38

==

// 40

This is 20 copies of the complex ∂∆2 glued together. There are
220 morphisms in P(L)(0, 40).

The listing of morphisms of P(L) consumes 2 GB of disk.

Remarks: 1) The size of the path category P(L) grows
exponentially with L (“exponential complexity”).

2) There are no parallel versions of the code — no general
patching algorithms.

3) Work so far: to compute P(K )(x , y), find {x , y} ⊂ L ⊂ K such
that P(L)→ P(K ) is fully faithful.
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Quasicategories

The path category P(X ) of a simplicial set X is the fundamental
category τ1(X ) from Joyal’s theory of quasicategories.

Joyal’s quasicategory model structure on sSet is constructed,
by the methods of Cisinski’s thesis, by formally inverting the inner
horn inclusions Λn

k ⊂ ∆n, k 6= 0, n, and the inclusion

0 : ∆0 → B(π(∆1)) =: I .

I = interval object. π(∆1) is a trivial groupoid with two objects.

A quasicategory is a simplicial set X which has the right lifting
property with respect to all inner horn inclusions Λn

k ⊂ ∆n.

Lemma 4 (magic).

Quasicategories are the fibrant objects for the quasicategory model
structure.
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Weak equivalences

There is a triv. cof. j : X → LX s.t. LX is a quasicategory, built
from inner horn inclusions.

A map X → Y is a quasicategory equivalence (categorical
equivalence) if the induced map LX → LY is an I -homotopy
equivalence.

I -homotopy, I = Bπ(∆1) : X
0 ��

f

''
X × I // Y

X
1
OO

g

77

Cofibrations for quasicategory structure are monomorphisms.

Joyal calls fibrations for this structure pseudo-fibrations.
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Path category, again

Lemma 5.

Every inner horn inclusion Λn
k → ∆n induces an isomorphism

P(Λn
k) ∼= P(∆n)

Corollary 6.

Every quasicategory equivalence X → Y induces an equivalence
of categories P(X ) ' P(Y ).

Consequence of Van Kampen theorem: P is left adjoint to nerve,
hence takes pushouts to pushouts, so P(X ) ∼= P(LX ).

Remark: Equivalences of categories are rare in CS applications.

Rick Jardine Local higher category theory



Core of a quasicategory

A 1-simplex α : ∆1 → X is invertible if the map [α] : d1α→ d0α
is invertible in P(X ).

Fact: If Y is a Kan complex, every 1-simplex of Y is invertible.

Theorem 7 (Joyal).

X = quasicategory. X is a Kan complex if and only if P(X ) is a
groupoid.

J(X ) ⊂ X is the subcomplex whose simplices σ : ∆n → X have
1-skeleta sk1 ∆n ⊂ ∆n σ−→ X consisting of invertible 1-simplices.

J(X ) is the core of X .

Corollary 8.

J(X ) is the maximal Kan subcomplex of a quasicategory X .

Interesting part: J(X ) is a Kan complex.
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Examples

1) If C is a category, then BC is a quasicategory, since
P(Λn

k) ∼= P(∆n) for inner horns Λn
k ⊂ ∆n.

J(BC ) = B(Iso(C )).

2) Every Kan complex is a quasicategory.

f : X → Y of Kan complexes is a quasicategory equivalence if and
only if it is a standard weak equivalence.

g : Z →W quasicategory equiv of quasicategories. Then
g∗ : J(Z )→ J(W ) is an ordinary weak equiv of Kan complexes.

Facts: 1) X = quasicategory. Then [∗,X ]q ∼= π0J(X ).

2) C = category. Then [∗,BC ]q ∼= π0B(Iso(C )) = π0 Iso(C ).

3) P = poset. Then Ob(P) ∼= [∗,BP]q. eg. ∆n
0
∼= [∗,∆n]q.

Recall ∆n = Bn, n = {0, 1, . . . , n}.
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Simplicial complexes

Lemma 9.

If K ⊂ ∆N , then K0
∼= [∗,K ]q.

Proof: j : X → LX is an isomorphism on vertices.

Suppose i : K ⊂ ∆N is an isomorphism on vertices.

Form the diagram

K
i //

j ��

∆N

LK

;;

[∗, LK ]q is I -htpy classes of maps ∗ → LK .

If 2 vertices x , y : ∗ → LK are I -homotopic, they are equal in ∆N

so x = y in LK .

Thus LK0 → [∗, LK ]q is a bijection, so K0 → [∗,K ]q is a bijection.
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Higher invariants

Theorem 10.

K = ∆n, n ≥ 0 or ∂∆n, n ≥ 1. f : X → Y map of quasicategories.
Then f is a quasicategory weak equivalence if and only if all
functors

π(Jhom(K ,X ))→ π(Jhom(K ,Y ))

are equivalences of groupoids

Corollary 11.

g : Z →W map of Kan complexes. Then g is a standard weak
equivalence if and only if all functors

g∗ : π(hom(∂∆n,Z ))→ π(hom(∂∆n,W )), n ≥ 1,

are equivalences of groupoids.
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Classical local structure

C = op |T is the category of open subsets of a topological space
T , so that the sheaf category Shv(C ) has enough points (stalks).

If F is a sheaf or presheaf on C , write

p∗F =
⊔
x∈T

Fx

for the collection of all stalks.

There are (injective) model structures on s Shv(C ), s Pre(C ) s.t.
cofibrations are monomorphisms, and f : X → Y is a local weak
equiv. iff p∗X → p∗Y is a weak equiv. of simplicial sets.

The inclusion and associated sheaf functors form a Quillen
equivalence

L2 : s Pre(C ) � s Shv(C ) : i .
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Local quasicategory structure

Theorem 12 (Meadows [4]).

There is a left proper model structure on s Pre(C ) with cofibrations
= monomorphisms, and s.t. f : X → Y is a weak equiv. iff
p∗X → p∗Y is a quasicategory weak equiv of simplicial sets.

Remarks: 1) There is a corresponding model structure for
s Shv(C ) with a Quillen equivalence

L2 : s Pre(C ) � s Shv(C ) : i .

2) These are special cases of a general result which applies to all
Grothendieck sites C , where p∗ is a Boolean localization.

3) Weak equivalences for the theory are local quasicategory
equivalences.
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About the proof

The proof is not a localization argument.

Use a natural sectionwise quasicategory equivalence j : X → LX ,
with LX a presheaf of quasicategories.

Show that p∗j : p∗X → p∗LX is a quasicategory equivalence: the
map

Λn
k × U → ∆n × U

is a local quasicategory equivalence for all 0 < k < n and all
U ⊂ T open.

Y = presheaf of quasicategories. Then p∗J(Y ) ∼= J(p∗Y ), because
J(Y ) is defined by pullbacks:

J(Y )n //

��

Yn

��∏
1⊂n Inv(Y ) //

∏
1⊂n Y1

Inv(Y ) //

��

Y1

��
Mor(Iso(P(Y )) // Mor(P(Y ))
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More on the proof

Lemma 13.

Suppose K = ∆n, ∂∆n. f : X → Y map of presheaves of
quasicategories is a local quasicategory equivalence if and only if all

π(J(hom(K ,X ))→ π(J(hom(K ,Y ))

are local weak equivs of presheaves of groupoids.

Lemma 14 (Bounded cofibration).

There is a regular cardinal α such that, given a picture

X
i��

A ⊂
// Y

with i a trivial cofibration and |A| < α, there is a subobject
A ⊂ B ⊂ Y s.t. |B| < α and B ∩ X → B is a trivial cofibration.
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Complete Segal spaces

Rezk’s complete Segal model structure on s2Set is constructed by
localizing the Reedy (injective) structure at the cofibrations

G (n) := Str(∆n)×̃∆0 ⊂ ∆n×̃∆0 =: F (n)

F (0) = ∆0×̃∆0 → B(π(∆1))×̃∆0 =: I

where Str(∆n) is the string of 1-simplices 0→ 1→ · · · → n in ∆n.
I is the “discrete nerve” of π(∆1).

There are adjoint functors

t! : s2Set � sSet : t!,

where t!Xp,q = hom(∆p × Bπ(∆q),X ) for simp. sets X .
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Comparison theorem

Theorem 15 (Joyal, Tierney).

The functors t!, t
! induce a Quillen equivalence between Rezk’s

complete Segal model structure on s2Set and the quasicategory
model structure on sSet.
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Local version

Meadows localizes the injective model structure on s2 Pre(C ) at
the maps

G (n) := Str(∆n)×̃∆0 ⊂ ∆n×̃∆0 =: F (n)

F (0) = ∆0×̃∆0 → B(π(∆1))×̃∆0 =: I .

(identified with constant maps of bisimplicial presheaves) to form
the local complete Segal model structure on s2 Pre(C ).

The Joyal-Tierney theorem bootstraps to a comparison result:

Theorem 16 (Meadows [3]).

There is a Quillen equivalence

t! : s2 Pre(C ) � s Pre(C ) : t!,

between the local complete Segal model structure on s2 Pre(C )
and the local quasicategory structure on s Pre(C ).
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More to come

The quasicategory structures and complete Segal model structures
both fail to be right proper, and therefore do not have a global
theory of cocycles, such as one sees in the injective model
structure for s Pre(C ).

Bergner’s model structure for categories enriched in simplicial sets
is right proper, and Meadows expects to produce a right proper
local version of that theory.
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Descent

Original definition: Y = simp. presheaf. Y satisfies descent iff
every injective fibrant model j : Y → Z is a sectionwise equiv.

eg: A sheaf of groupoids G is a stack iff BG satisfies descent.

Theorem 17 (Meadows).

1) f : X → Y a morphism of presheaves of quasicategories. f is
a local quasicategory equivalence if and only if all simplicial
presheaf maps

Jhom(∆n,X )→ Jhom(∆n,Y )

are local weak equivalences.

2) X = presheaf of quasicategories. X satisfies descent for the
local quasicategory structure if and only if all simplicial
presheaves Jhom(∆n,X ) satisfy descent for the injective
model structure.
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Constructions

Use k !Y for quasicategories Y :

k !Yn = hom(Bπ(∆n),Y ).

∃ a natural triv. fibration k !Y → J(Y ) if Y is a quasicategory.

t!Yn = k !hom(∆n,Y ).

Proof of quasicategory descent theorem uses Joyal-Tierney
comparison theorem and Meadows’ local version.
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An application

X = presheaf of quasicategories, j : X → LX be a fibrant model in
the local quasicategory structure.

J(X )→ J(LX ) is a local weak equivalence. LX satisfies
quasicategory descent.

All Jhom(∆n, LX ) satisfy descent for the injective model
structure, so J(LX ) satisfies descent. There are isomorphisms

[∗,X ]q ∼= [∗, LX ]q ∼= πI (∗, LX ) ∼= πI (∗, J(LX )) ∼= [∗, J(LX )] ∼= [∗, J(X )].

[ , ]q is morphisms in local quasicategory homotopy category, [ , ]
is morphisms in local homotopy category.

Example: A = presheaf of categories:

[∗,BA]q ∼= [∗,B Iso(A)] (non-abelian H1).
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