The parabolic groupoid

Write F for the category of finite subsets of a fixed
countable set.

Let Mon(F), be the set of all strings of subset
inclusions

F.: FFCFC---CF,.
Say that such a string is a formal flag of length n.

Mon(F),, is the set of n-simplices of a simplicial set
Mon(F). Write Fy = () for each formal flag, and
let & : m — n be an ordinal number morphism.
The formal flag 6*(F') (of length m) is the sequence
of inclusions

O F : F9(1)—F9(0) C Fg(g)—Fg(o) C - C Fg(m)—Fg(O).

Write O(Y) for the ring of functions of a scheme
Y. Then Og is the Zariski sheaf of rings on Sch |g

which is defined by associating the ring O(Y') to
each S-scheme Y — §.

Write Mod(SS) for the category of sheaves of Og-
modules on Sch |g. Then the assignment

T — S +— Mod(T)
defines a presheaf of categories Mod on Sch |g.
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You can, if you like, assume that everything is
affine: S = Sp(R) for some commutative unitary
ring R and an S-scheme T" — S is defined by an
R-algebra R — R’. In this case, the sheaf of rings
Oy is the functor which takes an algebra R — R’
to the ring R'.

Every finite set F' determines a free Og-module
Og(F), and every function F' — F” induces a mor-
phism Og(F) — Og(F"). It follows that there is
a functor

Og : F — Mod(95)

taking values in Og-modules, and a corresponding
morphism of presheaves of categories

Og : " F — Mod.

A morphism « : F' — F’ of formal flags is a col-
lection of Og-module homomorphisms

(077 Os(Fk) — OS(F];), 1 < k < n,
such that the diagram
Og(F1) — Os(F) c Os(F,)

oqi lozz ian

Os(F1) —Os(f3) —- - —Os(F)

commutes. The formal flags of length n and their

homomorphisms form an additive category, which
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will be denoted by F1,(S). Write Par,,(S) for the
groupoid of the formal flags of length n and their
isomorphisms.

Every formal flag morphism « : F' — F' uniquely
induces a formal flag morphism 6*(«) : 0*F —
6* F' for all ordinal number maps 6 : m — n. It
follows that the categories F1,(.S) form a simplicial
category F1(S). Similarly, the groupoids Par,(.5)
form a simplicial groupoid Par(.9).

The simplicial category F1(S) is the global sec-
tions object of a presheaf of simplicial categories
defined on Sch|g, which is denoted by F1 (transi-
tion functors defined by restriction). Similarly, the
simplicial groupoid Par(.S) is the global sections
object of a simplicial presheaf of groupoids Par on
the category of S-schemes. I say that Par is the
parabolic groupoid.

Write Ar(n) for the category of arrows (7, j) : i <
7 in the ordinal number n. Let M be an exact
category, and recall that Waldhausen’s category
SpM is defined to have objects consisting of all
functors P : Ar(n) — M, such that

1) P(i,i) = 0 for all 4, and



2) all sequences
0— P(i,j) — P(i,k) — P(j,k) = 0
are exact for 1 < j < k.

The morphisms of S,,M are the natural transfor-
mations between diagrams in M. The categories
Sp(M) form a simplicial category SeM, and the
simplicial set of objects se M = Ob(S,M ) is Wald-
hausen’s se-construction. Recall that there are
natural weak equivalences

1) se M ~ BQ(M), and
2) seM ~ BlsoSeM, where Iso SeM is the sim-

plicial groupoid of isomorphisms in S, M.

Let P(S) denote the full subcategory of the cate-
gory of Og-modules which consists of Og-modules
which are locally free of finite rank. This is the
category of (big site) vector bundles on S. It is

global sections of a presheaf of categories P which
is defined on Sch |g.

Suppose that
F.: FLC---CkFE,

is a formal flag of length n. Then F' determines an

object P(F') € S,P(S) with
P(F)(i,j) = Os(Fj — F).
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If (i,5) < (k,l) is an arrow morphism, then the
induced map

Os(Fj — F;) — Os(F) — Fy)
is the composite
Os(F; — Fy) — Os(Fj — Fy,) — Os(F — Fy).
The assignments F' — P(F') define a morphism of
simplicial categories
P FI(S) — SJP(S) C Se(Mod(S)).

This morphism P restricts to a simplicial groupoid
morphism

P : Par(S) — Iso SeP(9),

and this latter morphism is global sections of a
morphism
P : Par — Iso S, P,

of presheaves of simplicial groupoids on Sch/|s.

Here’s the main result:

Theorem 1. The morphism P : Par,, — Iso .S, P
of presheaves of groupotids is sectionwise weakly
equivalent to the Zariski stack completion Par,, —

St(Par,,), for each n > 0.



Now I've got some explaining to do:

1) There is a model structure for presheaves of
groupoids on Sch |g, for which a morphism G — H
is a weak equivalence (respectively fibration) if and
only if the induced map of simplicial presheaves
BG — BH is a local weak equivalence (respec-
tively global fibration). This model structure is a
special case of one defined for presheaves of groupoids
on arbitrary small Grothendieck sites. In this par-
ticular case, the weak equivalences are easier to
define: BG — BH is a local weak equivalence if
and only if all simplicial set maps BG, — BH,
in stalks (z € T', T an S-scheme) are weak equiv-
alences.

2) Stacks in this setup are presheaves of groupoids
GG which satisfy descent: this means that any fi-
brant model G — H (weak equivalence with H
fibrant) induces weak equivalences G(T') — H(T)
in each section. The “stack completion” for a
groupoid G is therefore nothing more than a fi-
brant model.

The moral is that stacks are homotopy types of
presheaves of groupoids, in a given local model
structure.



3) Theorem 1 therefore asserts that the map
P : Par, — I[so S, P

is a local weak equivalence, and that the presheaf
of groupoids Iso S,,P satisfies descent.

4) Why would you care? The Theorem implies
that the bisimplicial presheaf BPar is a geometric
model for the K-theory presheaf K! up to Zariski
local weak equivalence.

NB: Schechtman “proved” a result which is equiv-
alent to the Theorem in [1] (1987). People un-
derstood that this result gave a geometric model
for K-theory at the time, but nobody ever really
came to terms with either Schechtman’s proof or
his model for the object BPar.

How would you prove such a thing?

The claim that P is a local weak equivalence is
essentially obvious, for the Zariski topology.

There are various models for the associated stack,
which arise from cocycle theory:

[) Given simplicial presheaves (or lots of other things)
X,Y, the cocycle category H(X,Y) has as ob-
jects all pictures



where ¢ is a local weak equivalence. A morphism
in H(X,Y) is a commutative diagram

A
Xk\fy
NV
gZ/f

The assignment (g, f) — fg~! defines a function
Y mH(X,Y) — [X,Y]

taking values in morphisms in the homotopy cate-
gory of simplicial presheaves (or sheaves).

Theorem 2. The function v is a bijection.

Remark: Cocycle categories have appeared be-
fore, in the Dwyer-Kan theory of hammock local-
izations for arbitrary model categories. They have
a theorem like Theorem 2 in that context, provided
that Y is fibrant. The point of most applications
of Theorem 2 is that Y doesn’t need to be fibrant
(although most of the time Y is projective fibrant).

IT) Suppose that G is a sheaf of groupoids. A G-

diagram X consists of functors X (U) : G(U) —
Sets which fit together in an obvious way — in



particular the sets

L X(z)
z€Ob(G(U)

should form a sheaf.

Equivalently, a G-diagram X is a sheaf map 7 :
X — Ob(G) with an action

X xsMor(G) —/"—X

! -

Mor(G) ——Ob(G)

(source map s = dj) which is associative and re-

spects identities.

One can form the homotopy colimit holim ¢ X (nerve
of translation category) section by section, and
there is a canonical simplicial presheaf map holim ¢ X —

BG.

A (discrete) G-torsoris a G-diagram X (of sheaves)
such that the canonical map holim ¢ X — x* is a
weak equivalence.

Remark: If GG is a sheaf of groups and Y is a sheaf
with G-action then Y is a G-torsor if and only if
the map EG XY — xis a local weak equivalence
(ie G acts freely and locally transitively). The def-
inition of G-torsor for a sheaf of groupoids G is a
direct generalization of this.
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A map X — Y of G-torsors is a natural transfor-
mation, or equivalently it’s a sheaf map

.
Ob(G)
fibred over Ob(G) which respects the actions.

X Y

If X is a G-diagram then the diagram

)f holim GX
Ob(Q) BG

is homotopy cartesian (Quillen’s Theorem B), and

so every map X — Y of G-torsors is an isomor-
phism fibred over Ob(G).

(G — tors = the category of G-torsors. This cate-
gory is a groupoid.

Here’s a construction:

Suppose that * <~ Y — BG is a cocycle, and
form the G-diagram pb(Y’) by the pullbacks

pb(Y)(U): —Y(U)

| |

BG(U)/x— BG(U)
Then
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e By formal nonsense there is a weak equivalence
holim ¢ pb(Y) = Y ~ x

e The map pb(Y) — @opb(Y) is a local weak
equivalence of diagrams, since pb(Y) is made
up of loop spaces of BG (locally).

It follows that there are weak equivalences
holim ¢ 7o pb(Y") < holim ¢ ph(Y) = Y =~ x
and so the diagram 7o pb(Y’) is an G-torsor.

If X is a G-torsor then % < holim o+ X — BG is
a cocycle.

Even more is true: the functors
mopb : H(x, BG) = G — tors : holim

is an adjoint pair so that there is a weak equiva-
lence

BH(x, BG) ~ B(G — Tors).
We therefore have
Theorem 3. There are natural bijections

{iso. classes of G-torsors} = my(G — tors)
= moH (%, BG) = [x, BG].
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The groupoid G — tors is global sections of a
presheaf of groupoids G — Tors. In effect, all G-
diagrams X restrict to G|y-diagrams X |y on C/U
for all U € C, as do all local weak equivalences.

The category H (x, BG) is global sections of a presheaf
of categories H(x, BG), and there is a functor

i: G — H(x, BG)
defined by taking = € Ob(G) to the cocycle
x «— B(G/x) — BG

The functor ¢ induces a map j : G — G — Tors of

presheaves of groupoids, which is defined by j(x) =
G(,x).

Theorem 4. The simplicial presheaf BH(x, BG)
satisfies descent and i : BG — BH(x, BG) is a
local weak equivalence.

Proof. Show that G — BH (x, BG) preserves lo-
cal weak equivalences and that 7 is a my-epimorphism
and j is a m-isomorphism if G is a stack.

Remark: This means that G — Tors is a model
for the stack associated to G, but so is H(x, BG).

Now how to prove Theorem 17
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Suppose that * < H ER Par, is a cocycle in
groupoids on Sch |g and form the composite

2R Par, 2 1s0S,P C Iso Sp(Mod).

Taking colimit of this functor determines an object
L(f) of S,(Mod)(S) which is locally free in each
node (i,7) since H — % is a local weak equiva-
lence. The assignment f +— L(f) therefore deter-
mines a functor

L : H(x, BPar,) — Iso S, P(S).
One shows that the composite
Par, — tors — H(x, BPar,) % Iso S,P,(S)
is a weak equivalence of groupoids.

This is just a souped up version of the classical
weak equivalence

Gl, — tors — H(x, BGl,) — Iso P,(S)

taking values in vector bundles of rank n. The key
points are that every vector bundle is trivialized
along some cocycle, and that

Aut(Gl,) = Aut(OY).
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