
The parabolic groupoid

Write F for the category of finite subsets of a fixed

countable set.

Let Mon(F)n be the set of all strings of subset

inclusions

F : F1 ⊂ F2 ⊂ · · · ⊂ Fn.

Say that such a string is a formal flag of length n.

Mon(F)n is the set of n-simplices of a simplicial set

Mon(F). Write F0 = ∅ for each formal flag, and

let θ : m → n be an ordinal number morphism.

The formal flag θ∗(F ) (of lengthm) is the sequence

of inclusions

θ∗F : Fθ(1)−Fθ(0) ⊂ Fθ(2)−Fθ(0) ⊂ · · · ⊂ Fθ(m)−Fθ(0).

Write O(Y ) for the ring of functions of a scheme

Y . Then OS is the Zariski sheaf of rings on Sch |S
which is defined by associating the ring O(Y ) to

each S-scheme Y → S.

Write Mod(S) for the category of sheaves of OS-

modules on Sch |S. Then the assignment

T → S 7→Mod(T )

defines a presheaf of categories Mod on Sch |S.
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You can, if you like, assume that everything is

affine: S = Sp(R) for some commutative unitary

ring R and an S-scheme T → S is defined by an

R-algebra R→ R′. In this case, the sheaf of rings

OS is the functor which takes an algebra R→ R′

to the ring R′.

Every finite set F determines a free OS-module

OS(F ), and every function F → F ′ induces a mor-

phism OS(F ) → OS(F ′). It follows that there is

a functor

OS : F →Mod(S)

taking values in OS-modules, and a corresponding

morphism of presheaves of categories

OS : Γ∗F →Mod.

A morphism α : F → F ′ of formal flags is a col-

lection of OS-module homomorphisms

αk : OS(Fk)→ OS(F ′k), 1 ≤ k ≤ n,

such that the diagram

OS(F1) //

α1
��

OS(F2) //

α2
��

. . . //OS(Fn)
αn

��

OS(F ′1) //OS(F ′2) // . . . //OS(F ′n)

commutes. The formal flags of length n and their

homomorphisms form an additive category, which
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will be denoted by Fln(S). Write Parn(S) for the

groupoid of the formal flags of length n and their

isomorphisms.

Every formal flag morphism α : F → F ′ uniquely

induces a formal flag morphism θ∗(α) : θ∗F →
θ∗F ′ for all ordinal number maps θ : m → n. It

follows that the categories Fln(S) form a simplicial

category Fl(S). Similarly, the groupoids Parn(S)

form a simplicial groupoid Par(S).

The simplicial category Fl(S) is the global sec-

tions object of a presheaf of simplicial categories

defined on Sch|S, which is denoted by Fl (transi-

tion functors defined by restriction). Similarly, the

simplicial groupoid Par(S) is the global sections

object of a simplicial presheaf of groupoids Par on

the category of S-schemes. I say that Par is the

parabolic groupoid.

Write Ar(n) for the category of arrows (i, j) : i ≤
j in the ordinal number n. Let M be an exact

category, and recall that Waldhausen’s category

SnM is defined to have objects consisting of all

functors P : Ar(n)→M , such that

1) P (i, i) = 0 for all i, and
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2) all sequences

0→ P (i, j)→ P (i, k)→ P (j, k)→ 0

are exact for i ≤ j ≤ k.

The morphisms of SnM are the natural transfor-

mations between diagrams in M . The categories

Sn(M) form a simplicial category S•M , and the

simplicial set of objects s•M = Ob(S•M) is Wald-

hausen’s s•-construction. Recall that there are

natural weak equivalences

1) s•M ' BQ(M), and

2) s•M ' B IsoS•M , where IsoS•M is the sim-

plicial groupoid of isomorphisms in S•M .

Let P(S) denote the full subcategory of the cate-

gory of OS-modules which consists of OS-modules

which are locally free of finite rank. This is the

category of (big site) vector bundles on S. It is

global sections of a presheaf of categories P which

is defined on Sch |S.

Suppose that

F : F1 ⊂ · · · ⊂ Fn

is a formal flag of length n. Then F determines an

object P (F ) ∈ SnP(S) with

P (F )(i, j) = OS(Fj − Fi).

4



If (i, j) ≤ (k, l) is an arrow morphism, then the

induced map

OS(Fj − Fi)→ OS(Fl − Fk)

is the composite

OS(Fj − Fi)→ OS(Fj − Fk)→ OS(Fl − Fk).

The assignments F 7→ P (F ) define a morphism of

simplicial categories

P : Fl(S)→ S•P(S) ⊂ S•(Mod(S)).

This morphism P restricts to a simplicial groupoid

morphism

P : Par(S)→ IsoS•P(S),

and this latter morphism is global sections of a

morphism

P : Par→ IsoS•P ,
of presheaves of simplicial groupoids on Sch|S.

Here’s the main result:

Theorem 1. The morphism P : Parn → IsoSnP
of presheaves of groupoids is sectionwise weakly

equivalent to the Zariski stack completion Parn →
St(Parn), for each n ≥ 0.
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Now I’ve got some explaining to do:

1) There is a model structure for presheaves of

groupoids on Sch |S, for which a morphismG→ H

is a weak equivalence (respectively fibration) if and

only if the induced map of simplicial presheaves

BG → BH is a local weak equivalence (respec-

tively global fibration). This model structure is a

special case of one defined for presheaves of groupoids

on arbitrary small Grothendieck sites. In this par-

ticular case, the weak equivalences are easier to

define: BG → BH is a local weak equivalence if

and only if all simplicial set maps BGx → BHx

in stalks (x ∈ T , T an S-scheme) are weak equiv-

alences.

2) Stacks in this setup are presheaves of groupoids

G which satisfy descent: this means that any fi-

brant model G → H (weak equivalence with H

fibrant) induces weak equivalences G(T )→ H(T )

in each section. The “stack completion” for a

groupoid G is therefore nothing more than a fi-

brant model.

The moral is that stacks are homotopy types of

presheaves of groupoids, in a given local model

structure.
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3) Theorem 1 therefore asserts that the map

P : Parn → IsoSnP
is a local weak equivalence, and that the presheaf

of groupoids IsoSnP satisfies descent.

4) Why would you care? The Theorem implies

that the bisimplicial presheaf BPar is a geometric

model for the K-theory presheaf K1 up to Zariski

local weak equivalence.

NB: Schechtman “proved” a result which is equiv-

alent to the Theorem in [1] (1987). People un-

derstood that this result gave a geometric model

for K-theory at the time, but nobody ever really

came to terms with either Schechtman’s proof or

his model for the object BPar.

How would you prove such a thing?

The claim that P is a local weak equivalence is

essentially obvious, for the Zariski topology.

There are various models for the associated stack,

which arise from cocycle theory:

I) Given simplicial presheaves (or lots of other things)

X, Y , the cocycle category H(X, Y ) has as ob-

jects all pictures

X
g←− Z

f−→ Y
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where g is a local weak equivalence. A morphism

in H(X, Y ) is a commutative diagram

Zg
'yyrrr
rrr

r f
%%KKK

KKK
K

��
X Y

Z ′g′
'eeKKKKKK

f ′
99ssssss

The assignment (g, f ) 7→ fg−1 defines a function

ψ : π0H(X, Y )→ [X, Y ]

taking values in morphisms in the homotopy cate-

gory of simplicial presheaves (or sheaves).

Theorem 2. The function ψ is a bijection.

Remark: Cocycle categories have appeared be-

fore, in the Dwyer-Kan theory of hammock local-

izations for arbitrary model categories. They have

a theorem like Theorem 2 in that context, provided

that Y is fibrant. The point of most applications

of Theorem 2 is that Y doesn’t need to be fibrant

(although most of the time Y is projective fibrant).

II) Suppose that G is a sheaf of groupoids. A G-

diagram X consists of functors X(U) : G(U) →
Sets which fit together in an obvious way — in
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particular the sets ⊔
x∈Ob(G(U)

X(x)

should form a sheaf.

Equivalently, a G-diagram X is a sheaf map π :

X → Ob(G) with an action

X ×s Mor(G) m //

pr
��

X
π

��

Mor(G)
t

// Ob(G)

(source map s = d1) which is associative and re-

spects identities.

One can form the homotopy colimit holim−−−→ GX (nerve

of translation category) section by section, and

there is a canonical simplicial presheaf map holim−−−→ GX →
BG.

A (discrete)G-torsor is aG-diagramX (of sheaves)

such that the canonical map holim−−−→ GX → ∗ is a

weak equivalence.

Remark: IfG is a sheaf of groups and Y is a sheaf

with G-action then Y is a G-torsor if and only if

the map EG×GY → ∗ is a local weak equivalence

(ie G acts freely and locally transitively). The def-

inition of G-torsor for a sheaf of groupoids G is a

direct generalization of this.
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A map X → Y of G-torsors is a natural transfor-

mation, or equivalently it’s a sheaf map

X
f //

��>
>>

>>
>>

Y

����
��

��
�

Ob(G)

fibred over Ob(G) which respects the actions.

If X is a G-diagram then the diagram

X //

π
��

holim−−−→ GX

��
Ob(G) //BG

is homotopy cartesian (Quillen’s Theorem B), and

so every map X → Y of G-torsors is an isomor-

phism fibred over Ob(G).

G− tors = the category of G-torsors. This cate-

gory is a groupoid.

Here’s a construction:

Suppose that ∗ '←− Y → BG is a cocycle, and

form the G-diagram pb(Y ) by the pullbacks

pb(Y )(U)x //

��

Y (U)

��

BG(U)/x //BG(U)

Then
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• By formal nonsense there is a weak equivalence

holim−−−→ G pb(Y ) '−→ Y ' ∗

• The map pb(Y ) → π̃0 pb(Y ) is a local weak

equivalence of diagrams, since pb(Y ) is made

up of loop spaces of BG (locally).

It follows that there are weak equivalences

holim−−−→ G π̃0 pb(Y ) '←− holim−−−→ G pb(Y ) '−→ Y ' ∗

and so the diagram π̃0 pb(Y ) is an G-torsor.

If X is a G-torsor then ∗ '←− holim−−−→ GX → BG is

a cocycle.

Even more is true: the functors

π̃0 pb : H(∗, BG) � G− tors : holim−−−→
is an adjoint pair so that there is a weak equiva-

lence

BH(∗, BG) ' B(G−Tors).

We therefore have

Theorem 3. There are natural bijections

{iso. classes of G-torsors} = π0(G− tors)
∼= π0H(∗, BG) ∼= [∗, BG].
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The groupoid G − tors is global sections of a

presheaf of groupoids G − Tors. In effect, all G-

diagrams X restrict to G|U -diagrams X|U on C/U
for all U ∈ C, as do all local weak equivalences.

The categoryH(∗, BG) is global sections of a presheaf

of categories H(∗, BG), and there is a functor

i : G→ H(∗, BG)

defined by taking x ∈ Ob(G) to the cocycle

∗ '←− B(G/x)→ BG

The functor i induces a map j : G→ G−Tors of

presheaves of groupoids, which is defined by j(x) =

G( , x).

Theorem 4. The simplicial presheaf BH(∗, BG)

satisfies descent and i : BG→ BH(∗, BG) is a

local weak equivalence.

Proof: Show that G 7→ BH(∗, BG) preserves lo-

cal weak equivalences and that i is a π̃0-epimorphism

and j is a π̃1-isomorphism if G is a stack.

Remark: This means that G−Tors is a model

for the stack associated to G, but so is H(∗, BG).

Now how to prove Theorem 1?
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Suppose that ∗ '←− H
f−→ Parn is a cocycle in

groupoids on Sch |S and form the composite

H
f−→ Parn

P−→ IsoSnP ⊂ IsoSn(Mod).

Taking colimit of this functor determines an object

L(f ) of Sn(Mod)(S) which is locally free in each

node (i, j) since H → ∗ is a local weak equiva-

lence. The assignment f 7→ L(f ) therefore deter-

mines a functor

L : H(∗, BParn)→ IsoSnP(S).

One shows that the composite

Parn − tors→ H(∗, BParn)
L−→ IsoSnPn(S)

is a weak equivalence of groupoids.

This is just a souped up version of the classical

weak equivalence

Gln − tors→ H(∗, BGln)→ IsoPn(S)

taking values in vector bundles of rank n. The key

points are that every vector bundle is trivialized

along some cocycle, and that

Aut(Gln) ∼= Aut(On
S).
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