Pointed torsors and Galois groups
J.F. Jardine

Galois theory

Suppose that k is a field, and that ¢ : & — Q is a
fixed imbedding in an algebraically closed field. I
also write ¢ : Sp(€2) — Sp(k) for the corresponding
geometric point.

[ write Gal/k for the category of finite Galois ex-
tensions

k

L
of k in (), with the obvious maps between them.
For the experts, this is the category of étale neigh-
bourhoods of the geometric point i : Sp(Q2) —

Sp(k) which happen to consist of finite Galois ex-
tensions. This category is filtered.

The absolute Galois group G(k) is the profinite
group L — Gal(L/k) for L € Gal/k.

The (finite) étale site et|;. for k consists of all finite

products
n
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where each L; is a finite separable extension of
k. Equivalently the category consists of all finite
disjoint unions

Sp(L1) U+ LISp(Ly)

of k-schemes, where again L; /k is a finite separable
extension.

A presheaf on et|; is a contravariant functor
F : (et|p)”” — Set

(contravariant on k-schemes or covariant on k-algebras).
We say that F'is a sheaf if

1) F is additive in the sense that the map
F(; Sp(Li)) — | [ F(Sp(L:)

is an isomorphism, and

2) if L'/ L is a finite Galois extension with Galois
group G, then the canonical map

F(Sp(L)) = F(Sp(L))*
is a bijection.
Example: Every k-scheme represents a sheaf on

et|x, so that every algebraic group H defined over
k represents a sheaf of groups H.
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G L, is the sheaf of groups defined by Sp(L) +
Gl,(L).
For a sheaf or presheaf F on the étale site et|;, the
canonical stalk v*F' is the set defined by
i F = i  F (L).
LeGal/k
This is the unique stalk for the finite étale site on
Sp(k).
If L/k is a finite separable extension of k, then
there is an imbedding of pro-groups G(L) — G(k)
(restrict to all Galois extensions of k& which contain
L).
The set *F is a discrete G(k)-module. The as-
signment
L (i*F)%%)
defines a sheaf F' on et|;. There is a canonical
map n : F — F which is an isomorphism if F is

a sheaf; otherwise, it’s the associated sheaf map
and F'is the associated sheaf.

Shv (et|;) is the category of sheaves on et|;. We'll
stick to sheaves most of the time in what follows.

Simplicial sheaves and cocycles
The base change functor (canonical stalk) i* is ex-

act and reflects exactness: a map f : F' — F'is
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an isomorphism (resp. monic, epi) if and only if
the function *f : i*F — i*F' is an isomorphisms
(resp. monic, epi).

In particular, a simplicial sheaf map f : X — Y on
et|r. is a local weak equivalence if and only if ¢* f :
¥ X — *Y is a weak equivalence of simplicial sets,
so the injective model structure for the simplicial
sheaf category sShv(et|;) is relatively simple to
describe: cofibrations are just monomorphisms. I
will restrict attention to simplicial sheaves in what
follows.

Suppose that H is an algebraic group which is de-
fined over k, and let it represent a sheaf of groups
on et|r, with associated classifying object BH.

The cocycle category h(x, BH ) has objects con-
sisting of diagrams of simplicial sheaf morphisms

« — U — BG,

and morphisms given by diagrams

SRl
Theorem 1. There is an isomorphism

¢ : moB(h(x, BH)) = [, BH|
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where [X,Y] is morphisms X — Y in the ho-
motopy category of simplicial sheaves.

The function ¢ takes a cocycle LU % BHto
the composite g - f~! in the homotopy category.

The definition of cocycle and the Theorem are very
special cases: one could talk about cocycles

X<cU—=Y

for arbitrary simplicial sheaves X and Y, and then
there is a bijection

WoBh(X, Y) = [X, Y].
Torsors

An H-torsor is a sheaf F' together with a group
action H x F'— F' such that the Borel construc-
tion EH X i I is contractible in the simplicial sheaf
category.

A morphism f : FF — F’ of H-torsors is an H-
equivariant map. Any such morphism must be an
isomorphism, by the comparison of fibre sequences

F——FEH xXg F—BH

/| | i1

F'—FH xy F'—BH



The map f must be a weak equivalence of simpli-
cial sheaves, and hence an isomorphism of sheaves.

H — tors will denote the groupoid of H-torsors.

Every H-torsor F' has an associated canonical co-
cycle
x+ < FH xy F — BH.

The canonical cocycle functor
FEHxpy?: H—tors — h(x, BH)

has a left adjoint, and therefore induces a homo-
topy equivalence

B(H — tors) >~ B(h(x, BH)).
The H-torsor associated to a cocycle
« & UL BH

is the homotopy fibre F'(f) of the map U J BH
over the global base point.

Computing in 7y gives the following:
Theorem 2. There is a natural isomorphism
H(k,H) =[x, BH].

This theorem (and proof technique) holds in much
greater generality: non-abelian H* with coefficients
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in a sheaf of groupoids G is isomorphic to [*, BG]
in any Grothendieck topos.

Example: Suppose given an action H x M — M
on a sheaf M, and suppose given a cocycle

« < U — EH xy M.
Then computing homotopy fibres for the maps
U—FEH xgM — BH

gives an H-torsor P and a G-equivariant map P —
M. This construction is again left adjoint to the
canonical cocycle construction, and gives an iso-
morphism

m0[M/G] = mBh(x, EHx g M) = [x, EH x g M],

where [M /(] is the quotient stack. From a homo-
topy theoretic point of view, the Borel construction
EH xgy M is the quotient stack.

Pointed torsors
Let’s return to Galois theory.

Here are some new definitions (which are again
special cases):

1) A pointed cocycle is a cocycle

« L UL BH,

7



together with a choice of basepoint x : x — ¢*U for
the simplicial set +*U, and a morphism of pointed
cocycles is a map of cocycles which preserves base
points on the stalk level. Write h(x, BH ), for the
category of pointed cocycles.

2) A pointed torsor is an H-torsor F' together
with a distinguished element (trivialization) z €
v*F. A morphism of pointed torsors is a morphism
of torsors which respects base points on the stalk
level. Write H — tors, for the groupoid of pointed
torsors.

There are two lemmas:

Lemma 3. The simplicial set B(H — tors,) is
the homotopy fibre over the trivial torsor 1*H
of the inverse image morphism

i* . B(H —tors) — B(i"H — tors) ~ B(i"H).

Remark 4. If GG is a plain old group in the set
category, the notion of G-torsor still makes sense:
it’s a set X with G-action such that EG xg X
is contractible. Every element x € X induces a
trivialization i, : G =5 X . so that all G-torsors
are isomorphic. The group of automorphisms of
the trivial torsor GG is a copy of G itself, so that



there is a weak equivalence
B(G — tors) ~ BG.

Lemma 5. The canonical cocycle adjunction
restricts to an adjoint pair of functors

F(?):h(x,BH), = H —tors, : EFHxp"
so that there is a homotopy equivalence
Bh(x, BH), ~ B(H — tors,).

The moral of this equivalence is that we can use
cocycle techniques to understand the groupoid of
pointed torsors, which is the homotopy fibre of 2*,
by Lemma 3.

A pointed Cech cocycle is a pointed cocycle
x+ < C(U) — BH,

where C(U) is the Cech resolution associated to
some sheaf epimorphism U — *. There is a cate-
gory heeen(*, BH) of such things and an obvious
inclusion functor

j : heean(*, BH), C h(*, BH),

Lemma 6. The inclusion functor j induces a
weak equivalence

B(hceen(*, BH).) C B(h(x, BH),).
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Proof. The fundamental groupoid functor
U— U

defines a left adjoint to the inclusion j. In effect,
the canonical map

is an isomorphism, since C(Up) is the nerve of
the free groupoid on the sheaf of vertices Uy, and
U ~ x (check this stalkwise, or with Boolean lo-
calization). (]

Among all coverings U — * we have the epimor-
phisms Sp(L) — * defined by the finite Galois
extensions L/k in 2. There are pointed cocycles

« < C(L) L BH
with base points
er, € 7" Sp(L) = limhom(L, N)
N/k

where the colimit is indexed over finite Galois ex-
tensions N/k in €2. The element ey corresponds
to the identity field homomorphism 17 on L. If
j : L — N is a morphism of Galois extensions
of k inside €2, then j*(ey) = er. Thus there is a
subcategory haq (%, BH ), of heeen (%, BH ), whose
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objects are the objects above, and which has mor-
phisms

~

C(N) &

i i
\ ! 7
- o)

determined by inclusions j of finite Galois exten-

BH

sions of k in €.

Lemma 7. The induced map
B(hgau(*, BH)y) = B(hceen(*, BH),)
18 a weak equivalence.

Proof. This is a “Quillen Theorem A”-type argu-
ment.

Let f be the Cech cocycle

« < cw) L BH,

and let 7 be the functor
j : hGal(*; BH)* — hC’ech(*7 BH)

Then one can show that the slice category j/f is
non-empty and filtered. The element

z € i"(U) = lim hom(Sp(L), U)
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is represented by a map v : Sp(L) — U, and
vi«(er) = x. The category j/f is therefore non-
empty; it is also a category of representatives for
x. Now show that the category of representatives
v:Sp(L) — U of x is left filtered. (]

Corollary 8. There s an isomorphism

moB(h(x, BH),) = lighom(C(L), BH).
L/k
Some remarks:

1) All automorphisms of a pointed torsor are triv-
ial, so that the map

B(H — tors,) — myB(H — tors,)
is a weak equivalence.

2) Recall that the Cech resolution C/(L) is isomor-
phic to the Borel construction

EG(L/k) X Sp(L),

by Galois theory. This Borel construction is the
nerve of the translation groupoid Eg(z /) Sp(L).
The pro object defined by the functor

L — Eqm Sp(L)

is the absolute Galois groupoid of k. The Corol-
lary above says that moB(h(x, BH),) is the set of
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“representations” of the absolute Galois groupoid
in H.

3) If H is a constant group, then a morphism

EG(L/k) Xqm Sp(L) — BH
can be identified with a group homomorphism
G(L/K)— H,

because BG(L/K) is the simplicial set of con-
nected components of the Borel construction. It

follows that moB(h(x, BH),) is the set of repre-
sentations of the absolute Galois group in H.

This is the first homotopy theoretic invariant for
simplicial sheaves or presheaves that ['ve seen that
is represented by the absolute Galois group.

4) The results displayed here actually hold for all
profinite groups, and in particular for the Grothen-
dieck fundamental group of a (nice: connected,
Noetherian) scheme S (via the finite étale site fet|g
for S). It follows that there is a well-defined Groth-
endieck fundamental groupoid consisting of the trans-
lation groupoids EX associated to finite Galois
extensions X/S. This pro object represents all
pointed torsors et|gS, and the Grothendieck fun-
damental group represents pointed torsors for con-
stant groups H on et|g.
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Recall that a Galois cover X — S is a finite étale
morphism with X connected such that X is a G-
torsor for the étale topology for some finite group
GG. In this case G is the Galois group of the cover
X/S. These things are ubiquitous, since every fi-
nite étale morphism Y — S which Y connected
can be refined by a Galois cover.
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