
Pointed torsors and Galois groups

J.F. Jardine

Galois theory

Suppose that k is a field, and that i : k → Ω is a

fixed imbedding in an algebraically closed field. I

also write i : Sp(Ω)→ Sp(k) for the corresponding

geometric point.

I write Gal/k for the category of finite Galois ex-

tensions
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of k in Ω, with the obvious maps between them.

For the experts, this is the category of étale neigh-

bourhoods of the geometric point i : Sp(Ω) →
Sp(k) which happen to consist of finite Galois ex-

tensions. This category is filtered.

The absolute Galois group G(k) is the profinite

group L 7→ Gal(L/k) for L ∈ Gal/k.

The (finite) étale site et|k for k consists of all finite

products
n∏
i=1

Li,
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where each Li is a finite separable extension of

k. Equivalently the category consists of all finite

disjoint unions

Sp(L1) t · · · t Sp(Ln)

of k-schemes, where again Li/k is a finite separable

extension.

A presheaf on et|k is a contravariant functor

F : (et|k)op → Set

(contravariant on k-schemes or covariant on k-algebras).

We say that F is a sheaf if

1) F is additive in the sense that the map

F (ti Sp(Li))→
∏
i

F (Sp(Li)

is an isomorphism, and

2) if L′/L is a finite Galois extension with Galois

group G, then the canonical map

F (Sp(L))→ F (Sp(L′))G

is a bijection.

Example: Every k-scheme represents a sheaf on

et|k, so that every algebraic group H defined over

k represents a sheaf of groups H .
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GLn is the sheaf of groups defined by Sp(L) 7→
Gln(L).

For a sheaf or presheaf F on the étale site et|k, the

canonical stalk i∗F is the set defined by

i∗F = lim−→
L∈Gal/k

F (L).

This is the unique stalk for the finite étale site on

Sp(k).

If L/k is a finite separable extension of k, then

there is an imbedding of pro-groups G(L)→ G(k)

(restrict to all Galois extensions of k which contain

L).

The set i∗F is a discrete G(k)-module. The as-

signment

L 7→ (i∗F )G(L)

defines a sheaf F̃ on et|k. There is a canonical

map η : F → F̃ which is an isomorphism if F is

a sheaf; otherwise, it’s the associated sheaf map

and F̃ is the associated sheaf.

Shv(et|k) is the category of sheaves on et|k. We’ll

stick to sheaves most of the time in what follows.

Simplicial sheaves and cocycles

The base change functor (canonical stalk) i∗ is ex-

act and reflects exactness: a map f : F → F ′ is
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an isomorphism (resp. monic, epi) if and only if

the function i∗f : i∗F → i∗F ′ is an isomorphisms

(resp. monic, epi).

In particular, a simplicial sheaf map f : X → Y on

et|k is a local weak equivalence if and only if i∗f :

i∗X → i∗Y is a weak equivalence of simplicial sets,

so the injective model structure for the simplicial

sheaf category sShv(et|k) is relatively simple to

describe: cofibrations are just monomorphisms. I

will restrict attention to simplicial sheaves in what

follows.

Suppose that H is an algebraic group which is de-

fined over k, and let it represent a sheaf of groups

on et|k, with associated classifying object BH .

The cocycle category h(∗, BH) has objects con-

sisting of diagrams of simplicial sheaf morphisms

∗ '←− U → BG,

and morphisms given by diagrams

U'
yyrrr
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r
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'
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Theorem 1. There is an isomorphism

φ : π0B(h(∗, BH))
∼=−→ [∗, BH ]
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where [X, Y ] is morphisms X → Y in the ho-

motopy category of simplicial sheaves.

The function φ takes a cocycle ∗ f←−
'
U

g−→ BH to

the composite g · f−1 in the homotopy category.

The definition of cocycle and the Theorem are very

special cases: one could talk about cocycles

X
'←− U → Y

for arbitrary simplicial sheaves X and Y , and then

there is a bijection

π0Bh(X, Y ) ∼= [X, Y ].

Torsors

An H-torsor is a sheaf F together with a group

action H × F → F such that the Borel construc-

tionEH×HF is contractible in the simplicial sheaf

category.

A morphism f : F → F ′ of H-torsors is an H-

equivariant map. Any such morphism must be an

isomorphism, by the comparison of fibre sequences

F //

f
��

EH ×H F //

f∗
��

BH
1

��

F ′ //EH ×H F ′ //BH
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The map f must be a weak equivalence of simpli-

cial sheaves, and hence an isomorphism of sheaves.

H − tors will denote the groupoid of H-torsors.

Every H-torsor F has an associated canonical co-

cycle

∗ '←− EH ×H F → BH.

The canonical cocycle functor

EH×H? : H − tors→ h(∗, BH)

has a left adjoint, and therefore induces a homo-

topy equivalence

B(H − tors) ' B(h(∗, BH)).

The H-torsor associated to a cocycle

∗ '←− U
f−→ BH

is the homotopy fibre F (f ) of the map U
f−→ BH

over the global base point.

Computing in π0 gives the following:

Theorem 2. There is a natural isomorphism

H1
et(k,H) ∼= [∗, BH ].

This theorem (and proof technique) holds in much

greater generality: non-abelianH1 with coefficients
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in a sheaf of groupoids G is isomorphic to [∗, BG]

in any Grothendieck topos.

Example: Suppose given an action H×M →M

on a sheaf M , and suppose given a cocycle

∗ '←− U → EH ×H M.

Then computing homotopy fibres for the maps

U → EH ×H M → BH

gives anH-torsor P and aG-equivariant map P →
M . This construction is again left adjoint to the

canonical cocycle construction, and gives an iso-

morphism

π0[M/G]
∼=−→ π0Bh(∗, EH×HM) ∼= [∗, EH×HM ],

where [M/G] is the quotient stack. From a homo-

topy theoretic point of view, the Borel construction

EH ×H M is the quotient stack.

Pointed torsors

Let’s return to Galois theory.

Here are some new definitions (which are again

special cases):

1) A pointed cocycle is a cocycle

∗ g←−
'
U

f−→ BH,
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together with a choice of basepoint x : ∗ → i∗U for

the simplicial set i∗U , and a morphism of pointed

cocycles is a map of cocycles which preserves base

points on the stalk level. Write h(∗, BH)∗ for the

category of pointed cocycles.

2) A pointed torsor is an H-torsor F together

with a distinguished element (trivialization) x ∈
i∗F . A morphism of pointed torsors is a morphism

of torsors which respects base points on the stalk

level. Write H−tors∗ for the groupoid of pointed

torsors.

There are two lemmas:

Lemma 3. The simplicial set B(H − tors∗) is

the homotopy fibre over the trivial torsor i∗H

of the inverse image morphism

i∗ : B(H − tors)→ B(i∗H − tors) ' B(i∗H).

Remark 4. If G is a plain old group in the set

category, the notion of G-torsor still makes sense:

it’s a set X with G-action such that EG ×G X
is contractible. Every element x ∈ X induces a

trivialization ix : G
∼=−→ X , so that all G-torsors

are isomorphic. The group of automorphisms of

the trivial torsor G is a copy of G itself, so that
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there is a weak equivalence

B(G− tors) ' BG.

Lemma 5. The canonical cocycle adjunction

restricts to an adjoint pair of functors

F (?) : h(∗, BH)∗ � H − tors∗ : EH×H?

so that there is a homotopy equivalence

Bh(∗, BH)∗ ' B(H − tors∗).

The moral of this equivalence is that we can use

cocycle techniques to understand the groupoid of

pointed torsors, which is the homotopy fibre of i∗,

by Lemma 3.

A pointed Čech cocycle is a pointed cocycle

∗ '←− C(U)→ BH,

where C(U) is the Čech resolution associated to

some sheaf epimorphism U → ∗. There is a cate-

gory hCech(∗, BH) of such things and an obvious

inclusion functor

j : hCech(∗, BH)∗ ⊂ h(∗, BH)∗

Lemma 6. The inclusion functor j induces a

weak equivalence

B(hCech(∗, BH)∗) ⊂ B(h(∗, BH)∗).
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Proof. The fundamental groupoid functor

U 7→ π̃U

defines a left adjoint to the inclusion j. In effect,

the canonical map

Bπ̃(U)→ C(U0)

is an isomorphism, since C(U0) is the nerve of

the free groupoid on the sheaf of vertices U0, and

U ' ∗ (check this stalkwise, or with Boolean lo-

calization).

Among all coverings U → ∗ we have the epimor-

phisms Sp(L) → ∗ defined by the finite Galois

extensions L/k in Ω. There are pointed cocycles

∗ '←− C(L)
f−→ BH

with base points

eL ∈ i∗ Sp(L) = lim−→
N/k

hom(L,N)

where the colimit is indexed over finite Galois ex-

tensions N/k in Ω. The element eL corresponds

to the identity field homomorphism 1L on L. If

j : L → N is a morphism of Galois extensions

of k inside Ω, then j∗(eN) = eL. Thus there is a

subcategory hGal(∗, BH)∗ of hCech(∗, BH)∗ whose
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objects are the objects above, and which has mor-

phisms

C(N)'
wwpppppp

j∗

��

f ′
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∗ BH

C(L)
'
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determined by inclusions j of finite Galois exten-

sions of k in Ω.

Lemma 7. The induced map

B(hGal(∗, BH)∗)→ B(hCech(∗, BH)∗)

is a weak equivalence.

Proof. This is a “Quillen Theorem A”-type argu-

ment.

Let f be the Čech cocycle

∗ '←− C(U)
f−→ BH,

and let j be the functor

j : hGal(∗, BH)∗ → hCech(∗, BH)

Then one can show that the slice category j/f is

non-empty and filtered. The element

x ∈ i∗(U) = lim−→
L

hom(Sp(L), U)
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is represented by a map v : Sp(L) → U , and

v∗(eL) = x. The category j/f is therefore non-

empty; it is also a category of representatives for

x. Now show that the category of representatives

v : Sp(L)→ U of x is left filtered.

Corollary 8. There is an isomorphism

π0B(h(∗, BH)∗) ∼= lim−→
L/k

hom(C(L), BH).

Some remarks:

1) All automorphisms of a pointed torsor are triv-

ial, so that the map

B(H − tors∗)→ π0B(H − tors∗)

is a weak equivalence.

2) Recall that the Čech resolution C(L) is isomor-

phic to the Borel construction

EG(L/k)×G(L/k) Sp(L),

by Galois theory. This Borel construction is the

nerve of the translation groupoid EG(L/k) Sp(L).

The pro object defined by the functor

L 7→ EG(L/k) Sp(L)

is the absolute Galois groupoid of k. The Corol-

lary above says that π0B(h(∗, BH)∗) is the set of
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“representations” of the absolute Galois groupoid

in H .

3) If H is a constant group, then a morphism

EG(L/k)×G(L/k) Sp(L)→ BH

can be identified with a group homomorphism

G(L/K)→ H,

because BG(L/K) is the simplicial set of con-

nected components of the Borel construction. It

follows that π0B(h(∗, BH)∗) is the set of repre-

sentations of the absolute Galois group in H .

This is the first homotopy theoretic invariant for

simplicial sheaves or presheaves that I’ve seen that

is represented by the absolute Galois group.

4) The results displayed here actually hold for all

profinite groups, and in particular for the Grothen-

dieck fundamental group of a (nice: connected,

Noetherian) scheme S (via the finite étale site fet|S
for S). It follows that there is a well-defined Groth-

endieck fundamental groupoid consisting of the trans-

lation groupoids EGX associated to finite Galois

extensions X/S. This pro object represents all

pointed torsors et|SS, and the Grothendieck fun-

damental group represents pointed torsors for con-

stant groups H on et|S.
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Recall that a Galois cover X → S is a finite étale

morphism with X connected such that X is a G-

torsor for the étale topology for some finite group

G. In this case G is the Galois group of the cover

X/S. These things are ubiquitous, since every fi-

nite étale morphism Y → S which Y connected

can be refined by a Galois cover.
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