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k = algebraically closed field,

` prime: (`, char(k)) = 1

Here’s a list of polynomial rings:

k[t0, t1, . . . , tn]/(
∑

ti − 1) ∼= k[t1, . . . , tn], n ≥ 0.

Simplicial structure:

di(xi) = 0, sj(xj) = xj + xj+1

Simplicial k-algebra: k∗

Cosimplicial affine variety: A∗

An = Sp(k[t0, t1, . . . , tn]/(
∑

ti − 1)), n ≥ 0.

Question (Snaith): G =algebraic group. Can

BG(k∗) be used to calculate the cohomology

H∗(BG(k), Z/`) of the discrete group G(k)?

H∗(BG(k), Z/`) is “discrete cohomology” of al-

gebraic group G.
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Example: G = Gln(k) = (n × n) invertible

matrices with entries in k.

H∗(BGln(k), Z/`) =? (still unknown)

Obvious thing to try: inclusion of vertices k in

simplicial algebra k∗ induces map of simplicial

sets

BGln(k) → BGln(k∗)

Question: Is the induced map

H∗(BGln(k∗), Z/`) → H∗(BGln(k), Z/`)

an isomorphism?

Problem: don’t know enough about BG(k∗)
or G(k∗).
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Facts:

1) π0G(k∗) = 0 if and only if G(k) is generated

by unipotent elements

2) π1G(k∗) ∼= K2(k) for all but a finite list of

simple algebraic groups.

Ei,j(a) elementary transformation matrix in Sln(k):

there is an algebraic path A1 → Sln (1-simplex

in Sln(k∗)) defined by

t 7→ Ei,j(ta)

This is a path from Ei,j(a) to the identity I.
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Isomorphism conjectures

These relate discrete cohomology H∗(BG(k), Z/`)

to étale cohomology H∗
et(BG, Z/`) for the sim-

plicial scheme BG.

H = group: BHn = H×n or strings of com-

posable arrows of length n, with faces defined

by composition (product) and degeneracies de-

fined by insertion of identities.

G = algebraic group: BGn = G×n (affine vari-

ety) with faces and degeneracies defined anal-

ogously.

Any set X determines a k-variety Γ∗X =
⊔

X Sp(k),

and the set of k-points Y (k) of a k-scheme Y

determine a canonical map

ε : Γ∗Y (k) =
⊔

Y (k)

Sp(k) → Y.

5



There are canonical maps

ε : Γ∗BG(k) → BG.

There is an isomorphism

H∗
et(Γ

∗BG(k), Z/`) ∼= H∗(BG(k), Z/`)

ε : Γ∗BG(k) → BG induces a comparison map

ε∗ : H∗
et(BG, Z/`) → H∗(BG(k), Z/`)

Quillen (1974): H∗(BGl(k), Z/`) ∼= Z/`[c1, c2, . . . ]

Milnor (1983) “Isomorphism conjecture”: ε∗

is an isomorphism when k = C, G is reductive

group defined over C

Friedlander (1984) “Generalized isomorphism

conjecture” ε∗ is an isomorphism for all re-

ductive groups G defined over all algebraically

closed fields k.
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Why?

H∗
et(BG, Z/`) is computable by base change re-

sults (Friedlander-Parshall) and comparison with

cohomology of topological group G(C).

Examples:

H∗
et(BGln, Z/`) ∼= Z/`[c1, . . . , cn]

H∗
et(BGl, Z/`) ∼= Z/`[c1, . . . ]

H∗
et(BOn, Z/2) ∼= Z/2[HW1, . . . , HWn]

Outcomes:

1) Any inclusion k ⊂ L of alg. closed fields

would induce isomorphism

H∗(BG(k), Z/`) ∼= H∗(BG(L), Z/`).

2) K∗(k, Z/`) ∼= Z/`[β] (Suslin)
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Sheaf theory

Any k-variety X represents a sheaf X = hom( , X)

defined on the smooth étale site (Sm|k)et.

The simplicial scheme BG represents a simpli-

cial sheaf BG for any algebraic group G.

Simplicial sheaves (resp. simplicial presheaves)

have homotopy theory: X → Y is a (local)

weak equivalence iff all Xx → Yx is weak equiv.

of simplicial sets for all x ∈ U/k

Simplicial sheaves X have homology sheaves

H̃n(X, Z/`).

Fact: Hn
et(X, A) ∼= [X, K(A, n)].

1) f : X → Y local w.e. then H̃∗(X) ∼= H̃∗(Y ).

2) f H̃∗-iso then H∗
et(Y, Z/`) ∼= H∗

et(X, Z/`)
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Rigidity program

There is a canonical map ε : Γ∗BG(k) → BG;

Γ∗BG(k) is constant simplicial sheaf.

H∗
et(Γ

∗BG(k), Z/`) ∼= H∗(BG(k), Z/`)

Show that ε induces

H̃∗(Γ∗BG(k), Z/`) ∼= H̃∗(BG, Z/`)

ie. show that H̃∗ sheaves for BG are constant.

Stalkwise version: show that ε induces

H∗(BG(k), Z/`) ∼= H∗(BG(Osh
x ), Z/`), x ∈ U/k

Gabber rigidity theorem: x ∈ U/k closed

H∗(BGl(k), Z/`) ∼= H∗(BGl(Oh
x), Z/`)

Cor: H∗(BGl(k), Z/`) ∼= H∗
et(BGl, Z/`).

9



Question: Are the étale homology sheaves

H̃∗(BG, Z/`) constant for an arbitrary reductive

group G?

Examples: Gl, Sl, O = lim−→n
On, Sp.

Conjecture also known for any torus, any ad-

ditive group, any solvable group.

Non-example: (Friedlander-Mislin)

k = Fp where (p, `) = 1. Then

H∗
et(BG, Z/`) ∼= H∗(BG(k), Z/`)

Proof uses Lang isomorphism: G/G(Fq) ∼= G.

There has never been a rigidity argument for

this result.
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What’s been tried:

1) Stability results:

The map Hp(BGln(k), Z/`) → Hp(BGln+1(k), Z/`)

is an isomorphism for p ≤ n.

Hp(BGln(k), Z/`) ∼= Hp(BGl(k), Z/`) for p ≤ n.

H
p
et(BGln, Z/`) ∼= H

p
et(BGl, Z/`) for p ≤ 2n.

Hp(BGln(k), Z/`) ∼= H
p
et(BGln, Z/`) for p ≤ n.

There are corresponding stablity results for Sln,

On, Spn.
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2) Show that the presheaf of spectra

H(G, `) = H(Z/`) ∧BG+

is constant up to local stable equivalence for

the étale topology.

Suslin-Voevodsky rigidity theorem

F = presheaf of `-torsion abelian groups on

Sch|k which admits transfers for finite surjec-

tive morphisms and satisfies F(U×A1) ∼= F(U).

If x ∈ X is a closed point on a smooth k-scheme

X, then F(Oh
x)
∼= F(k).

Example: F = K∗( , Z/`)

Need to show that étale sheaves π∗H(G, `) ad-

mit transfers and H(G, `)(U) ' H(G, `)(U×A1)

for all smooth U/k.
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Transfers

An abelian presheaf F admits transfers if for

all finite surjective p : X → S with X reduced,

irreducible, S irreducible and normal there is

homomorphism

TrX/S : F(X) → F(S)

such that

1) If p is isomorphism then TrX/S · p∗ = 1

2) Given closed irreducible regular V ⊂ S, if Wi

are components of p−1(V ) with “multiplicities”

ni then the following commutes:

F(X)
TrX/S

//

��

F(S)

��⊕
F(Wi)∑

niTrWi/V

//F(V )
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Cycles:

S normal integral: zc
0(X)(S) = C0(X × S/S) is

free abelian group generated by closed integral

subschemes Z ⊂ X×S such that the composite

Z ⊂ X × S → S is finite and surjective.

If S′ → S is map of normal schemes and S′×S Z

is a union of irreducible subsets Zi with multi-

plicities mi then Z 7→
∑

miZi defines zc
0X(S) →

zc
0X(S′).

Zqfh(X) is the free abelian sheaf on X for the

qfh topology: coverings are quasi-finite maps

which are universally surjective, eg. finite sur-

jective morphisms.

Any abelian sheaf for qfh topology has trans-

fers.
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There are morphisms zc
0(X)(S) → Zqfh(X)(S):

Z maps to image of p : X × S → X under

composite

Zqfh(X)(X×S) → Zqfh(X)(Z)
TrZ/S−−−−→ Zqfh(X)(S)

This defines a qfh sheaf isomorphism zc
0(X) ∼=

Zqfh(X) (up to inverting char(k)) with inverse

defined by graphs.
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X smooth k-variety:

Zqfh(X)⊗ Z/` is a presheaf with transfers.

S∗Zqfh(X)⊗Z/` is a simplicial abelian presheaf

with transfers

SnZqfh(X)⊗ Z/`(U) = Zqfh(X)⊗ Z/`(U × An)

HnS∗Zqfh(X)⊗Z/` is a presheaf with transfers

that satisfies the homotopy property, so is con-

stant for the étale topology.

Γ∗(Zqfh(X)(A∗) ⊗ Z/`) → S∗Zqfh(X) ⊗ Z/` is a

qfh homology sheaf isomorphism.

H∗
qfh(X, Z/`) ∼= H∗

et(X, Z/`)

Zqfh(X) → S∗Zqfh(X) induces isomorphism in

H∗
qfh( , Z/`)
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Consequences:

Hp hom(Zqfh(X)(A∗), Z/`) ∼= H
p
et(X, Z/`).

Hp hom(Zqfh(BG)(A∗), Z/`) ∼= H
p
et(BG, Z/`).

and

H
p
et(BG, Z/`) ∼= H

p
qfh(BG, Z/`).
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2 formulations:

1) Show that Z(BG)(k) → Zqfh(BG)(A∗) in-

duces ordinary H∗( , Z/`) isomorphism.

In fact, Zqfh(BG)(k) ∼= Z(BG)(k) since P (k) ∼=
P̃ (k), so there is a spectral sequence (Knudson-

Walker, 2004)

E
p,q
2 ⇒ H

p+q
et (BG, Z/`)

with

E
p,0
1 = Hp(BG(k), Z/`).

NB: Z(BG)(A∗) = ZBG(k∗), in original nota-

tion.
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2) Show that ε : Γ∗BG(k) → BG induces an

isomorphism in mod ` qfh homology sheaves.

Enough to show that the qfh homology sheaves

H̃∗(BG, Z/`) have the homotopy property —

they already admit transfers.

Downside: qfh topology is weird.
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What’s been tried (cont.)

3) Ultraproducts:

It’s enough to show that for every alg. closed
field k there is an alg. closed field L such that
k ⊂ L and such that the comparison map

H∗
et(BG, Z/`) → H∗(BG(L), Z/`)

is an isomorphism (finite dimension argument).

In any characteristic 6= `, can find fields L of
arbitrarily large cardinality with L = ultraprod-
uct of fields Fp involving “all” primes p.

We know that H∗
et(BG, Z/`) ∼= H∗(BG(Fp), Z/`)

for “all” p, by Friedlander-Mislin.

Ultraproduct construction applies to simplicial
sets: ultraproducts are stalks of certain direct
image sheaves on Sp(

∏
infinite fields)

Show that ultraproduct construction commutes
with homology functor in good cases.
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