
Stack cohomology J.F. Jardine

Grothendieck sites

A Grothendieck site is a small category C equipped

with a Grothendieck topology. The topology

can be viewed as a collection of covering families

Vi → U (sets of morphisms) satisfying a short list

of axioms:

1) covering families are closed under “pullback”

2) if all pullbacks of a family of maps S along a

covering family R are covering, then S is covering.

3) 1U : U → U is covering.

It follows that every isomorphism is covering. If

R ⊂ S and R is covering, then S is covering.

Examples:

1) the category opT of open subsets of a topological

space T , with inclusions.

2) S = a scheme and Sch |S is the category of S-

schemes U → S which are locally of finite type.

a) The flat topology on Sch |S is generated by

families φi : Vi → U of flat morphisms (of S-

schemes) such that ∪iφi(Vi) = U (ie. the family is

faithfully flat). The site is denoted by (Sch |S)fl
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b) The étale topology on Sch |S is generated

by families φi : Vi → U of étale morphisms such

that ∪φi(Vi) = U . Every étale morphism is flat, so

every étale covering family is a flat covering family.

The site is the (big) étale site (Sch |S)et.

c) The Zariski topology on Sch |S is generated

by open coverings Vi ⊂ U in the usual sense. The

site is the big Zariski site (Sch |S)Zar.

I could go on and on: there are many flavours

of geometric topologies on Sch |S. The Nisnevich

topology is a particular favourite.

3) Every small category I has a trivial topology,

which is effectively no topology at all. The covering

families are precisely the isomorphisms. This is

sometimes called the chaotic topology on I .

A presheaf F on a site C is a (contravariant)

functor F : Cop → Set.

F is just a presheaf of sets. One talks about pre-

sheaves taking values in anything by tacking on

appropriate adjectival cluster, eg. a presheaf of

groups is a contravariant functor taking values in

groups, a presheaf of groupoids H is a contravari-

ant functor taking valuses in groupoids, a sim-

plicial presheaf takes values in simplicial sets, a
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presheaf of (symmetric) spectra takes values in

(symmetric) spectra.

A presheaf F is said to be a sheaf if every covering

family Vi → U determines an isomorphism

F (U) ∼= lim←−
i

F (Vi).

There are sheaves of groups, sheaves of groupoids,

simplicial sheaves, and so on. There is also an asso-

ciated sheaf functor F 7→ F̃ which is left adjoint to

the inclusion of sheaves in presheaves — this func-

tor is defined by putting in all the required limits

twice. The associated sheaf functor also preserves

finite limits.

Examples

0) Write U = hom( , U) for the presheaf repre-

sented by an object U ∈ C.
1) If F is a presheaf on the site opT of open subsets

of a topological space T (or on the Zariski site of

a scheme S), then F is a sheaf if and only if the

diagram

F (U)→ ∏
i
F (Vi) ⇒

∏
i,j

F (Vi ∩ Vj)

is a coequalizer, for every open covering Vi ⊂ U .
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2) Presheaves and sheaves coincide for the chaotic

topology.

3) The chaotic topology is the only topology on

the one object, one morphism category ∗. The

sheaf category for this site is the category Set of

sets.

4) Suppose that K is a field and consider the cate-

gory fet|K of finite étale maps X → Sp(K). Then

X =
⊔n

i=1 Sp(Li) where Li/K is a finite separable

extension field. The category fet|K has an étale

topology and a Nisnevich topology. Sheaves for

the étale topology on fet|K can be identified with

discrete modules over the absolute Galois group of

K, and this is the home of all Galois cohomology

theory. A presheaf F on fet|K is a sheaf for the

Nisnevich topology if and only if all canonical maps

F (
⊔
i

Sp(Li))→
∏
i
F (Li)

are isomorphisms (“additivity”). This is why Nis-

nevich called his topology the “completely decom-

posed topology”.

Suppose now that C is your favourite site. A pre-

sheaf of categories A on C is a functor A :

Cop → cat taking values in small categories. In
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other words A assigns to each U ∈ C a small cat-

egory A(U) and to each morphism φ : V → U a

functor φ∗ : A(U)→ A(V ) such that identities go

to identity functors and composition go to compo-

sition of functors. This is a “strict” object — it’s

rigidly functorial.

The topology on C determines a Grothendieck topol-

ogy on the Grothendieck construction C/A. This

is called the site fibred over the presheaf of

categories A.

The objects of C/A are pairs (U, x) where x is an

object of A(U). Objects can be identified with

presheaf morphisms x : U → Ob(A), hence the

notation C/A.

The morphisms (V, y) → (U, x) of C/A are pairs

(α, f ) consisting of a morphism α : V → U of C
and a morphism f : y → α∗(x) of A(V ). The

composition of the morphisms

(W, z)
(γ,g)−−→ (V, y)

(α,f)−−→ (U, x)

is the pair (αγ, γ∗(f )g), where γ∗(f )g is the com-

posite

z
g−→ γ∗(y)

γ∗(f)−−−→ γ∗α∗(x) = (αγ)∗(x).

Every morphism α : V → U and x : U → Ob(C)
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together determine a morphism (α, 1) : (V, α∗(x))→
(U, x) in C/U . The covering families of the topol-

ogy for C/U are generated by the families of maps

(αi, 1) : (Vi, α
∗
i (x))→ (U, x)

associated to covering families αi : Vi → U in C.
Examples

1) A stack on C is “traditionally” a sheaf of groupoids

G on C which satisfies an effective descent condi-

tion. The site C/G fibred over G is the Grothendieck

site which is used to define stack cohomology: if F

is an abelian sheaf on C/G then the cohomology

Hn(G, F ) of G with coefficients in F is the sheaf

cohomology group Hn(C/G, F ).

2) Suppose that Y : I → Pre(C) is a diagram

taking values in presheaves on C (to fix ideas, you

can suppose that Y is represented by a simplicial

scheme). In particular, Y consists of set-valued

functors

Y (U) : I → Pre(C) U -sections−−−−−→ Set

which fit together in the obvious way. Each Y (U)

has a translation category (homotopy colimit) EIY (U)

and assembling them gives a presheaf of categories

EIY .
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The objects of C/EIY are the presheaf morphisms

x : U → Yi and the morphisms are the commuta-

tive diagrams

V
α //

y
��

U
x

��

Yj θ∗
// Yi

The covering families of C/EIY are generated by

families

Vi
//

��

U
x

��

Yi 1
// Yi

induced by covering familes Vi → U of C. This

is a slight generalization of the usual description

of a site fibred over a diagram of sheaves (eg. site

fibred over a simplicial scheme) — it’s a ubiquitous

construction.

3) Even the special case of a site C/X fibred over

a presheaf (I = ∗, X : ∗ → Pre(C)) has content.

If V = hom( , V ) is the presheaf represented by

V ∈ C, then C/V is the usual site of objects over

V . C/Y for a sheaf Y is a standard construction

in topos theory.
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There is a model structure on sheaves of group-

oids (Joyal-Tierney), for which a morphism G →
H is a weak equivalence (resp. fibration) if and

only if the induced map BG→ BH is a local (or

stalkwise) weak equivalence (respectively a global

fibration). A sheaf of groupoids G is a stack if

and only if it is sectionwise equivalent to its fi-

brant model. Thus stacks can be identified with

homotopy types, even of presheaves of groupoids

(Hollander).

The overall point of this talk is that sheaf (and

generalized sheaf) cohomology of a site fibred over

a presheaf of groupoids G is an invariant of the

homotopy type of G. In particular, all cohomology

theories arising from a stack H can be computed

on the site C/G fibred over a presheaf of groupoids

G which is locally weakly equivalent to H .

Example: generalized cohomology theories for the

stack of formal group laws (for the flat topology)

can be computed on the site arising from an ex-

plicit representing object.
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How do you see this?

A) Suppose that B is a presheaf of categories. A

B-diagram in simplicial presheaves consists of a

simplicial presheaf map πX : X → Ob(B) to-

gether with an action (“multiplication”)

X ×s Mor(B) m //

��

X
πX

��

Mor(B)
t

// Ob(B)

by the morphisms Mor(B) of B which respects

composition and identities in the obvious way. A

morphism of B-diagrams is a morphism

X
f //

πX ��@
@@

@@
@@

Y

πY����
��

��
�

Ob(B)

of simplicial presheaves fibred over Ob(B) which

respects multiplication by morphisms. Write s Pre(C)B
for the corresponding category.

Every simplicial presheaf Y : (x, U) 7→ Y (x, U)

on the fibred site C/A determines an Aop-diagram
⊔

x∈Ob(A)(U)
Y (x, U)→ Ob(A)(U).

This assignment determines an equivalence of cat-
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egories

s Pre(C/A) ' s Pre(C)Aop
.

The various model structures for simplicial presheaves

on C/A therefore induce model structures for Aop-

diagrams in simplicial presheaves.

B) Write

O(Y )(U) =
⊔

x∈Ob(A)(U)
Y (x, U).

Then one can show that the functor Y 7→ O(Y )

preserves and reflects cofibrations and local weak

equivalences. It follows that, for the model struc-

ture on Aop-diagrams induced from the standard

(injective) local model structure on s Pre(C/A), a

map

X
f //

πX ��?
??

??
??

Y

πY����
��

��
�

Ob(A)

of Aop-diagrams is a weak equivalence (respectively

cofibration) if and only if the simplicial presheaf

map f : X → Y is a local weak equivalence (re-

spectively monomorphism). This is the “injective”

model structure for Aop-diagrams.

There is a “projective” model structure for Aop-

diagrams for which a map f as above is a fibration
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if and only if the simplicial presheaf map f : X →
Y is a global fibration. The projective model struc-

ture has the same weak equivalences as the injec-

tive structure.

To see this, you need to know the following:

Lemma: Suppose that T is a presheaf, and that

Z → T is a map of simplicial presheaves. Then

the functor sending X → T to Z ×T X preserves

weak equivalences of s Pre(C)/T .

Remark: There are projective and injective model

structures for I-diagrams of simplicial sets which

you are used to. In particular p : X → Y is a

projective fibration of I-diagrams if and only if all

maps Xi → Yi are Kan fibrations. This is equiva-

lent to the assertion that the induced map
⊔

i∈Ob(I)
Xi →

⊔
i∈Ob(I)

Yi

is a fibration of S/ Ob(I). The injective model

structure for I-diagrams has cofibrations defined

pointwise, and a map A → B is an injective cofi-

bration if and only if the map
⊔

i∈Ob(I)
Ai →

⊔
i∈Ob(I)

Bi

is a cofibration of S/ Ob(I). The model structures
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that we are using in the enriched context here are

direct analogues of these.

C) Aop-diagrams Y → Ob(A) have homotopy col-

imits

holim−−−→ AopY → BAop,

(this is the usual construction sectionwise) and

the homotopy colimit construction preserves weak

equivalences. [You need the Lemma above for the

last statement, and in many other places.]

D) Now we know a thing or two about ordinary

groupoids G:

1) Suppose X → BG is a map of simplicial sets,

and form the G-diagram a 7→ pb(X)a via the pull-

back diagrams

pb(X)a //

��

X

��
B(G/a) // BG

Then the canonical map

holim−−−→ a pb(X)a → X

is a weak equivalence, and there is a natural weak

equivalence

pb holim−−−→ aYa → Y
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for all G-diagrams Y .

2) The pullback diagram
⊔

a∈Ob(G) Ya //

��

holim−−−→ GY

��
Ob(G) // BG

is homotopy cartesian for all G-diagrams Y (Quillen’s

Theorem B).

It follows that the homotopy colimit functor and

the pullback functor (which is left adjoint to homo-

topy colimit) together determine an equivalence of

categories

Ho(SG) ' Ho(S/BG).

One can use these results to show

Lemma: There is an equivalence of categories

Ho(s Pre(C)H) ' Ho(s Pre(C)/BH)

for any presheaf of groupoids H on a Grothendieck

site C.
Remark: The functors pb and holim−−−→ do not form

a Quillen equivalence. The homotopy colimit func-

tor has a right adjoint which does determine a

Quillen equivalence for the projective structure on

s Pre(C)H .
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E) There is a natural equivalence BHop ' BH

for any presheaf of groupoids (really categories)

H , through the bisimplicial object with bismplices

xm → · · · → x0 → y0 → · · · → yn.

F) There are corresponding equivalences

Ho(s Pre(C)/BH) ' Ho(s Pre(C)/BHop).

Explicitly, if f : X → Y is a local weak equiv-

alence of simplicial presheaves, then the pullback

functor (along f )

f∗ : s Pre(C)/Y → s Pre(C)/X

and its left adjoint form a Quillen equivalence for

the respective “standard” model structures.

Say that a map G→ H is a weak equivalence

of presheaves of groupoids if it induces a local weak

equivalence BG→ BH of simplicial presheaves.
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Theorem: Every weak equivalence f : G → H

of presheaves of groupoids induces a Quillen equiv-

alence between the projective model structures on

the categories of simplicial presheaves s Pre(C/G)

and s Pre(C/H), and hence induces an equivalence

of homotopy categories

Ho(s Pre(C/G)) ' Ho(s Pre(C/H)).

The functors involved in the Quillen equivalence

are restriction along f : G → H and its left Kan

extension.

The Theorem is a homotopy invariance property.

Since it exists on the simplicial presheaf level, you

expect similar statements for all related theories,

such as pointed simplicial presheaves, presheaves

of spectra and presheaves of symmetric spectra. I

have proved corresponding results in all of these

contexts, and I expect many more.
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