Stack cohomology J.F. Jardine
Grothendieck sites

A Grothendieck site is a small category C equipped
with a Grothendieck topology. The topology
can be viewed as a collection of covering families

Vi — U (sets of morphisms) satisfying a short list

of axioms:

1) covering families are closed under “pullback”

2) if all pullbacks of a family of maps S along a
covering family R are covering, then .S is covering.
3) 1y : U — U is covering.

[t follows that every isomorphism is covering. If
R C S and R is covering, then S is covering.

Examples:

1) the category opy of open subsets of a topological
space 1", with inclusions.

2) S = a scheme and Sch |g is the category of S-
schemes U — S which are locally of finite type.
a) The flat topology on Sch |g is generated by
families ¢; : V; — U of flat morphisms (of S-
schemes) such that U;¢;(V;) = U (ie. the family is
faithfully flat). The site is denoted by (Sch|s)



b) The étale topology on Sch|s is generated
by families ¢; : V; — U of étale morphisms such
that Ug;(V;) = U. Every étale morphism is flat, so
every étale covering family is a flat covering family.
The site is the (big) étale site (Sch |g)es.

c) The Zariski topology on Sch |g is generated
by open coverings V; C U in the usual sense. The
site is the big Zariski site (Sch |s)zar-

I could go on and on: there are many flavours
of geometric topologies on Sch |g. The Nisnevich
topology is a particular favourite.

3) Every small category I has a trivial topology,
which is effectively no topology at all. The covering
families are precisely the isomorphisms. This is
sometimes called the chaotic topology on I.

A presheaf F' on a site C is a (contravariant)
functor F': C? — Set.

F' is just a presheaf of sets. One talks about pre-
sheaves taking values in anything by tacking on
appropriate adjectival cluster, eg. a presheaf of
groups is a contravariant functor taking values in
groups, a presheaf of groupoids H is a contravari-
ant functor taking valuses in groupoids, a sim-
plicial presheaf takes values in simplicial sets, a
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presheaf of (symmetric) spectra takes values in
(symmetric) spectra.

A presheaf F'is said to be a sheaf if every covering
family V; — U determines an isomorphism

F(U) = lm F(V).

There are sheaves of groups, sheaves of groupoids,
simplicial sheaves, and so on. There is also an asso-
ciated sheaf functor F — F which is left adjoint to
the inclusion of sheaves in presheaves — this func-
tor is defined by putting in all the required limits
twice. The associated sheaf functor also preserves
finite limits.

Examples

0) Write U = hom( ,U) for the presheaf repre-
sented by an object U € C.

1) If F'is a presheaf on the site op of open subsets
of a topological space T (or on the Zariski site of
a scheme §), then F' is a sheaf if and only if the
diagram
FU) = 1IFV) =ILF(V;NVj)
i 1,]

is a coequalizer, for every open covering V; C U.



2) Presheaves and sheaves coincide for the chaotic
topology.

3) The chaotic topology is the only topology on
the one object, one morphism category *. The
sheat category for this site is the category Set of
sets.

4) Suppose that K is a field and consider the cate-
gory fet|x of finite étale maps X — Sp(K). Then
X = U, Sp(L;) where L;/K is a finite separable
extension field. The category fet|x has an étale
topology and a Nisnevich topology. Sheaves for
the étale topology on fet|x can be identified with
discrete modules over the absolute Galois group of
K, and this is the home of all Galois cohomology
theory. A presheaf F' on fet|x is a sheaf for the
Nisnevich topology if and only if all canonical maps

F(%l Sp(Li)) — I}F(Li)

are isomorphisms (“additivity”). This is why Nis-
nevich called his topology the “completely decom-
posed topology”.

Suppose now that C is your favourite site. A pre-
sheaf of categories A on C is a functor A :
C? — cat taking values in small categories. In



other words A assigns to each U € C a small cat-
egory A(U) and to each morphism ¢ : V' — U a
functor ¢* : A(U) — A(V) such that identities go
to identity functors and composition go to compo-
sition of functors. This is a “strict” object — it’s
rigidly functorial.

The topology on C determines a Grothendieck topol-
ogy on the Grothendieck construction C/A. This
is called the site fibred over the presheaf of
categories A.

The objects of C/A are pairs (U, x) where z is an
object of A(U). Objects can be identified with
presheaf morphisms x : U — Ob(A), hence the
notation C/A.

The morphisms (V,y) — (U, x) of C/A are pairs
(a, f) consisting of a morphism o : V' — U of C
and a morphism f : y — a*(z) of A(V). The
composition of the morphisms

(W,2) 22 (V,y) L (U,2)

is the pair (avy,v*(f)g), where v*(f)g is the com-
posite

2 2y (y) T yar(z) = (an) ().

Every morphism o : V' — U and z : U — Ob(C)

5



together determine a morphism («, 1) : (V, a*(x)) —
(U, z) in C/U. The covering families of the topol-
ogy for C/U are generated by the families of maps

(i, 1) : (Vi o5 () — (U, z)
associated to covering families o; : V; — U in C.

Examples

1) AstackonCis “traditionally” a sheaf of groupoids
GG on C which satisfies an effective descent condi-
tion. Thesite C/G fibred over G is the Grothendieck
site which is used to define stack cohomology: if F’

is an abelian sheaf on C/G then the cohomology
H"(G, F) of G with coefficients in F is the sheaf
cohomology group H"(C/G, F).

2) Suppose that Y : I — Pre(C) is a diagram
taking values in presheaves on C (to fix ideas, you
can suppose that Y is represented by a simplicial
scheme). In particular, Y consists of set-valued
functors

Y(U) : I — Pre(C) =10, Qe

which fit together in the obvious way. Each Y (U)
has a translation category (homotopy colimit) E;Y (U)

and assembling them gives a presheaf of categories
ErY.



The objects of C/EY are the presheaf morphisms
x : U — Y, and the morphisms are the commuta-
tive diagrams

V-
R
Yj—~Y

The covering families of C/E[Y are generated by
families

Vi—U

L

Yi—+Y
induced by covering familes V; — U of C. This
is a slight generalization of the usual description
of a site fibred over a diagram of sheaves (eg. site
fibred over a simplicial scheme) — it’s a ubiquitous
construction.

3) Even the special case of a site C/X fibred over
a presheaf (I = %, X : x — Pre(C)) has content.
If V= hom( ,V) is the presheaf represented by
V € C, then C/V is the usual site of objects over
V. C/Y for a sheaf Y is a standard construction
in topos theory.



There is a model structure on sheaves of group-
oids (Joyal-Tierney), for which a morphism G' —
H is a weak equivalence (resp. fibration) if and
only if the induced map BG — BH is a local (or
stalkwise) weak equivalence (respectively a global
fibration). A sheaf of groupoids G is a stack if
and only if it is sectionwise equivalent to its fi-
brant model. Thus stacks can be identified with
homotopy types, even of presheaves of groupoids

(Hollander).

The overall point of this talk is that sheaf (and
generalized sheaf) cohomology of a site fibred over
a presheaf of groupoids G is an invariant of the
homotopy type of G. In particular, all cohomology
theories arising from a stack H can be computed
on the site C/G fibred over a presheaf of groupoids
GG which is locally weakly equivalent to H.

Example: generalized cohomology theories for the
stack of formal group laws (for the flat topology)
can be computed on the site arising from an ex-
plicit representing object.



How do you see this?

A) Suppose that B is a presheaf of categories. A
B-diagram in simplicial presheaves consists of a
simplicial presheaf map 7x : X — Ob(B) to-
gether with an action (“multiplication”)

X xsMor(B)—"—=X

| in

Mor(B) Ob(B)

t

by the morphisms Mor(B) of B which respects
composition and identities in the obvious way. A
morphism of B-diagrams is a morphism

x—1 -y
N
(B)

X
Ob

of simplicial presheaves fibred over Ob(B) which
respects multiplication by morphisms. Write s Pre(C)%
for the corresponding category:.

Every simplicial presheaf Y : (z,U) — Y (z,U)
on the fibred site C/A determines an A%-diagram

U Y(z,U) — Ob(A)D).
2€Ob(A)(U)

This assignment determines an equivalence of cat-
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egories
sPre(C/A) ~ s Pre(C)"”.
The various model structures for simplicial presheaves

on C/A therefore induce model structures for A%-
diagrams in simplicial presheaves.

B) Write

OY)U) = Ll Y(z,0).
2€Ob(A)(U)
Then one can show that the functor Y — O(Y)
preserves and reflects cofibrations and local weak
equivalences. It follows that, for the model struc-
ture on A%-diagrams induced from the standard
(injective) local model structure on s Pre(C/A), a
map
xX—1—y

W\ S

Ob(A)
of A°P-diagrams is a weak equivalence (respectively
cofibration) if and only if the simplicial presheaf
map f : X — Y is a local weak equivalence (re-
spectively monomorphism). This is the “injective”
model structure for A°P-diagrams.

There is a “projective” model structure for A%-
diagrams for which a map f as above is a fibration
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if and only if the simplicial presheaf map f : X —
Y is a global fibration. The projective model struc-
ture has the same weak equivalences as the injec-
tive structure.

To see this, you need to know the following:

Lemma: Suppose that T'is a presheaf, and that
Z — T is a map of simplicial presheaves. Then
the functor sending X — T to Z X7 X preserves
weak equivalences of s Pre(C)/T.

Remark: There are projective and injective model
structures for I-diagrams of simplicial sets which
you are used to. In particular p : X — Y is a
projective fibration of I-diagrams if and only if all
maps X; — Y; are Kan fibrations. This is equiva-
lent to the assertion that the induced map
I Xi— U Y
icOb(I) i€Ob(I)

is a fibration of S/Ob(I). The injective model
structure for I-diagrams has cofibrations defined
pointwise, and a map A — B is an injective cofi-
bration if and only if the map

1 Ai— U B
i€Ob([I) i€Ob(I)

is a cofibration of S/ Ob(I). The model structures
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that we are using in the enriched context here are
direct analogues of these.

C) A%-diagrams Y — Ob(A) have homotopy col-
1mits
holim AopY — BAOp,

(this is the usual construction sectionwise) and
the homotopy colimit construction preserves weak
equivalences. [You need the Lemma above for the
last statement, and in many other places.|

D) Now we know a thing or two about ordinary
groupoids G-

1) Suppose X — BG is a map of simplicial sets,
and form the G-diagram a — pb(X), via the pull-
back diagrams

pb(X>a —X

|

B(G/a)— BG
Then the canonical map
holim , pb(X), — X

is a weak equivalence, and there is a natural weak
equivalence

pbholim .Y, — Y
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for all G-diagrams Y.
2) The pullback diagram

Uacob(q) Yo —holim ¢Y

|

Ob(G) BdG

is homotopy cartesian for all G-diagrams Y (Quillen’s
Theorem B).

It follows that the homotopy colimit functor and
the pullback functor (which is left adjoint to homo-
topy colimit) together determine an equivalence of

categories
Ho(S%) ~ Ho(S/BG).
One can use these results to show

Lemma: There is an equivalence of categories
Ho(s Pre(C)") ~ Ho(s Pre(C)/BH)

for any presheaf of groupoids H on a Grothendieck
site C.

Remark: The functors pb and holim do not form
a Quillen equivalence. The homotopy colimit func-
tor has a right adjoint which does determine a
Quillen equivalence for the projective structure on

s Pre(C)".
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E) There is a natural equivalence BH?” ~ BH
for any presheaf of groupoids (really categories)
H . through the bisimplicial object with bismplices

Ly — =2 —= Lo — Yo — " = Yn.
F) There are corresponding equivalences
Ho(s Pre(C)/BH) ~ Ho(s Pre(C)/ BH).

Explicitly, if f : X — Y is a local weak equiv-
alence of simplicial presheaves, then the pullback
functor (along f)

fe:sPre(C)/Y — sPre(C)/X
and its left adjoint form a Quillen equivalence for
the respective “standard” model structures.

Say that a map G — H is a weak equivalence
of presheaves of groupoids if it induces a local weak
equivalence BG — BH of simplicial presheaves.
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Theorem: Every weak equivalence f : G — H
of presheaves of groupoids induces a Quillen equiv-
alence between the projective model structures on
the categories of simplicial presheaves s Pre(C/G)
and s Pre(C/H), and hence induces an equivalence
of homotopy categories

Ho(s Pre(C/G)) ~ Ho(s Pre(C/H)).

The functors involved in the Quillen equivalence
are restriction along f : G — H and its left Kan
extension.

The Theorem is a homotopy invariance property:.
Since it exists on the simplicial presheaf level, you
expect similar statements for all related theories,
such as pointed simplicial presheaves, presheaves
of spectra and presheaves of symmetric spectra. I
have proved corresponding results in all of these
contexts, and I expect many more.
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