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The Borel construction

First appeared during seminar at IAS 1958-59: [1], 1960.

G ×M → M: Lie group G , manifold M. EG = contractible space
with free G -action, then

EG ×G M := (EG ×M)/G (diagonal action)

defines the Borel construction for the G -space M (= MG in [1]).

The G -equiv. maps M → ∗, EG → ∗ a standard natural picture

M // EG ×G M
π //

p��

BG = EG/G

M/G

Horizontal row is fibre sequence. p may not be a homotopy equiv.
EG ×G M is the space of homotopy coinvariants.
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Translation groupoid

Suppose H × F → F is action of a discrete group H on a set F .

Swan (1982): the translation groupoid EHF has objects x ∈ F
and morphisms g : x → g · x . All morphisms are invertible.

Each category C has a nerve BC . BC is a simplicial set with
n-simplices BCn consisting of strings of morphisms

a0
f1−→ a1

f2−→ · · · → an−1
fn−→ an

Simplicial structure def. by composition and insertion of identities.

Example: B(EHF )n = H×n × F consists of strings

x0
g1−→ g1 · x0

g2−→ . . .
gn−→ (gn · · · g1) · x0.
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Homotopy properties

FACT: Every natural trans. of functors f , g : C → D induces a
homotopy BC ×∆1 → BD.

The groupoid EHH corr. to H × H → H has initial object e, with

e
h−→ h, so B(EHH) =: EH is contractible.

There is an isomorphism

B(EHF ) ∼= EH ×H F = (EH × F )/F (diagonal action)

There is a natural picture

F // EH ×H F
π //

p��

BH

F/H

in simplicial sets. Horiz. row is fibre sequence, and p may not be a
weak equivalence.
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More properties

1) EHF = tFi∈F/H EHFi , and

2) EHFi ' Hx as groupoids, x ∈ Fi (homework)

so
EH ×H F ' t[x]∈F/H BHx .

Moral: The map

p : EH ×H F ' t[x]∈F/H BHx → t[x]∈F/H ∗ = F/H

is a weak equivalence if and only if H acts freely on F .

The construction EG ×G X generalizes to simplicial groups G
acting on simplicial sets X — captures the topological const.

Fact: X → Y G -equivariant weak equiv. Then
EG ×G X → EG ×G Y is a weak equivalence (formal nonsense).

Remark: X/G → Y /G may not be a weak equivalence. Example:
EG → ∗.
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Group homology, equivariant homology

EG is contractible and G acts freely on EG .

Apply the free abelian group functor F 7→ Z(F ) ...

Z(EG ) is a simplicial abelian group with associated chain complex
Z(EG ), having boundaries

Z(EG )n

∑n
i=0 (−1)idi−−−−−−−−→ Z(EG )n−1.

Then Z(EG )→ Z[0] is a homology isomorphism, so Z(EG ) is a
G -free resolution of the trivial G -module Z.

Then
Hn(G ,M) = Torn(Z,M) = Hn(Z(EG )⊗G M).

EG ×G X is the non-abelian version of Z(EG )⊗G M.
(Cartan-Eilenberg, 1956; also Eilenberg-Mac Lane, 1946?).

H∗(EG ×G X ,A) is one of the flavours of equivariant homology
theory for a G -space X .
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Principal bundles

The best (and first) examples of stacks are categories of principal
G -bundles, in topology and geometry.

G sheaf of groups: a G -bundle (G -torsor) is a sheaf F with action
G × F → F , which is free (principal) and locally transitive.

G − tors is the category of G -bundles and G -equiv maps, actually
a groupoid — see below.

Basic definition: G = sheaf of groups

π0(G − tors) = {Iso classes of G -torsors} =: H1(E ,G )

defines non-abelian H1 with coeffs in G , where E is the
underlying category of sheaves.
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Repackaging the definition

The simplicial sheaf EG ×G F is defined in sections by

(EG ×G F )(U) = EG (U)×G(U) F (U).

(G (U)-action on set F (U), eg. U open subset of top. space)

locally transitive: π0(EG ×G F ) = G/F has trivial associated
sheaf.

free: all stabilizer subgroups G (U)x for G (U)× F (U)→ F (U) are
trivial.

G (U)x = π1(EG (U)×G(U) F (U), x) is trivial for all x ∈ F (U)
so EG ×G F → F/G is (sectionwise) weak equivalence

Put these together: F is a G -bundle (G -torsor) iff EG ×G F → ∗
is a stalkwise (local) weak equivalence.

∗ = one-pt (terminal) sheaf.
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Examples

1) L/k finite Galois extension with Galois group G .

EG ×G Sp(L)→ ∗ is a local weak equiv for the étale topology
(looks like EG locally), so Sp(L) is a G -bundle (G -torsor) for the
étale topology on Sp(K ).

2) P = projective module on a ring R of rank n:

P is locally free of rank n (Zariski topology), or a vector bundle of
rank n over Sp(R).

Iso(Pn) is the groupoid of isomorphisms of vector bundles of rank
n over R.

Gln(R) is the group of automorphisms of Rn. There is an
isomorphism

π0(Gln − tors)
∼=−→ π0(Iso(Pn)).
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More examples

3) Suppose A is an n × n invertible symmetric matrix (non-deg
sym bil form of rank n) over a field K (char(K ) 6= 2).

For the étale topology, A is locally trivial: there is an invertible
n × n matrix defined on L/K (finite Galois extension) such that
BtAB = In.

These things ”are” the On-torsors for the etale topology on K .
There is an isomorphism

H1
et(K ,On) ∼= {iso. classes of non-deg symm. bil. forms/K of rank n}.

On is the standard orthogonal group, the group of automorphisms
of the trivial form of rank n.
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Maps of torsors

Fact: Every morphism F → F ′ of G -torsors is an isomorphism.

F //

'
��

EG ×G F

��

π // BG

1
��

F ′ // EG ×G F ′ π
// BG

F ,F ′ are simplicial sheaves as well as just sheaves

F → F ′ stalkwise equivalence since “total spaces” are contractible,
so is an isomorphism of sheaves.
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Cocycles

A cocycle (from ∗ to BG ) is a picture (“span”)

∗ '←− U → BG .

A morphism of cocycles is a picture

U'
xx

��

''
∗ BG

U ′
'

ff 77

The category of cocyles is h(∗,BG ).

Examples: 1) standard cocycles ∗ '←− Č (U)→ BG defined on
Čech resolutions for coverings

2) “twisted” cocycles ∗ '←− EG ×G Sp(L)→ BH in algebraic
groups H, for the étale topology on K .
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Cocycles and torsors

Theorem (“Hammock localization”) There is an isomorphism

π0h(∗,BG ) ∼= [∗,BG ]

[∗,BG ] is morphisms in homotopy category of simplicial sheaves.

1) Every G -torsor F determines a canonical cocycle

∗ '←− EG ×G F → BG

2) Every cocycle ∗ '←− U → BG determines a “pullback” torsor
π0(EG ×BG U) by pullback over EG → BG .

Theorem: The canonical cocycle and pullback functors

h(∗,BG ) � G − tors

are adjoint, so that there are isos

H1(E ,G ) = π0(G − tors) ∼= π0h(∗,BG ) ∼= [∗,BG ].

This is the homotopy classification of G -torsors.
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Symmetric bilinear forms, again

Every non-deg symm bilinear form β over K (char 6= 2) determines
a homotopy class of maps [β] : ∗ → BOn for the etale topology,
and an induced map

H∗Gal(K ,Z/2)[HW1, . . . ,HWn] ∼= H∗et(BOn,Z/2)
β∗
−→ H∗Gal(K ,Z/2).

deg(HWi ) = i , like Stiefel-Whitney classes.

HWi 7→ β∗(HWi ) = HWi (β), higher Hasse-Witt invariants of β
(formerly Delzant Stiefel-Whitney classes).

Examples HW1(β) = det(β), HW2(β) = Hasse-Witt invariant.

This where the homotopy classification of torsors and the
homotopy theoretic approach to stacks began (1989).
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Stacks

Origins: Grothendieck “effective descent” (1959); Giraud “champ”
(1966, 1971); Deligne-Mumford “stack” (1969)

Most compact definition: a stack is a sheaf of groupoids H for
which the simplicial sheaf BH satisfies descent

ie. there is a fibrant model BH → Z which is a sectionwise
equivalence, ie. all BH(U)→ Z (U) are weak equivs.

Alternative: A stack is a sheaf of groupoids H which satisfies
effective descent, ie. any covering R ⊂ hom(,U) induces an
equivalence of groupoids

H(U)→ lim←−
φ:V→U

H(V ).

NB: H is a sheaf of groupoids, so only need show that

π0H(U)→ π0( lim←−
φ:V→U

H(V ))

is surjective.
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“Sheaf” of torsors

We have defined G − tors only in global sections.

If X = scheme and G = alg. group, we have G − tors/X for any
decent topology on X .

Given f : Y → X , inverse image f ∗ : Shv /X → Shv /Y is exact,
hence induces a functor f ∗ : G − tors/X → G − tors/Y .

U ⊂ X 7→ G − tors/U is only a pseudo-functor (in groupoids):
there are natural isomorphisms

(βα)∗
∼=−→ α∗β∗, η : 1

∼=−→ 1∗

which satisfy standard coherence conditions.
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Grothendieck construction

Suppose i 7→ G (i) is a pseudo-functor in groupoids on i ∈ I .

The Grothendieck construction EIG has objects (i , x) with
x ∈ G (i), and morphisms (α, f ) : (i , x)→ (j , y) with α : i → j in I
and f : α∗x → y in G (j).

The composite

(i , x)
(α,f )−−−→ (j , y)

(β,g)−−−→ (k, z)

is defined by βα and the composite

(βα)∗(x)
ω−→∼= β∗α∗(x)

β∗f−−→ β∗(y)
g−→ z .

There is a canonical functor

π : EIG → I with (i , x) 7→ i .
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Homotopy and old times

The slice categories π/i have objects π(j , y)→ i , and define a
functor I → Cat with i 7→ π/i .

There is a homotopy equivalence of categories π/i → G (i) defined
by flowing objects into G (i).

By applying fundamental groupoid, we have equivalences of
groupoids G (π/i)

'−→ G (i).

The assignment i 7→ G (π/i) defines a functor in groupoids,
sectionwise equivalent to the pseudo-functor i 7→ G (i).

Remark: Effective descent was originally defined for the
pseudo-functor U 7→ G − tors/U, with a description equivalent to
that given above for the equivalent diagram (sheaf) of groupoids
U 7→ G (π/U).
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Homotopy theory

There is a homotopy theory for sheaves of groupoids
(Joyal-Tierney, 1990; Hollander, 2008), for which G → H is a weak
equivalence (resp. fibration) if the induced map BG → BH is a
local weak equivalence (resp. fibration) of simplicial sheaves.

A stack is a sheaf (or presheaf) of groupoids which satisfies
descent in this homotopy theory

Equiv.: G is a stack if every fibrant model G → H is a sectionwise
equivalence.

Every fibrant sheaf of groupoids is a stack (formal nonsense).

Slogan: Stacks are homotopy types of sheaves of groupoids.
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Torsors are stacks

Suppose that j : G → H is a fibrant model (stack completion) for
group obect G in sheaves of groupoids. Form the diagram

BG
j //

��

BH

'
��

B(G − tors) //

'
��

B(H − tors)

'
��

BH(∗,BG ) '
// BH(∗,BH)

All displayed weak equivs are sectionwise, j : BG → BH is a local
weak equiv.

So j : BG → B(G − tors) is a local weak equiv, and B(G − tors)
satisfies descent.
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Example: quotient stacks

X is a scheme (sheaf) with G -action.

The quotient stack [X/G ] is the groupoid with objects all
G -equivariant maps P → X with P a G -torsor, and all
G -equivariant pictures

P

∼=
��

((
X

Q

77

as morphisms.

Fact: There is an isomorphism

π0([X/G ]) ∼= [∗,EG ×G X ].

Every P → X in [X/G ] determines a cocycle

∗ '←− EG ×G P → EG ×G X .
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Detail: Cocycles to torsors

Given a cocycle ∗ '←− U → EG ×G X , pull back over EG → BG to
form P = π0(EG ×BG U)→ X in homotopy fibres:

EG ×BG U //

��

U

��
EG ×G X

π
��

EG π
// BG

EG ×BG U is homotopy fibre of U → BG , so weakly equivalent to

P := π̃0(EG ×BG U).

General nonsense: EG ×G (EG ×BG U)→ U ' ∗ is a weak
equivalence.
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Examples

1) Borel constructions EG ×G F = B(EGF ) are quotient stacks.

The stack completion is the functor φ : EGF → [F/G ], defined in
global sections by

x ∈ F 7→ G
x−→ F

φ is a local weak equivalence, and there is a sect. equiv.

B([F/G ]) ' BH(∗,EG ×G F ).

2) A gerbe H is a locally connected stack, ie. π0BH is the trivial
sheaf.

Gerbes are souped up sheaves of groups.

Fact: If H is an ordinary connected groupoid and x ∈ Ob(H) then
the inclusion functor H(x , x) ⊂ H is an equivalence of groupoids,
so H is a group.
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Remarks

1) There are model structures for sheaves of 2-groupoids,
presheaves of n-groupoids for n ≥ 2. The homotopy types are
2-stacks, n-stacks etc. See [3] — other people define them
differently.

2) Weak equivalence classes of gerbes (with structure) are
classified homotopy theoretically by cocycles in 2-stacks. This is
Giraud’s non-abelian H2 [2].

eg. Gerbes locally equivalent to a fixed sheaf of groups H are
classified by the 2-groupoid Aut(H), which has automorphisms of
H as 1-cells, and 2-cells given by homotopies.

Opinions: a) Stacks and higher stacks should have geometric
content, like groupoids enriched in simplicial sets.

b) Simpson: a stack is a homotopy type of simplicial presheaves
(non-abelian Hodge theory).
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