## **Stacks and homotopy theory**

**Rick Jardine** 

Department of Mathematics University of Western Ontario

#### Torsors

S = "decent" scheme, ie. noetherian, locally of finite type, ...

G =group-scheme defined over S, eg.  $Gl_n$ , etc.

*G* represents a sheaf of groups G = hom(, G) for the standard geometric topologies (eg. Zariski, flat, étale, Nisnevich) on  $Sch|_S$  = schemes locally of fin. type/*S*.

*G*-torsor: sheaf X with free *G*-action such that  $X/G \rightarrow *$  is isomorphism, \* = terminal sheaf.

ie. *G* acts freely on *X*, and there is sheaf epi  $U \rightarrow *$  and map  $\sigma: U \rightarrow X$  s.t. following dia. is a pullback:

# Cocycles

 $\sigma(u_2) = c(u_1, u_2)\sigma(u_1)$  for uniquely determined  $c(u_1, u_2) \in G$  for all sections  $u_1, u_2$  of U.

 $(u_1, u_2) \mapsto c(u_1, u_2)$  defines a cocycle c, from which the torsor X can be reassembled up to iso. from a G-equivariant coequalizer (twist one projection by c)

$$G \times U \times U \rightrightarrows G \times U \to X$$

The cocycle is a map of sheaves of groupoids  $c: U_{\bullet} \to G$ where  $U_{\bullet}$  = the trivial groupoid arising from the sheaf epi  $U \to *$ . It is also a map of simplicial sheaves

 $c: U_{\bullet} \to BG$ 

where  $U_{\bullet} = \check{C}ech$  resolution for  $U \to *$ .

# **Classifying objects**

BC denotes the nerve of a category C.

 $BC_n =$ strings  $a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_n$  with faces and degeneracies defined by composition, insertion of identities resp.

eg: G =group is a category with one object \*, then n-simplices of BG are strings

$$* \xrightarrow{g_1} * \xrightarrow{g_2} \dots \xrightarrow{g_n} *$$

or elements of  $G^{\times n}$ .

The construction  $C \mapsto BC$  is functorial and preserves the sheaf condition, so there is a simplicial sheaf BG associated to a sheaf of groups (or groupoids) G.

# **Homotopy theory**

Simplicial homotopy corr. to isomorphism of G-torsors, so we have bijection

 $\pi(U_{\bullet}, BG) \cong \{ \text{iso. classes of } G \text{-torsors, trivial over } U \}$ 

Joyal (mid 80s): A map of simp. sheaves  $X \to Y$  is a weak equiv. iff it induces a weak equiv.  $X_x \to Y_x$  of simp. sets in all stalks. Cofibrations are monomorphisms. There is a model structure, with ass. htpy. category  $Ho(s \operatorname{Shv})$ .

$$[*, BG] \cong \varinjlim_{\text{hypercovers } V \to *} \pi(V, BG)$$
$$\cong \varinjlim_{\text{epi } U \to *} \pi(U_{\bullet}, BG)$$
$$\cong \{\text{iso. classes of } G\text{-torsors}\} = H^1(S, G)$$

# **Examples**

For the étale topology/S:

1)  $[*, BGl_n] \cong \{ \text{iso. classes of rank } n \text{ vector bundles} \}$ 

2)  $[*, BO_n] \cong \{\text{iso. classes of rank } n \text{ sym. bil. forms}\}$ 

3)  $[*, BPGl_n] \cong \{\text{iso. classes of rank } n^2 \text{ Azumaya algebras} \}.$  $[*, BPGl_n] \rightarrow Br(S) = \text{similarity classes.}$ 

General fact:  $[*, K(A, n)] \cong H^n(S, A)$  for all abelian sheaves A.

X =simplicial scheme or sheaf:

$$H^n(X,A) := [X, K(A,n)]$$

(cup products, Steenrod operations ...)

## **Brauer group**

There is a fibre seq.  $B\mathbb{G}_m \to BGl_n \to BPGl_n$  $B\mathbb{G}_m$  acts freely on  $BGl_n$  with quotient  $BPGl_n$ , so there is a fibre sequence

$$BGl_n \to EB\mathbb{G}_m \times_{B\mathbb{G}_m} BGl_n \to BB\mathbb{G}_m$$

 $BB\mathbb{G}_m \simeq K(\mathbb{G}_m, 2)$ , Borel const.  $\simeq BPGl_n$ , so there is an induced map

$$[*, BPGl_n] \rightarrow [*, K(\mathbb{G}_m, 2)]$$
 (*n*-torsion)

Assembling these gives a monomorphism

$$Br(S) \to H^2(S, \mathbb{G}_m)_{tors}.$$

NB: no mention of non-abelian  $H^2$ .

#### **Effective descent**

A **stack** is a sheaf of groupoids which satisfies the effective descent condition.

Effective descent datum  $\{x_{\phi}\}$  in G for cov. sieve  $R \subset \hom(U)$ 

• objects  $x_{\phi} \in G(V)$ , one for each  $\phi: V \to U$  in R

- isomorphisms  $c_{\psi}: \psi^* x_{\phi} \to x_{\phi\psi}$  for each composable pair  $W \xrightarrow{\psi} V \xrightarrow{\phi} U$
- s.t.  $c_1 = 1$  and following diagrams commute

#### **Stacks**

The effective descent data for R in G are members of a category  $hom(E_R, G)$  with morphisms  $\{x_{\phi}\} \rightarrow \{y_{\phi}\}$  given by families  $x_{\phi} \rightarrow y_{\phi}$  in G(V) which are compatible with structure. There is a functor

$$G(U) \to \hom(E_R, G)$$

defined by  $x \mapsto \{\phi^* x\}$ .

A sheaf of groupoids G is a stack if all functors  $G(U) \rightarrow \hom(E_R, G)$  are equivalences of groupoids for all covering sieves R..

# $\hom(E_R, G)$

 $R \subset \hom(, U)$  is a subfunctor, also defines a category R with objects  $\phi: V \to U$  in R and comm. triangles for morphisms. There is a functor  $R \to Shv$  defined by sending  $\phi: V \to U$  to  $V = \hom(, V)$ .

 $E_R$  is "translation category" defined by this functor in the sheaf category.

$$E_R: \bigsqcup_{W \to V \xrightarrow{\phi} U} W \rightrightarrows \bigsqcup_{V \xrightarrow{\phi} U} V$$

Effective descent datum is functor  $E_R \rightarrow G$  (simplicial sheaf map  $BE_R \rightarrow BG$ ), morphism is natural transformation (homotopy) of such functors.

# **Stack completion**

A sheaf of groupoids G is a stack if and only if all induced maps

 $BG(U) \rightarrow \mathbf{hom}(BE_R, BG) = B \operatorname{hom}(E_R, G)$ 

are weak equivalences of simplicial sets.

Stack completion:

$$St^p(G)(U) = \varinjlim_{R \subset \text{hom}(,U)} \text{hom}(E_R,G)$$

defines a presheaf of groupoids  $St^pG$ .

The stack completion St(G) of G is the associated sheaf for  $St^p(G)$ .

## More homotopy theory

Joyal-Tierney (mid 80s): There is a homotopy theory for Shv(Gpd) = sheaves of groupoids, for which a map  $f: G \to H$  is a local weak equivalence (resp. fibration) if the induced map  $f: BG \to BH$  is a local weak equivalence (resp. fibration) of simplicial sheaves.

Every sheaf of groupoids G has fibrant model  $j : G \to G^{\wedge}$  (ie. weak equiv.,  $BG^{\wedge}$  fibrant simplicial sheaf.

## **Some results**

Fact: Every fibrant groupoid H is a stack. Proof:  $BE_R \rightarrow U$  is a local weak equivalence, so  $hom(U, BH) \rightarrow hom(BE_R, BH)$  is a weak equivalence of simplicial sets.

Fact: If G is a stack and  $G \to G^{\wedge}$  is a fibrant model, then all  $G(U) \to G^{\wedge}(U)$  are equivalences of groupoids, ie  $BG \to BG^{\wedge}$  is sectionwise weak equivalence.

**Proof:** There is isomorphism  $\pi_0 BG(U) \cong [U, BG]$ .

Fact:  $G \rightarrow St(G)$  is a weak equivalence of sheaves of groupoids.

Proof: Descent data lift to G locally.

**Corollary**: The stack completion St(G) and fibrant model  $G^{\wedge}$  coincide up to natural sectionwise equivalence.

# **Stacks are fibrant groupoids**

Fact: (old) There is a homotopy theory for  $s \operatorname{Pre} = \operatorname{simplicial}$  presheaves for which weak equivs. are stalkwise weak equivs. and cofibrations are monomorphisms. The ass. sheaf map  $X \to \tilde{X}$  is a weak equiv.  $\operatorname{Ho}(s \operatorname{Pre}) \simeq \operatorname{Ho}(s \operatorname{Shv})$ .

Fact: (Hollander) There is a homotopy theory for Pre(Gpd) = presheaves of groupoids for which weak equivs. (resp. fibrations) are maps  $G \to H$  such that  $BG \to BH$  are local weak equivs. (resp. fibrations). The assoc. sheaf map  $G \to \tilde{G}$  is a weak equiv.  $Ho(Pre(Gpd)) \simeq Ho(Shv(Gpd))$ .

**Observation**: Every fibrant sheaf of groupoids is a fibrant presheaf of groupoids..

Stacks are homotopy types of presheaves of groupoids

## **Torsors**, revisited

G =sheaf of groups:

 $St^{p}(G)(U) \simeq \{G\text{-cocycles over } U\}$  $\simeq \{G|_{U} \text{ torsors over } U\}$ 

Fact:  $St^p(H)(U) \rightarrow St(H)(U)$  is an equivalence for all sheaves of groupoids H, in all sections.

**Consequence:**  $St(G)(U) \simeq \{G|_U \text{ torsors over } U\}$  for all U.

**NB**: St(G) is a sheaf or presheaf of groupoids rather than a fibre functor.

## **Quotient stacks**

 $G \times N \rightarrow N$  is action by sheaf of groups on a sheaf N.

The quotient stack  $G - \mathbf{Tors}/N$ , in sections, has objects all G-equivariant maps  $P \to N$  where P is a G-torsor, and has morphisms all G-equivariant diagrams



There is a groupoid of translation categories  $E_G N$  arising from the *G*-action, and  $B(E_G N) \cong EG \times_G N$ .

Fact:  $[*, EG \times_G N] \cong \pi_0(G - \mathbf{Tors}/N)(S)$ .  $St(E_GN)$  is sectionwise equivalent to  $G - \mathbf{Tors}/N$ .

## **Alternative description of torsors**

G = sheaf of groups: a G-torsor is a sheaf X with G-action such that the simplicial sheaf map  $EG \times_G X \rightarrow *$  is a weak equivalence.

 $EG \times_G X = \underline{\operatorname{holim}}_G X$  for the diagram on groupoid *G* defined by *G*-action.

H = sheaf of groupoids: an *H*-torsor is a functor  $X : H \to Shv$  (internally defined) such that the map  $\underline{\mathrm{holim}}_{H}X \to *$  is a weak equiv.  $[*, BH] \cong \pi_0(H - \mathbf{Tors})$ .

## Gerbes

A gerbe H is a locally connected stack (ie.  $\tilde{\pi}_0(H) \cong *$ ).

G sheaf of groups: a G-gerbe is a gerbe locally equivalent to  $G-\mathbf{Tors.}$ 

Aut(G) is two groupoid of automorphisms of G and homotopies.

Luo, J. (2004):  $[*, B(Aut(G)^{o})] \cong \pi_0(G - gerbe)$ 

# **Algebraic stacks**

Specialize to the étale topology for  $Sch|_S$ :

Laumon, Moret-Bailly: Algebraic stacks occur as stack completions of (ie. htpy types represented by) special sheaves of groupoids  $X_1 \rightrightarrows X_0$ , where

- $X_1, X_0$  are algebraic spaces (ie. étale quotients of schemes)
- the source and target maps  $X_1 \rightarrow X_0$  are smooth
- the map  $X_1 \to X_0 \times_S X_0$  is separated and quasi-compact.

If the source and target maps are étale, the stack is a Deligne-Mumford stack.

Example:  $\mathcal{M}_{g,n} = \text{moduli stack of proper smooth curves}/S$  of genus g with n ordered points.

# **Stack cohomology**

Perspective: X = algebraic stack.

"Naive" stack cohomology  $H^*(X, A)$  is defined by the étale site of a simplicial algebraic space, which is BX.

Claim:

$$H^n(X, A) \cong [BX, K(A, n)]$$

for abelian sheaves A defined on the big site  $Sch|_S$ .

This is a generalization of a corresponding result for simplicial schemes.

#### **Some details**

The site  $et|_{BX}$  has objects all étale maps  $\phi: U \to BX_n$ (algebraic spaces) and morphisms



Coverings are generated by étale coverings  $U_i \rightarrow U$ .  $F = \text{sheaf on } (Sch|_S)_{et}$ :  $F|_{BX}(\phi) = \text{hom}(U, F)$ .  $F|_{BX}$  is sheaf on  $et|_{BX}$  and  $F \mapsto F|_{BX}$  is exact, so restriction preserves weak equivs.

Idea: show that there is a bijection  $[BX, Y] \cong [*, Y|_{BX}]$ .

#### **More details**

May as well assume that Y is fibrant.

Choose fibrant model  $Y|_{BX} \to Z$  on  $et|_{BX}$ . (\*) Show that this map is a weak equivalence in all sections by showing that this is true for all restrictions to  $et|_{BX_n}$  for all n.

 $1_{BX}$  is the simplicial sheaf on  $et|_{BX}$  rep. by  $1_{BX_n}$ ,  $n \ge 0$ .



det. by  $\theta$ .  $1_{BX}(\psi) = \Delta^m \simeq *$ , so  $1_{BX} \to *$  is weak equiv.  $\hom(1_{BX}, Y|_{BX}) \to \hom(1_{BX}, Z) \simeq Z(*)$  is weak equiv. by (\*).  $\hom(1_{BX}, Y|_{BX}) \cong \hom(BX, Y)$ . Compare  $\pi_0$ .