T-spectra

Rick Jardine

University of Western Ontario

March 2, 2015

문 🛌 문

T-spectra

- T =is a pointed simplicial presheaf on a site C.
- A *T*-spectrum X consists of pointed simplicial presheaves X^n , $n \ge 0$ and bonding maps $\sigma : T \land X^n \to X^{n+1}$, $n \ge 0$.
- A map of *T*-spectra $g: X \to Y$ consists of pointed simplicial presheaf maps $g: X^n \to Y^n$, such that the diagrams

$$\begin{array}{c|c} T \land X^n \xrightarrow{\sigma} X^{n+1} \\ T \land g \\ & \downarrow g \\ T \land Y^n \xrightarrow{\sigma} Y^{n+1} \end{array}$$

commute.

 $\operatorname{Spt}_{\mathcal{T}}(\mathcal{C})$ is the category of \mathcal{T} -spectra.

Examples

1) Presheaves of spectra are S^1 -spectra.

2) Suppose that k is a perfect field and let $(Sm|_k)_{Nis}$ be the category of smooth k-schemes, equipped with the Nisnevich topology. There are various choices:

$$T = \mathbb{P}^1, \ S^1 \wedge \mathbb{G}_m, \ \mathbb{A}^1/(\mathbb{A}^1 - \{0\}), \ [\mathbb{G}_m = \mathbb{A}^1 - \{0\}]$$

All of these isomorphic in the motivic homotopy category, and give equivalent (motivic) homotopy theories of T-spectra, on account of

$$\begin{array}{ccc} \mathbb{G}_m \longrightarrow \mathbb{A}^1 & \text{ and } \mathbb{A}^1 \simeq *. \\ & & \downarrow \\ \mathbb{A}^1 \longrightarrow \mathbb{P}^1 \end{array}$$

T is often called the Tate object.

1) K = pointed simp. presheaf. The *T*-suspension spectrum $\Sigma_T^{\infty} K$ consists of the list

$$K, T \wedge K, T \wedge T \wedge K, \ldots T^{\wedge n} \wedge K, \ldots$$

2) $S_T = \Sigma_T^{\infty} S^0$ is the sphere *T*-spectrum. $\Sigma_T^{\infty} K = S_T \wedge K$.

3) X a T-spectrum, $n \in \mathbb{Z}$: the shifted object X[n] is defined by

$$X[n]^k = egin{cases} X^{k+n} & ext{if } k+n \geq 0, \ st & ext{otherwise}. \end{cases}$$

If $n \ge 0$, $K \mapsto \Sigma^{\infty}_T K[-n]$ is left adjoint to $X \mapsto X^n$.

4) The isomorphisms $T^{\wedge (k-1)} \wedge T \cong T^k$, k > 0, define the *stabilization map*

$$(S_T \wedge T)[-1] \rightarrow S_T$$

Strict model structure

The strict weak equivalences (resp. strict fibrations) are those maps $X \to Y$ of *T*-spectra for which all $X^n \to Y^n$ are local weak equivalences (resp. injective fibrations).

A map $i : A \rightarrow B$ is a *cofibration* if $A^0 \rightarrow B^0$ is a cofibration, along with all maps

$$(T \wedge B^n) \cup_{T \wedge A^n} A^{n+1} \rightarrow B^{n+1}.$$

Lemma 1.

The category $\operatorname{Spt}_T(\mathcal{C})$, together with the strict weak equivalences, strict fibrations and cofibrations as defined above, satisfies the axioms for a proper closed simplicial model structure. This model structure is cofibrantly generated.

$$\hom(X,Y)_n = \{X \land \Delta^n_+ \to Y\}.$$

T-loops of a pointed simplicial presheaf Y:

 $\Omega_{\mathcal{T}}(Y) = \operatorname{Hom}(\mathcal{T}, Y)$

where

$$\mathsf{Hom}(T,Y)(U) = \mathsf{hom}(T \land U_+,Y)$$

defines $\Omega_T(Y)$ as a pointed simplicial presheaf. There is a nat. iso.

$$\hom(T \land A, Y) \cong \hom(A, \Omega_T(Y)).$$

Exercise: $\Omega_T(Y)$ is injective fibrant if Y is injective fibrant.

A *T*-spectrum *X* consists of pointed simplicial presheaf and (adjoint) bonding maps $X^n \to \Omega_T(X^{n+1})$.

Warning: $X \mapsto \Omega_T X$ may not preserve local weak equivalences of presheaves of Kan complexes.

Localization

- $\mathcal{F}=\mathsf{a}$ set of cofibrations \mathcal{F} of T-spectra. Suppose that
 - 1) A is cofibrant for all morphisms $A \to B$ in \mathcal{F} .
 - 2) ${\cal F}$ includes a set of generators for the trivial cofibrations of the strict structure.
 - 3) \mathcal{F} is closed under the formation of the maps

$$(T \land A) \cup_{S \land A} (S \land B) \to T \land B$$

with $S \to T$ in \mathcal{F} and $A \to B$ a generating cofibration for the strict structure.

Form the natural map $X \to L_F X$ such that $L_F X \to *$ has the RLP wrt all maps of \mathcal{F} .

A map $f : X \to Y$ is an \mathcal{F} -equivalence if $L_{\mathcal{F}}X \to L_{\mathcal{F}}Y$ is a strict equivalence. \mathcal{F} -fibrations are defined by a RLP wrt to cofibrations which are \mathcal{F} -equivalences.

Theorem 2.

The category $Spt_T(C)$, with the cofibrations, \mathcal{F} -equivalences and \mathcal{F} -fibrations, has the structure of a left proper closed simplicial model category. This model structure is cofibrantly generated.

Suppose that $f : A \to B$ is a cofibration of simplicial presheaves. The *f*-local model structure on $s \operatorname{Pre}(\mathcal{C})$ is cofibrantly generated.

Suppose that ${\mathcal F}$ generated by the set of maps:

1) $\Sigma_T^{\infty}C_+[-n] \to \Sigma_T^{\infty}D_+[-n]$, where $C \to D$ is a set of generators for the trivial cofibrations of the *f*-local structure,

2) cofibrant replacements of $(S_T \wedge T)[-n-1] \rightarrow S_T[-n], \ n \ge 0.$

The *f*-local stable model structure on $\text{Spt}_{\mathcal{T}}(\mathcal{C})$ is the \mathcal{F} -local model structure given by Theorem 2, for this set \mathcal{F} .

The weak equivalences are *stable f-equivalences* and the fibrations are *stable f-fibrations*.

 $(Sm|_S)_{Nis}$ is the smooth Nisnevich site of a decent scheme S (usually a perfect field).

 $f:*\to \mathbb{A}^1$ is a rational point of the affine line $\mathbb{A}^1=\mathbb{A}^1\times S$ over S, usually the 0-section.

The *f*-local model structure on $s \operatorname{Pre}((Sm|_S)_{Nis})$ is the *motivic* (or \mathbb{A}^1 -*local*) model structure.

Let $T = S^1 \wedge \mathbb{G}_m$. The *f*-local stable model structure on $\operatorname{Spt}_T((Sm|_S)_{Nis})$ is the *motivic stable model structure*. The corresponding homotopy category is the *motivic stable category*.

Remark: The original construction of the motivic stable model category used the methods of Bousfield and Friedlander [1], with Nisnevich descent. The localization approach first appeared in a paper of Hovey, and was an idea Jeff Smith.

Lemma 3.

X is stable f-fibrant if and only if all X^n are f-fibrant and all maps $X^n \to \Omega_T X^{n+1}$ are sectionwise equivalences.

$$\Omega^{\infty}_T X^n = \varinjlim \Omega^k_T X^{n+k}$$

defines a *T*-spectrum $\Omega^{\infty}_T X$ and a natural map $X \to \Omega^{\infty}_T X$. We have the composite

$$X \xrightarrow{j} FX o \Omega^{\infty}_T FX \xrightarrow{j} F\Omega^{\infty}_T FX =: Q_T X$$

defining $\eta: X \to Q_T X$. $j: Y \to FY$ is strict *f*-fibrant model. This construction might fail: it is not clear that the composite

$$\Omega^{\infty}_{T} FX^{n} \xrightarrow{\cong} \Omega_{T} \Omega^{\infty}_{T} X^{n+1} \xrightarrow{\Omega_{T} j} \Omega_{T} (F \Omega^{\infty}_{T} FX^{n+1})$$

is an f-equivalence. This requires a compactness condition on T_{-}

A1: T is compact up to f-equivalence if the composite

$$\varinjlim_{s} \Omega_{T} X_{s} \to \Omega_{T}(\varinjlim_{s} X_{s}) \xrightarrow{\Omega_{T} j} \Omega_{T} F(\varinjlim_{s} X_{s})$$

is an *f*-equivalence for every inductive system $s \mapsto X_s$ of *f*-fibrant pointed simplicial presheaves.

Theorem 4.

Suppose that T is compact up to f-equivalence. Then the natural map $X \rightarrow Q_T X$ is a stable f-fibrant model for all T-spectra X.

Fact: The family of objects which is compact up to *f*-equivalence is closed under finite smash products and *f*-equivalence.

Example: All finite pointed simplicial sets are compact for the injective model structure on $s \operatorname{Pre}(\mathcal{C})$.

Nisnevich descent

Suppose that $s \mapsto X_s$ is an inductive diagram of motivic fibrant simplicial presheaves. The Nisnevich fibrant model

$$j: \varinjlim_s X_s \to G(\varinjlim_s X_s)$$

is a sectionwise equivalence, by the Nisnevich descent theorem.

A Nisnevich fibrant simplicial presheaf Z is motivic fibrant if all $X(U) \rightarrow X(U \times \mathbb{A}^1)$ are weak equivalences. This condition is preserved by filtered colimits and sectionwise equivalences, so $G(\varinjlim_s X_s)$ is motivic fibrant.

Lemma 5.

- 1) Every pointed scheme is compact up to motivic equivalence.
- 2) Every finite pointed simplicial set is compact up to motivic equivalence.

A2 The *f*-local model structure satisfies *inductive colimit descent* if, given an inductive system $s \mapsto Z_s$ of *f*-fibrant simplicial presheaves, an *f*-fibrant model

$$j: \varinjlim_{s} Z_{s} \to F(\varinjlim_{s} Z_{s})$$

is a local weak equivalence.

Example: The motivic model structure on $(Sm|_S)_{Nis}$ satisfies this property, again by Nisnevich descent.

Fact: If **A2** is satisfied, then every finite pointed simplicial set K is compact up to f-equivalence, because Ω_K preserves local weak equivalences of locally fibrant objects.

Fact: If T is compact up to f-equivalence and **A2** holds, then $S^1 \wedge T$ is compact up to f-equivalence.

Suspensions and loops

A3: Say that T is cycle trivial if $x_1 \wedge x_2 \wedge x_3 \mapsto x_2 \wedge x_3 \wedge x_1$ is the identity on $T^{\wedge 3}$ in the f-local homotopy category.

Examples: 1) S^1 is cycle trivial, everywhere 2) (Voevodsky) : \mathbb{P}^1 is cycle trivial in the motivic model structure on $(Sm|_S)_{Nis}$.

3) If S and T are cycle trivial, then $S \wedge T$ is cycle trivial.

Theorem 6.

Suppose that T is compact up to f-equivalence and is cycle trivial. Then the composite

$$X
ightarrow \operatorname{\mathsf{Hom}}(T, X \wedge T) \xrightarrow{\eta_*} \operatorname{\mathsf{Hom}}(T, Q_T(X \wedge T))$$

is a stable f-equivalence for all T-spectra X.

Consequence: *T*-suspensions and *T*-loops form a Quillen equivalence $\operatorname{Spt}_{\mathcal{T}}(\mathcal{C}) \leftrightarrows \operatorname{Spt}_{\mathcal{T}}(\mathcal{C})$.

Fake suspensions

The fake suspension $\Sigma_T X$: $\Sigma_T X^n = T \wedge X^n$ with bonding maps $T \wedge \sigma_T : T \wedge T \wedge X^n \to T \wedge X^{n+1}$.

Lemma 7.

There is a natural stable f-equivalence $\sigma : \Sigma_T X \to X[1]$.

Lemma 8.

T compact up to f-equivalence and cycle trivial. There is natural stable equivalence $\Sigma_T X \simeq X \wedge T$.

The bonding maps for $\Sigma_T X$ and $X \wedge T$ differ by a twist $\tau : T^{\wedge 2} \xrightarrow{\cong} T^{\wedge 2}$. These objects restrict to equivalent $T^{\wedge 2}$ -spectra, by the cycle triviality.

Corollary 9.

Same assumptions as Lemma 8, X strictly f-fibrant. There are stable f-equivalences $hom(T, X) \simeq \Omega_T X \simeq X[-1]$.

Bispectra

S and T are compact up to f-equivalence. An (S, T)-bispectrum Y is an T-spectrum object in S-spectra.

Y consists of pointed simplicial presheaves $Y^{p,q}$, $p, q \ge 0$ and bonding maps $\sigma_S : S \land Y^{p,q} \to Y^{p+1,q}$, $\sigma_T : Y^{p,q} \land T \to Y^{p,q+1}$, such that the following commute:

$$\begin{array}{c|c} Y^{p+1,q} \wedge T \xrightarrow{\sigma_T} Y^{p+1,q+1} \\ & \sigma_S \wedge T \end{array} \xrightarrow{\uparrow} & \uparrow \sigma_S \\ S \wedge Y^{p,q} \wedge T \xrightarrow{S \wedge \sigma_T} S \wedge Y^{p,q+1} \end{array}$$

Y defines a diagonal $(S \land T)$ -spectrum d(Y) with $d(Y)^p = Y^{p,p}$ and bonding maps

$$S \wedge T \wedge Y^{p,p} \xrightarrow{S \wedge \tau} S \wedge Y^{p,p} \wedge T \xrightarrow{S \wedge \sigma_T} S \wedge Y^{p,p+1} \xrightarrow{\sigma_S} Y^{p+1,p+1}.$$

Every $(S \land T)$ -spectrum X has an (S, T)-bispectrum $X^{*,*}$ such that $d(X^{*,*}) \cong X$.

$$X^{0} \wedge T^{2} \longrightarrow X^{1} \wedge T \qquad X^{2}$$
$$X^{0} \wedge T \qquad X^{1} \qquad S \wedge X^{1}$$
$$X^{0} \qquad S \wedge X^{0} \qquad S^{2} \wedge X^{0}$$

Example:

$$S \wedge X^{0} \wedge T^{2} \xrightarrow{S \wedge \tau \wedge T} S \wedge T \wedge X^{0} \wedge T \xrightarrow{\sigma \wedge T} X^{1} \wedge T$$

Lemma 10.

S, T compact up to f-equivalence, $g : X \to Y$ a map of (S, T)-bispectra. If $g : X^{*,q} \to Y^{*,q}$ is a stable f-equivalence of S-spectra for all q, then $g : d(X) \to d(Y)$ is a stable f-equivalence of $(S \land T)$ -spectra.

$(S^1 \wedge T)$ -spectra

Corollary 11.

T compact up to f-equivalence and the f-local model structure satisfies inductive colimit descent, $g : X \to Y$ a map of $(S^1 \wedge T)$ -bispectra such that all $g : X^{*,q} \to Y^{*,q}$ are stable f-equivalences of presheaves of spectra. Then $g_* : d(X) \to d(Y)$ is a stable f-equivalence of $(S^1 \wedge T)$ -spectra.

Consequences

- 1) $p: X \to Y$ strict fibration of $(S^1 \land T)$ -spectra with fibre F. Then $X/F \to Y$ is a stable f-equivalence.
- A → B a monomorphism of (S¹ ∧ T)-spectra such that B → B/A has strict homotopy fibre F. Then there is a stable f-equivalence A → F.
- 3) The *f*-local stable model structure on $\text{Spt}_{S^1 \wedge T}(\mathcal{C})$ is proper.
- The canonical map X ∨ Y → X × Y is a stable *f*-equivalence of (S¹ ∧ T)-spectra.

An $(S^1 \wedge T)$ -spectrum X has bigraded presheaves of stable homotopy groups:

$$\pi_{s,t}X(U):= \varinjlim_{n\geq 0} \left[S^{n+s} \wedge T^{n+t} \wedge U_+, X^n\right], \ U \in \mathcal{C}, s, t \in \mathbb{Z}.$$

[,] is morphisms in *f*-local homotopy category of pointed simplicial presheaves. *s* is the *degree*, *t* is the *weight*.

There are sheaf isomorphisms $\tilde{\pi}_{k-n,-n}X \cong \tilde{\pi}_k Q_{S^1 \wedge T}X^n$.

Lemma 12.

 $g: X \to Y$ is a stable f-equivalence of $(S^1 \wedge T)$ -spectra if and only if all $\tilde{\pi}_{s,t}X \to \tilde{\pi}_{s,t}Y$ are isomorphisms of sheaves of groups.

Motivic case: use presheaf isomorphisms, by Nisnevich descent.

伺 ト イヨト イヨト

Long exact sequences

Any strict f- fibre sequence $F \rightarrow X \rightarrow Y$ of strictly f-fibrant (S^1, T) -bispectra determines strict f-fibre sequences

$$\Omega^{t+n}_T F^n \to \Omega^{t+n}_T X^n \to \Omega^{t+n}_T Y^n$$

of presheaves of spectra, and long exact sequences

$$\cdots \to \pi_s \Omega_T^{t+n} F^n \to \pi_s \Omega_T^{t+n} X^n \to \pi_s \Omega_T^{t+n} Y^n \to \pi_{s-1} \Omega_T^{t+n} F^n \to \dots$$

in presheaves of stable homotopy groups. Taking filtered colimits in n gives long exact sequences

$$\cdots \to \tilde{\pi}_{s,t} F \to \tilde{\pi}_{s,t} X \to \tilde{\pi}_{s,t} Y \to \tilde{\pi}_{s-1,t} F \to \dots \text{ for each } t.$$

Have corresponding long exact sequences for strict *f*-fibre sequences and cofibre sequences of $(S^1 \wedge T)$ -spectra.

Corollary 13.

There are natural isomorphisms $\tilde{\pi}_{s+1,t}(X \wedge S^1) \cong \tilde{\pi}_{s,t}X$.

Postnikov sections

E = a spectrum. The n^{th} Postnikov section is a functorial map $E \rightarrow P_n E$ such that $\pi_s E \rightarrow \pi_s P_n E$ is an isomorphism if $s \leq n$ and $\pi_s P_n E = 0$ for s > n.

The Postnikov tower can be constructed from the filtered colimits

$$P_n E \xrightarrow{\simeq} P_n P_{n+1} E \xrightarrow{\simeq} P_n P_{n+1} P_{n+2} E \xrightarrow{\simeq} \dots$$

The homotopy fibre $f_{n+1}E$ of the map $E \to P_nE$ is the *n*-connected cover. *E* is connective if $P_{-1}E \simeq *$ or $F_0E \xrightarrow{\simeq} E$.

$$\dots \to f_2 E \to f_1 E \to f_0 E = E$$

is the *slice filtration* of a connective spectrum *E*. The homotopy cofibre $s_n E$ of $f_{n+1}E \rightarrow f_n E$ is the n^{th} slice of *E*.

$$s_n E \simeq H(\pi_n E)[-n].$$

Construction of Postnikov sections

Formally invert the maps $* \to \Sigma^{\infty}(S^q)[-r]$, where q - r > n in the stable model structure.

Z is fibrant for this localized model structure if and only if Z is stably fibrant and all spaces

$$\hom(\Sigma^{\infty}S^{q}[-r],Z)\simeq \Omega^{q}Z^{r}$$

are contractible for q - r > n. Equivalently $\pi_s Z = 0$ for s > n.

Construct the fibrant model $E \rightarrow LE$ by killing stable homotopy group elements with cofibre sequences

$$\Sigma^{\infty}(S^q)[-r] \to E \to E'$$

Then $\pi_s E \to \pi_s L E$ is an isomorphism for $s \le n$ and $\pi_s L E = 0$ for s > n.

Set $P_n E = LE$.

Suppose that all $U \in C$ are compact up to *f*-equivalence (eg. motivic category).

In the stable *f*-local structure, invert the maps

$$* \to \Sigma^{\infty}_{S^1 \wedge T}(S^s \wedge T^t \wedge U_+)[-n], \ U \in \mathcal{C}, \ s,t \ge n, \ t-n > q.$$

Fibrant model: kill the groups $\pi_{s,t}Z(U)$ with t > q.

There is a strict *f*-local fibre sequence

$$f_{q+1}Z \to Z \xrightarrow{j} L_qZ =: s_{< q}Z$$

where j is the fibrant model for the localization.

Then
$$\pi_{s,t}(f_{q+1}Z) \cong \pi_{s,t}Z$$
 and $\pi_{s,t}(L_qZ) = 0$ for $t > q$.

The q^{th} slice $s_q Z$ is defined by the cofibre sequence

$$f_{q+1}Z \to f_qZ \to s_qZ,$$

for T-connective objects Z.

Z is *T*-connective if $f_0Z \rightarrow Z$ is stable *f*-equivalence.

Symmetric *T*-spectra

Motivic symmetric spectra

 \mathbb{G}_m -spectra

Motives: effective motives, Voevodsky's big category of motives

Motivic cohomology theories

References

J. F. Jardine.

Motivic symmetric spectra.

Doc. Math., 5:445-553 (electronic), 2000.

J. F. Jardine.

Local Homotopy Theory.

Manuscript, to appear in Springer Monographs in Mathematics, 2015.