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Galois groups

Suppose that K is a field with algebraic closure K .

Consider all subfields (subobjects)

K ⊂ L ⊂ K

which are finitely generated and Galois over K .

Each such L has the form

L = K 〈α1, . . . , αk〉 = K (α1, . . . , αn)

for a finite list of elements αi ∈ K .

K is the fixed subfield of the group of automorphisms
G = G (L/K ) of L over K .
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Galois extensions

FinK = all finite Galois extensions L/K in K forms a filtered
system under inclusion of subobjects inside K .

The system of inclusions L ⊂ K is part of the structure, and is a
geometric base point for the system.
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The absolute Galois group

Suppose given inclusions K ⊂ L1 ⊂ L2 in FinK .

Every automorphism θ of L2/K moves roots of polynomials, and
restricts to an automorphism θ∗ of L1/K . There is a diagram

L1
//

θ∗
��

L2

θ
��

K

77

''
L1

// L2

and θ 7→ θ∗ defines a homomorphism G (L2/K )→ G (L1/K ).

The assignment L 7→ G (L/K ) defines a contravariant functor

ΩK : Finop
K → Grp.

ΩK is the absolute Galois group of K . It is a pro-group, in fact a
pro-finite group.
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Pro-objects

A pro-object X in a category E is a (contravariant) functor

X : I op → E,

which is defined on a small filtered category I .

You can apply functors to pro-objects in one category to get
pro-objects in another.

Example: Every group G has a classifying space BG which has G
as a fundamental group and no other homotopy groups.

Composing the absolute Galois group with the classifying space
functor, ie.

Finop
K

ΩK−−→ Grp
B−→ sSet

defines a pro-object L 7→ BG (L/K ) in spaces.

This is the motivating example of an étale homotopy type (of the
field K ).
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Galois cohomology — naive

Each space Y has cohomology groups Hn(Y ,A), and the
assignment

Hn(ΩK ,A) = lim−→
L/K

Hn(BG (L/K ),A)

= lim−→
L/K

[BG (L/K ),K (A, n)]

= lim−→
L/K

π0hom(BG (L/K ),K (A, n))

(filtered colimit, defined on FinK ) defines a Galois cohomology
group of K , with constant coefficients in the abelian group A.

hom(BG (L/K ),K (A, n)) is the function complex of maps from
BG (L/K ) to K (A, n), and K (A, n) is an Eilenberg-Mac Lane space.

Rick Jardine Galois groups and groupoids, and pro homotopy types



Separable extensions

SepK is the category of finite separable extensions L/K , with all
field homomorphisms between them.

A morphism of SepK is a commutative diagram of field
homomorphisms

L1
θ // L2

K

]] AA

Example: If L/K is a finite Galois extension, the members of the
Galois group G (L/K ) are in SepK but not in FinK .

Every finite separable field extension F/K represents a covariant
functor

Sp(F ) : SepK → Set,

with
Sp(F )(N) = homK (F ,N).
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Galois groupoids

L/K is finite Galois, with Galois group G = G (L/K ).

G acts on the right on the functor Sp(L): θ · g is the composite
form

L
g−→ L

θ−→ N.

There’s a groupoid EG Sp(L)(N) here, given by diagrams

L
θ
''

g

��
N

L
γ

77

Such pictures are covariant in N, and so there is a functor

EG Sp(L) : SepK → Gpd

This is an étale sheaf of groupoids on K , defined by the finite
Galois extension L/K . Étale sheaves on K are ...
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The Borel construction

The categories EG Sp(L)(N) are groupoids. We apply the
classifying space functor B : cat→ sSet, and the composite

SepK
EG Sp(L)−−−−−→ cat

B−→ sSet

has a special name, ie.

EG ×G Sp(L) := B(EG Sp(L)).

This is the Borel construction for the action of the Galois group G
on the functor (étale sheaf, or scheme) Sp(L).

If C is a small category, the classifying space BC is the simplicial
set with n-simplices given by strings of morphisms

a0
α1−→ a1

α2−→ . . .
αn−→ an

of length n in C . A functor F : C → D induces a simplicial set
map F : BC → BD, by mapping strings to strings.

Rick Jardine Galois groups and groupoids, and pro homotopy types



The absolute Galois groupoid

If L1 ⊂ L2 are in FinK , with Galois groups G1 and G2 respectively,
then there are diagrams

L1
//

g∗

��

L2 θ
''

g

��
N

L1
// L2

γ

77

defined by restriction for each g ∈ G2, natural in N. These
functors therefore define natural transformations

EG2 Sp(L2)→ EG1 Sp(L1), EG2 ×G2 Sp(L2)→ EG1 ×G1 Sp(L1)

which together which define a functor

ΩK : Finop
K → GpdSepK .

and there is an induced functor

BΩK : Finop
K → sSetSepK .

This is the absolute Galois groupoid of the field K .
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ΩK is a pro-object in sheaves of groupoids (or sheaves of simplicial
sets) on the étale site et|K for the field K .

There is an obvious functor

EG Sp(L)(N)→ G

(G is a groupoid with one object) that strips off the information
about N, and which is also natural in L. It follows that there is a
natural transformation of functors

π : EG ×G Sp(L)→ BG

which respects restriction, and therefore defines a morphism

BΩK → BΩK

from the absolute Galois groupoid to the absolute Galois group,
where the latter is identified with a pro-object of constant sheaves.

Rick Jardine Galois groups and groupoids, and pro homotopy types



Galois cohomology

An abelian sheaf for the étale topology on K is an abelian
group-valued functor

A : SepK → Ab

which respects fixed points of Galois groups.

There are isomorphisms

Hn
Gal(ΩK ,A) ∼= lim−→

L∈FinK

π(EG ×G Sp(L),K (A, n))

∼= lim−→
L∈FinK

π0hom(EG ×G Sp(L),K (A, n))

∼= [∗,K (A, n)],

where the last thing is morphisms in a homotopy category of
simplicial sheaves (or presheaves) for the étale topology on K .
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Non-abelian cohomology

There is a similar story for non-abelian H1. Here’s the first
example:

Suppose that On is the algebraic group of automorphisms of the
trivial non-degenerate symmetric bilinear form over K . There are
isomorphisms

H1
Gal(ΩK ,On) ∼= lim−→

L∈FinK

π(EG ×G Sp(L),BOn)

∼= lim−→
L∈FinK

π0hom(EG ×G Sp(L),BOn)

∼= [∗,BOn].

H1
Gal(ΩK ,On), aka. the set of isomorphism classes of On-torsors, is

identified with isomorphism classes of non-degenerate symmetric
bilinear forms of rank n over K , by a classical argument.
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Étale homotopy types

The object EG ×G Sp(L) is represented by a simplicial scheme,
with n-simplices ⊔

G×n

Sp(L).

The scheme Sp(L) has one connected component (in the Zariski
topology), so the simplicial set of connected components of
EG ×G Sp(L) is BG .

An étale homotopy type for a scheme X is constructed by taking a
cofinal family of representable hypercovers U → X , which produces
the pro-object U 7→ π0(U) in simplicial sets.
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Hypercovers

The natural transformation EG ×G Sp(L)→ ∗ is a hypercover,
because all simplicial sets

EG ×G Sp(L)(N)

are nerves of groupoids (hence Kan complexes), and are
contractible if non-empty (in which case EG ×G Sp(L)(N) is a
copy of EG up to isomorphism).

Simplicial sheaves X ,Y are functors SepK → sSet, and a natural
transformation p : X → Y is a hypercover if the induced map

lim−→
L∈FinK

X (L)→ lim−→
L∈FinK

Y (L)

is a trivial fibration of simplicial sets, or has the right lifting
property wrt. all inclusions ∂∆n ⊂ ∆n.

In old days (eg. [1]), hypercovers X → ∗ were represented by
simplicial schemes.
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Pro-categories

Every pro-object X : I op → E represents a functor

X∗ : E→ Set,

which is defined by

Z 7→ lim−→
i∈I

hom(X (i),Z ) = X∗(Z )

(filtered colimit — covariant in I ), where the morphisms are in E.

If Y : Jop → E is another pro-object, the collection of all natural
transformations

f : Y∗ → X∗.

is the set of the pro-maps X → Y .

We now have objects and morphisms for the category pro-E of
pro-objects in E.

This is Grothendieck’s original description of the pro-category.
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Examples

1) An object Z of E is a pro-object Z : ∗ → E.

A pro-map X → Z is a member of the set

lim−→
i∈I

hom(X (i),Z ).

A pro-map Z → X is a member of the set

lim←−
i∈I

hom(Z ,X (i)).

The proofs amount to tricks with the Yoneda Lemma.

2) All natural transformations X → Y of I -diagrams (I filtered)
define pro-maps.
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Cofinal functors

There is an intuitive sense of what cofinality means:

2N is a cofinal subcategory of N — every number is less than an
even number.

There is a standard description of what it means for a functor
φ : I → J between filtered categories to be cofinal: the slice
categories j/φ are filtered for all j ∈ J.

This is equivalent to the assertion that the slice categories j/φ are
contractible for all j ∈ J. (⇒ Quillen’s Theorem A)

If φ : I → J is a functor between filtered categories and
Y : Jop → E is a pro-object, then restriction along φ defines a
pro-map Y · φ→ Y .

Fact: The map Y · φ→ Y is an isomorphism in the pro-category
if φ is cofinal.
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Pro-objects in simplicial sets

Theorem: Every finite diagram in the pro-category can be replaced
up to isomorphism by a diagram of natural transformations [1].

Example: A pro-map is a monomorphism in the pro-category if it
is isomorphic to a natural transformation which is a sectionwise
monomorphism [3].

This is the starting point for a model structure (or homotopy
theory) for pro-sSet of pro-objects of Edwards and Hastings [2].

The cofibrations for their theory (the EH model structure) are the
monomorphisms of pro-sSet.

A pro-map f : X → Y is a weak equivalence if and only if it
induces weak equivalences

lim−→
j∈J

hom(Y (j),Z )→ lim−→
i∈I

hom(X (i),Z )

for all Kan complexes (aka. fibrant objects) Z .
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Pro-weak equivalences

The EH structure is not the model structure for pro-simplicial sets
that has calculational interest.

For that, one localizes using the Postnikov tower functor, so that a
pro-map X → Y is a pro-weak equivalence if and only if the
induced map P∗X → P∗Y is a weak equivalence for the
EH-structure.

The localization step is a formality.

It amounts to changing focus to pro-simplicial sets which have only
finitely many non-trivial homotopy groups in each section.
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Pro-objects in simplicial presheaves

The EH model structure and the localization via Postnikov towers
have analogues for pro-objects in simplicial presheaves [3].

Cofibrations are monomorphisms, and weak equivalences are those
maps which induce weak equivalences

lim−→
j∈J

hom(Y (j),Z )→ lim−→
i∈I

hom(X (i),Z )

for all injective fibrant objects Z .

We can again localize at the Postnikov tower construction to
produce a pro-homotopy theory for simplicial presheaves (or
sheaves).

This theory is the right setting for resolving the finite descent vs.
Galois cohomological descent question that used to afflict algebraic
K -theorists [5].
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Generalized pro-objects

Let’s talk about small diagrams X : I → sSet, where the index
category I is not necessarily filtered.

Given another such thing Y : J → sSet, what’s the right way to
describe a “pro-morphism” Y → X?

Suppose that Z is fixed. The colimit

lim−→
i∈I

hom(X (i),Z )

is the set of path components of the category TX (Z ), having maps

X (i)
((

α∗
��

Z

X (i ′)

66

Any map Z →W induces a functor TX (Z )→ TX (W ), and we
have a functor

TX : sSet→ cat.
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Morphisms

Suppose that Y : J → sSet is another small diagram. What is a
natural transformation TX → TY of functors sSet→ cat?

Such a thing consists of a functor α : I → J and a natural
transformation θ : Y · α→ X , with a commutative diagram

TX
θ∗ //

π
��

TY ·α
iα //

π
��

TY

π
��

I
1

// I α
// J

such that the composite iα · θ∗ is the transformation TX → TY .

The category of small diagrams X : I → sSet and (reversed)
natural transformations (α, θ) of slice functors is a Grothendieck
construction. This is the generalized pro-category.
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Weak equivalences

Any pair (α, θ) (any “pro-map”) induces a commutative diagram

holim−−−→ I hom(X ,Z )
θ∗//

π

��

holim−−−→ I hom(Y · α,Z )
iα //

π

��

holim−−−→ J hom(Y ,Z )

π

��
BI

1
// BI α

// BJ

for all Z .

I say that a morphism (α, θ) : Y → X is a generalized
EH-equivalence if

1) the top composite is a weak equivalence for all fibrant Z , and

2) if the map α : BI → BJ is a weak equivalence.

Rick Jardine Galois groups and groupoids, and pro homotopy types



Remarks

1) This definition “specializes” to Edwards-Hastings weak
equivalences of ordinary pro-objects, because all filtered categories
are contractible and filtered colimits are homotopy colimits.

2) The definition is motivated, in part, by existing work on
homotopy theories of dynamical systems, where one varies
dynamical systems and parameter spaces simultaneously.
Homotopy colimits correspond to spaces of dynamics [4].

Questions:

What’s a cofibration?

What’s a fibration?

Is there even a model structure?
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How I spent my summer

Here’s a relatively straightforward statement:

Proposition: Suppose that I is a small filtered category. Then
there is a model structure on the category of I -diagrams for which
the cofibrations are the sectionwise monomorphisms, and the weak
equivalences are the EH-equivalences.

The following is more interesting:

Theorem: Suppose that I is a small category. Then there is a
model structure on the category of I -diagrams for which the
cofibrations are the sectionwise monomorphisms, and the weak
equivalences are the generalized EH-equivalences.

A generalized EH-equivalence is a natural transformation X → Y
of I -diagrams which induces a weak equivalence

holim−−−→ i∈I hom(Y (i),Z )→ holim−−−→ i∈I hom(X (i),Z )

for all fibrant Z .
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