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Abstract

By analogy with methods of Spivak, there is a realization functor which
takes a persistence diagram Y in simplicial sets to an extended pseudo-
metric space (or ep-metric space) Re(Y ). The functor Re has a right
adjoint, called the singular functor, which takes an ep-metric space Z to a
persistence diagram S(Z). We give an explicit description of Re(Y ), and
show that it depends only on the 1-skeleton sk1 Y of Y . If X is a totally
ordered ep-metric space, then there is an isomorphism Re(V∗(X)) ∼= X,
between the realization of the Vietoris-Rips diagram V∗(X) and the ep-
metric space X. The persistence diagrams V∗(X) and S(X) are section-
wise equivalent for all such X.

Introduction

An extended pseudo-metric space, here called an ep-metric space, is a set X
together with a function d : X ×X → [0,∞] such that the following conditions
hold:

1) d(x, x) = 0,

2) d(x, y) = d(y, x),

3) d(x, z) ≤ d(x, y) + d(y, z).

There is no condition that d(x, y) = 0 implies x and y coincide — this is where
the adjective “pseudo” comes from, and the gadget is “extended” because we
are allowing an infinite distance.

*Supported by NSERC.
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A metric space is an ep-metric space for which d(x, y) = 0 implies x = y,
and all distances d(x, y) are finite.

The traditional objects of study in topological data analysis are finite metric
spaces X, and the most common analysis starts by creating a family of simplicial
complexes Vs(X), the Vietoris-Rips complexes for X, which are parameterized
by a distance variable s.

To construct the complex Vs(X), it is harmless at the outset is to list the
elements of X, or give X a total ordering — one can always do this without dam-
aging the homotopy type. Then Vs(X) is a simplicial complex (and a simplicial
set), with simplices given by strings

x0 ≤ x1 ≤ · · · ≤ xn

of elements of X such that d(xi, xj) ≤ s for all i, j. If s ≤ t then there is an
inclusion VsX ⊂ Vt(X), and varying the distance parameter s gives a diagram
(functor) V∗(X) : [0,∞]→ sSet, taking values in simplicial sets.

Following Spivak [4] (sort of), one can take an arbitrary diagram Y : [0,∞]→
sSet, and produce an ep-metric space Re(Y ), called its realization. This real-
ization functor has a right adjoint S, called the singular functor, which takes an
ep-metric space Z and produces a diagram S(Z) : [0,∞] → sSet in simplicial
sets.

One needs good cocompleteness properties to construct the realization func-
tor Re. Ordinary metric spaces are not well behaved in this regard, but it is
shown in the first section (Lemma 3) that the category of ep-metric spaces has
all of the colimits one could want. Then Re(Y ) can be constructed as a colimit
of finite metric spaces Uns , one for each simplex ∆n → Ys of some section of Y .

The metric space Uns is the set {0, 1, . . . , n}, equipped with a metric d,
where d(i, j) = s for i 6= j. A morphism Uns → Z of ep-metric spaces is a list
(x0, x1, . . . , xn) of elements of Z such that d(xi, xj) ≤ s for all i, j. Such lists
have nothing to with orderings on Z, and could have repeats.

With a bit of categorical homotopy theory, one shows (Proposition 7) that
Re(Y ) is the set of vertices of the simplicial set Y∞ (evaluation of Y at ∞),
equipped with a metric that is imposed by the proof of Lemma 3.

One wants to know about the homotopy properties of the counit map η : Y →
S(Re(Y )), especially when Y is an old friend such as the Vietoris-Rips system
V∗(X). But Re(V∗(X)) is the original metric space X (Example 13), the object
S(X) is the diagram [0,∞] → sSet with (S(X)t)n = hom(Unt , X), and the
counit η : Vt(X)→ St(X) in simplicial sets takes an n-simplex σ : ∆n → Vt(X)
to the list (σ(0), σ(1), . . . , σ(n)) of its vertices.

We show in Section 3 (Theorem 16, the main result of this paper) that the
map η : Vt(X)→ St(X) is a weak equivalence for all distance parameter values
t. The proof proceeds in two main steps, and involves technical results from the
theory of simplicial approximation. The steps are the following:

1) We show (Lemma 14) that the map η induces a weak equivalence η∗ :
BNVt(X)→ BNSt(X), where η∗ : NVt(X)→ NSt(X) is the induced compar-
ison of posets of non-degenerate simplices. Here, Vt(X) is a simplicial complex,
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so that BNVt(X) is a copy of the subdivision sd(Vt(X)), and is therefore weakly
equivalent to Vt(X).

2) There is a canonical map π : sdSt(X) → BNSt(X), and the second step
in the proof of Theorem 16 is to show (Lemma 15) that this map π is a weak
equivalence.

It follows that the map η induces a weak equivalence sd(Vt(X)) → sd(St(X)),
and Theorem 16 is a consequence.

The fact that the space St(X) is weakly equivalent to Vt(X) for each t
means that we have yet another system of spaces S∗(X) that models persistent
homotopy invariants for a data set X.

One should bear in mind, however, that St(X) is an infinite complex. To
see this, observe that if x0 and x1 are distinct points in X with d(x0, x1) ≤ t,
then all of the lists

(x0, x1, x0, x1, . . . , x0, x1)

define non-degenerate simplices of St(X).
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1 ep-metric spaces

An extended pseudo-metric space [2] (or an uber metric space [4]) is a set Y ,
together with a function d : Y × Y → [0,∞], such that the following conditions
hold:

a) d(x, x) = 0,

b) d(x, y) = d(y, x),

c) d(x, z) ≤ d(x, y) + d(y, z).

Following [3], I use the term ep-metric spaces for these objects, which will be
denoted by (Y, d) in cases where clarity is required for the metric.

Every metric space (X, d) is an ep-metric space, by composing the distance
function d : X ×X → [0,∞) with the inclusion [0,∞) ⊂ [0,∞].
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A morphism between ep-metric spaces (X, dX) and (Y, dY ) is a function
f : X → Y such that

dY (f(x), f(y)) ≤ dX(x, y).

These morphisms are sometimes said to be non-expanding [2].
I shall use the notation ep−Met to denote the category of ep-metric spaces

and their morphisms.

Example 1 (Quotient ep-metric spaces). Suppose that (X, d) is an ep-metric
space and that p : X → Y is a surjective function.

For x, y ∈ Y , set

D(x, y) = inf
P

∑
i

d(xi, yi), (1)

where each P consists of pairs of points (xi, yi) with x = x0 and yk = y, such
that p(yi) = p(xi+1).

Certainly D(x, x) = 0 and D(x, y) = D(y, x). One thinks of each P in
the definition of D(x, y) as a “polygonal path” from x to y. Polygonal paths
concatenate, so that D(x, z) ≤ D(x, y) + D(y, z), and D gives the set Y an
ep-metric space structure. This is the quotient ep-metric space structure on Y .

If x, y are elements of X, the pair (x, y) is a polygonal path from x to y, so
that D(p(x), p(y)) ≤ d(x, y). It follows that the function p defines a morphism
p : (X, d)→ (Y,D) of ep-metric spaces.

Example 2 (Dividing by zero). Suppose that (X, d) is an ep-metric space.
There is an equivalence relation on X, with x ∼ y if and only if d(x, y) = 0.
Write p : X → X/ ∼ =: Y for the corresponding quotient map.

Given a polygonal path P = {(xi, yi)} from x to y inX as above, d(yi, xi+1) =
0, so the sum corresponding to P in (1) can be rewritten as

d(x, y0) + d(y0, x1) + d(x1, y1) + · · ·+ d(xk, y).

It follows that d(x, y) ≤ D(p(x), p(y)), whereas D(p(x), p(y)) ≤ d(x, y) by con-
struction.

Thus, if D(p(x), p(y)) = 0, then d(x, y) = 0 so that p(x) = p(y).

Lemma 3. The category ep−Met of ep-metric spaces is cocomplete.

Proof. The empty set is the initial object for this category,
Suppose that (Xi, di), i ∈ I, is a list of ep-metric spaces. Form the set

theoretic disjoint union X = ti Xi, and define a function

d : X ×X → [0,∞]

by setting d(x, y) = di(x, y) if x, y belong to the same summand Xi and d(x, y) =
∞ otherwise. Any collection of morphisms fi : Xi → Y in ep −Met defines a
unique function f = (fi) : X → A, and this function is a morphism of ep−Met
since

d(f(x), f(y)) = d(fi(x), fj(y)) ≤ ∞ = d(x, y)
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if x ∈ Xi and y ∈ Xj with i 6= j.
Suppose given a pair of morphisms

A
f //

g
// X

in ep −Met, and form the set theoretic coequalizer π : X → C. The function
p is the canonical map onto a set of equivalence classes of X, which classes are
defined by the relations f(a) ∼ g(a) for a ∈ A. We give C the quotient ep-metric
space structure, as in Example 1.

Suppose that α : (X, dX)→ (Z, dZ) is an morphism of ep-metric spaces such
that α ·f = α ·g. Write α∗ : C → Z for the unique function such that α∗ ·p = α.

Suppose given a polygonal path P = {(xi, yi)} from x to y in X. Then
α(yi) = α(xi+1), so that

dY (α(x), α(y)) ≤
∑
i

dY (α(xi), α(yi)) ≤
∑
i

dX(xi, yi).

This is true for every polygonal path from x to y in X, so that

dY (α∗p(x), α∗p(y)) ≤ dC(p(x), p(y)).

It follows that α∗ : (C, dC)→ (Z, dZ) is a morphism of ep-metric spaces.

Example 4 (“Bad” filtered colimit). If one starts with a diagram of metric
spaces, the colimit C that is produced by Lemma 3 is an ep-metric space, and it
may be that d(x, y) = 0 in the coequalizer C for some elements x, y with x 6= y.

In particular, suppose that Xs = {( 1
s
√

2
, 0), (0, 1

s
√

2
)} ⊂ R2 for 0 < s < ∞.

Write ps = ( 1
s
√

2
, 0) and qs = (0, 1

s
√

2
) in Xs. Then d(ps, qs) = 1

s . For s ≤ t

there is an ep-metric space map Xs → Xt which is defined by ps 7→ pt and
qs 7→ qt.

The filtered colimit lim−→s
Xs has two distinct points, namely p∞ and q∞,

and d(p∞, q∞) ≤ d(ps, qs) = 1
s for all s > 0. It follows that d(p∞, q∞) = 0,

whereas p∞ 6= q∞.

Lemma 5. Suppose that X is an ep-metric space. Then there is an isomorphism
of ep-metric spaces

ψ : lim−→
F

F
∼=−→ X,

where F varies over the finite subsets of X, with their induced ep-metric space
structures.

Proof. The collection of finite subsets of X is filtered, and the set X is a filtered
colimit of its finite subsets, so the function defining the ep-metric space map ψ
is a bijection. Write d∞ for the metric on the filtered colimit.

If x, y ∈ X and d(x, y) = s ≤ ∞ in X, then there is a finite subset F with
x, y ∈ F such that d(x, y) = s in F . The list (x, y) is a polygonal path from x
to y in F , so that d∞(x, y) ≤ d(x, y). It follows that d(x, y) = d∞(x, y), and so
ψ is an isomorphism.
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An ep-metric space (X, d) has an associated system of posets P∗(X) : [0,∞]→
sSet, where Ps(X) is the collection of finite subsets F of X such that d(x, y) ≤ s
for any two members x, y of X.

This construction defines a system of abstract simplicial complexes V∗(X),
which can be constructed entirely within simplicial sets when X has a total or-
dering. In that case, the n-simplices of the simplicial set Vs(X) are the strings
x0 ≤ x1 ≤ · · · ≤ xn such that d(xi, xj) ≤ s. The diagram V∗(X) : [0,∞]→ sSet
is the Vietoris-Rips system. The spaces Vs(X) are independent up to weak
equivalence of the ordering on X, because there is a canonical weak equiva-
lence (a “last vertex map”) γ : BPs(X) → Vs(X) of systems, while the spaces
BPs(X) are defined independently from the ordering. In classical terms, the
nerve BPs(X) of the poset Ps(X) (non-degenerate simplices of the Vietoris-
Rips complex Vs(X)) is the barycentric subdivision of Vs(X).

Example 6 (Excision for path components). Suppose that X and Y are finite
subsets of an ep-metric space Z, with the induced ep-metric space structures.
Consider the inclusions of finite ep-metric spaces

X ∩ Y //

��

Y

��
X // X ∪ Y

inside Z. Write X ∪m Y for the corresponding pushout in the category of ep-
metric spaces. The unique map

X ∪m Y → X ∪ Y

of ep-metric spaces is the identity on the underlying point set. Write dm for the
metric on X ∪m Y . Then dm(x, y) is the minimum of sums∑

d(xi, xi+1), (2)

indexed over paths
P : x = x0, x1, . . . .xn = y,

such that for each i the points xi, xi+1 are either both in X or both in Y .
All sums in (2) are finite, and dm(x, y) is realized by a particular path P

since X and Y are finite. Note that d(x, y) ≤ dm(x, y), by construction, and
that d(x, y) = dm(x, y) if x, y are both in either X or Y .

There are induced simplicial set maps

Vs(X) ∪ Vs(Y )→ Vs(X ∪m Y )→ Vs(X ∪ Y ),

all of which are the identity on vertices. There is a 1-simplex σ = {x, y} of
Vs(X ∪m Y ) if and only if there is a path

P : x = x0, x1, . . . , xn = y
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consisting of 1-simplices in either X or Y , such that∑
d(xi, xi+1) ≤ s.

Then all d(xi, xi+1) ≤ s, so that x and y are in the same path component of
Vs(X) ∪ Vs(Y ). It follows that there is an induced isomorphism

π0(Vs(X) ∪ Vs(Y )) ∼= π0Vs(X ∪m Y ). (3)

The isomorphisms (3) induce isomorphisms

π0(Vs(X) ∪ Vs(Y )) ∼= π0Vs(X ∪m Y ). (4)

for arbitrary subsets X and Y of an ep-metric space Z, by an application of
Lemma 5.

2 Metric space realizations

Write Uns for the collection of axis points xi = s√
2
ei, where

ei = (0, . . . ,
i+1
1 , . . . , 0) ∈ Rn+1.

for 0 ≤ i ≤ n. Observe that d(xi, xj) = s in Rn+1 for i 6= j. Another way of
looking at it: Uns is the set n = {0, 1, . . . , n} with d(i, j) = s for i 6= j.

An ep-metric space morphism f : Uns → Y consists of points f(xi), 0 ≤ i ≤
n, such that dY (f(xi), f(xj)) ≤ s for all i, j.

Write sSet[0,∞] for the category of diagrams (functors) X : [0,∞] → sSet
and their natural transformation, which take values in simplicial sets and are
defined on the poset [0,∞]. I usually write s 7→ Xs for such a diagram X. In
particular, X∞ is the value that the diagram X takes at the terminal object of
[0,∞].

Suppose that K is a simplicial set. The representable diagram LsK satisfies
the universal property

hom(LsK,X) ∼= hom(K,Xs).

One shows that

(LsK)t =

{
∅ if t < s,

K if t ≥ s.

The set of maps Ls∆
n → X can be identified with the set of n-simplices of the

simplicial set Xs.
A morphism Lt∆

m → Ls∆
n consists of a relation s ≤ t and a simplicial map

θ : ∆m → ∆n. In the presence of such a morphism, the function θ : m → n
defines an ep-metric space morphism Umt → Uns , since s = d(θ(i), θ(j)) ≤
d(i, j) = t.
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2.1 The realization functor

Suppose that X : [0,∞] → sSet is a diagram. The category ∆/X of simplices
of X has maps Ls∆

n → X as objects and commutative diagrams

Lt∆
m θ //

τ
��

Ls∆
n

σ
��

X

as morphisms.
Equivalently, a simplex of X is a simplicial set map ∆n → Xs, and a mor-

phism of simplices is a diagram

∆m θ //

τ

��

∆n

σ

��
Xt Xs
oo

(5)

Every simplex ∆n → Xs determines a simplex

∆n → Xs → X∞,

and we have a functor r : ∆/X →∆/X∞, where ∆/X∞ is the simplex category
of the simplicial set X∞.

There is an inclusion i : ∆/X∞ → ∆/X, and the composite r · i is the
identity. The maps

∆n 1 //

r(σ)

��

∆n

σ

��
X∞ Xs
oo

(6)

define a natural transformation h : i · r → 1.
There is a functor

∆/X → sSet (7)

which takes a morphism (5) to the map θ : ∆m → ∆n.
The translation category EX for the functor (7) is a simplicial category that

has objects consisting of pairs (σ, x) where σ : ∆n → Xs and x ∈ ∆n (of a
fixed dimension). A morphism (τ, y) → (σ, x) of EX is a morphism θ : τ → σ
as in (5) such that θ(y) = x. The path component simplicial set π0EX of the
category EX is isomorphic to the colimit

lim−→
Ls∆n→X

∆n.

There is a correponding translation category EX∞ for the functor which
takes the simplex ∆n → X∞ to the simplicial set ∆n, and there is an induced
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functor i∗ : EX∞ ⊂ EX . The functor r : ∆/X → ∆/X∞ induces a functor
r∗ : EX → EX∞ . The composite r∗ · i∗ is the identity on EX∞ , and the map (6)
defines a natural transformation i∗ · r∗ → 1 of functors EX∞ → EX∞ .

The translation categories EX and EX∞ are therefore homotopy equivalent,
and thus have isomorphic simplicial sets of path components. It follows that
there are isomorphisms of simplicial sets

X∞
∼=←− lim−→

∆n→X∞
∆n ∼=−→ lim−→

Ls∆n→X
∆n (8)

Suppose that X : [0,∞]→ sSet is a diagram, and set

Re(X) = lim−→
Ls∆n→X

Uns

in the category of ep-metric spaces.
It follows from the identifications of (8) that Re(X) is the set of vertices of

X∞, equipped with an ep-metric space structure.
If x and y are two such vertices, and are the boundary of a 1-simplex

∆1 → Xs → X∞

then x and y are in the image of a map U1
s → Re(X), so that d(x, y) ≤ s. If

there is a sequence of 1-simplices ωi : ∆1 → Xsi that define a polygonal path

P : x = x0 � x1 � · · ·� xk = y

of 1-simplices in X∞, then d(x, y) ≤
∑
i si by definition. Formally, we set

d(x, y) = inf
P
{
∑
i

si}. (9)

provided such polygonal paths exist. Otherwise, we set d(x, y) =∞.
The resulting metric d is the metric which is imposed on the set of vertices

of X∞ by the requirement that

Re(X) = lim−→
Ls∆n→X

Uns

in the category of ep-metric spaces — see Lemma 3. We have shown the follow-
ing:

Proposition 7. Suppose that X : [0,∞] → sSet is a diagram. Then the ep-
metric space Re(X) has underlying set given by the set of vertices of X∞, with
metric defined within path components by (9). Elements x and y that are in
distinct path components have d(x, y) =∞.

Example 8 (Realization of Vietoris-Rips systems). Suppose that X is a finite
ep-metric space, and that X is totally ordered.
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The realization Re(V∗(X)) has X as its underlying set, and V∞(X) = ∆X

is a finite simplex, which is connected, so that there is a finite polygonal path
in X between any two points x, y ∈ X. We have a relation

d(x, y) ≤
∑
i

si

in X for any polygonal path P which is defined by 1-simplices ωi ∈ Vsi(X).
This means that d(x, y) in X coincides with the distance between x and y in
the metric space Re(X). It follows that the identity on the set X induces an
isomorphism of ep-metric spaces

φ : Re(V∗(X))
∼=−→ X.

This map φ is an isomorphism of ep-metric spaces, by Lemma 5 and the
previous paragraphs.

Example 9 (Degree Rips systems). Continue with a finite totally ordered ep-
metric space X as in Example 8, let k be a positive integer, and consider the
degree Rips system L∗,k(X). We choose k such that the system of complexes
L∗,k(X) is non-empty, ie. such that k ≤ |X|. Then Lt,k(X) = Vt(X) for t
sufficiently large, and X is the underlying set of Re(L∗,k(X)).

The maps
Re(L∗,k(X))→ Re(V∗(X))→ X

are isomorphisms of metric spaces, by a cofinality argument.

Here is a special case:

Lemma 10. Suppose that K is a simplicial complex and that s > 0. Then
Re(LsK) = Re(Ls sk1(K)), and Re(LsK) is the set of vertices K0 with a metric
d defined by

d(x, y) =

{
∞ if [x] 6= [y] in π0(K),

minP s · k if [x] = [y].

where P varies through the polygonal paths

P : x = x0 � x1 � · · ·� xk = y

of 1-simplices between x and y.

Proof. Write Re(K) = Re(LsK). The simplicial set K is a colimit of its sim-
plices, and so there is an isomorphism

lim−→
∆n→K

Ls∆
n ∼=−→ LsK.

It follows that there is an isomorphism

lim−→
∆n→K

Uns
∼=−→ Re(LsK).
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Suppose that n ≥ 2. Then ∂∆n and ∆n have the same vertices, and any
two vertices x, y are on a common face ∆n−1 ⊂ ∆n. It follows that d(x, y) = s
in Re(∂∆n) and Re(∆n), and the induced map

Re(∂∆n)→ Re(∆n)

is an isomorphism for n ≥ 2.
The displayed metric d on the vertices of K defines a metric space Re(K),

with maps σ∗ : Uns → Re(K) for all simplices σ : ∆n → K, which maps are
natural with respect to the simplicial structure of K.

Any family of metric space morphisms fσ : Uns → Y determines a unique
function f : K0 → Y . Also, d(f(x), f(y)) ≤ s if x, y are in a common sim-
plex ∆1 → K. If P is a polygonal path between x and y as above, then
d(f(x), f(y)) ≤ k ·s. This is true for all such polygonal paths, so d(f(x), f(y)) ≤
d(x, y).

If x and y are in distinct components of K, then d(f(x), f(y)) ≤ d(x, y) =
∞.

The following result says that the realization Re(X) of a diagram X :
[0,∞]→ sSet depends only on the associated diagram of graphs sk1(X).

Lemma 11. Suppose that X : [0,∞]→ sSet is a diagram. Then the inclusion
sk1X ⊂ X induces an isomorphism

Re(sk1X)
∼=−→ Re(X).

Proof. The diagram of 1-skeleta sk1X is a colimit

lim−→
Ls∆n→X

Ls sk1 ∆n,

since the functor sk1 preserves colimits. There are commutative diagrams

Re(Ls sk1 ∆n) //

∼=
��

Re(sk1X)

��
Re(Ls∆

n) // Re(X)

that are natural in the simplices of X, and it follows that the induced map
Re(sk1X)→ Re(X) is an isomorphism, as required.

2.2 Partial realizations

Suppose again that X : [0,∞] → sSet is a diagram in simplicial sets. We
construct partial realizations by writing

Re(X)s = lim−→
Lt∆n→X, t≤s

Unt .
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This is the colimit of a functor taking values in ep-metric spaces, which is defined
on the full subcategory ∆/X≤s of ∆/X having objects Lt∆

n → X with t ≤ s.
A map Lt∆

n → X can be identified with a simplex ∆n → Xt, and the relation
t ≤ s defines a simplex ∆n → Xt → Xs, so that we have a functor

r : ∆/X≤s →∆/Xs,

along with an inclusion i : ∆/Xs ⊂∆/X≤s. The composite r · i is the identity,
and the composite i · r is homotopic to the identity, just as before.

There is a functor ∆/X≤s → sSet which takes a simplex ∆n → Xt to the
simplicial set ∆n. By manipulating path components of homotopy colimits, one
finds isomorphisms

Xs

∼=←− lim−→
∆n→Xs

∆n ∼=−→ lim−→
Lt∆n→X, t≤s

∆n.

that are analogous to the isomorphisms of (9). It follows, as in Theorem 7, that
the set underlying the metric space Re(X)s is the set of vertices of the simplicial
set Xs.

The metric d on (Xs)0 is defined as before: d(x, y) = ∞ if x and y not in
the same path component of Xs. Otherwise

d(x, y) = inf
P
{
∑

ti}, (10)

indexed over all polygonal paths

P : x = x0 � x1 � · · ·� xk = y

that are defined by 1-simplices ω : ∆1 → Xti with ti ≤ s.
We then have the following analogue of Proposition 7:

Proposition 12. Suppose that X : [0,∞] → sSet is a functor. Then the ep-
metric space Re(X)s has underlying set given by the set of vertices of Xs, with
metric defined within path components by (10). Elements x, y in distinct path
components have d(x, y) =∞.

The map Xs → X∞ defines a map Re(X)s → Re(X) and Re(X)∞ = Re(X).
There is an isomorphism of ep-metric spaces

lim−→
s

Re(X)s
∼=−→ Re(X), (11)

since the element ∞ is terminal in [0,∞] and Re(X)∞ = Re(X).

Example 13 (Partial metrics for Vietoris-Rips complexes). Suppose that X
is a finite totally ordered ep-metric space. Consider the associated functor
V∗(X) : [0,∞]→ sSet.

The associated ep-metric space Re(X)s has underlying set X. We have
d(x, y) =∞ if x, y are in distinct path components of Vs(X). Otherwise

d(x, y) = inf
P
{
∑

d(xi, xi+1)},

12



indexed over all polygonal paths

P : x = x0, x1, . . . , xn = y,

with d(xi, xi+1) ≤ s.
If d(x, y) = t ≤ s in X then d(x, y) = t in Re(X)s. Otherwise, the distance

between x and y in the same path component of Re(X)s is more interesting —
it is achieved by a particular path P since X is finite, and d(x, y) is a type of
weighted path length.

We see in Example 8 that there is an isomorphism of ep-metric spaces φ :

Re(V∗(X))
∼=−→ X. It follows that there is an ep-metric space map φs : Re(X)s →

X which is the identity on the underlying point set X, and compresses distances.

3 The singular functor

The right adjoint S of the realization functor Re is defined for an ep-metric
space Y by

S(Y )s,n = hom(Uns , Y ),

where hom(Uns , Y ) is the collection of ep-metric space morphisms Uns → Y .
Equivalently, S(Y )s,n is the set of families of points (x0, x1, . . . , xn) in Y such
that d(xi, xj) ≤ s.

A simplex (x0, x1, . . . , xn) is alternatively a function n → Y (a “bag of
words”), with a distance restriction. There is no requirement that the elements
xi are distinct. This simplex is non-degenerate if and only if xi 6= xi+1 for
0 ≤ i ≤ n− 1.

Suppose that an ep-metric space X is totally ordered, as in Example 8 above.
Then, in view of the discussion of Example 8, the canonical map η : V∗(X) →
S Re(V∗(X)) consists of functions η : Vt(X) → St(X) which send simplices
σ : x0 ≤ x1 ≤ · · · ≤ xn with d(xi, xj) ≤ t to the list of points (x0, x1, . . . , xn).

If σ is non-degenerate, so that the vertices xi are distinct, then η(σ) is a
non-degenerate simplex of St(X).

The poset NZ of non-degenerate simplices of a simplicial set Z has σ ≤ τ
if there is a subcomplex inclusion 〈σ〉 ⊂ 〈τ〉, where 〈σ〉 is the subcomplex of Z
which is generated by the simplex σ. Equivalently, σ ≤ τ if there is an ordinal
number map θ such that θ∗(τ) = σ.

The map η induces a morphism η∗ : NVt(X) → NSt(X) of posets of non-
degenerate simplices.

Lemma 14. Suppose that X is a totally ordered ep-metric space. Then the
induced simplicial set map

η∗ : BNVt(X)→ BNSt(X)

of associated nerves is a weak equivalence.

13



Proof. Given a non-degenerate simplex σ ∈ St(X), write L(σ) for its list of
distinct elements.

Suppose that 〈τ〉 ⊂ 〈σ〉, where τ and σ are non-degenerate simplices of
St(X). Then τ = s · d(σ) for an (iterated) face map d and degeneracy s. Then

L(τ) = L(s · d(σ)) = L(d(σ)) ⊂ L(σ).

It follows that the assignment σ 7→ L(σ) defines a poset morphism

L : NSt(X)→ NVt(X).

The composite

NVt(X)
η−→ NSt(X)

L−→ NVt(X)

is the identity on NVt(X).
Consider the composite poset morphism

NSt(X)
L−→ NVt(X)

η−→ NSt(X). (12)

Given a non-degenerate simplex τ = (y0, . . . yr) of St(X), write L(τ) = (s0, . . . sk)
for the list of distinct elements of τ , in the order specified by the total order for
X. Then the list

V (τ) = (y0, . . . , yr, s0, . . . , sk)

is a simplex of St(X), since each sj is some yij , and there are relations

〈τ〉 ≤ 〈V (τ)〉 ≥ 〈L(τ)〉

as subcomplexes of St(X).
The simplex V (τ) has the form V (τ) = s(V∗(τ)) for a unique iterated de-

generacy s and a unique non-degenerate simplex V∗(τ) (see Lemma 18), and
〈V (τ)〉 = 〈V∗(τ)〉.

Suppose that γ is non-degenerate in St(X) and that γ ∈ 〈τ〉. Then γ = d(τ)
for some face map d, and γ = (x0, . . . , xk) is a sublist of τ = (y0, . . . , yr). The
ordered list L(γ) of distinct elements of γ is a sublist of L(τ), and V (γ) is a
sublist of V (τ). There is a diagram of relations

〈τ〉 // 〈V∗(τ)〉 〈L(τ)〉oo

〈γ〉 //

OO

〈V∗(γ)〉

OO

〈L(γ)〉oo

OO

It follows that the composite (12) is homotopic to the identity on the poset
NSt(X), and the Lemma follows.

The subdivision sd(Z) of a simplicial set Z is defined by

sd(Z) = lim−→
∆n→Z

BN∆n.

14



The poset morphisms N∆n → NZ that are induced by simplices ∆n → Z
together induce a map

π : sd(Z)→ BNZ.

It is known [1] (and not difficult to prove) that the map π is a bijection for
simplicial sets Z that are polyhedral.

A polyhedral simplicial set is a subobject of the nerve of a poset. All oriented
simplicial complexes are polyhedral in this sense. Examples include the Vietoris-
Rips systems Vs(X) associated to a totally ordered ep-metric space X, since

Vs(X) ⊂ V∞(X) = BX,

where BX is the nerve of the totally ordered poset X.

Lemma 15. Suppose that X is an ep-metric space. Then the map

π : sd(St(X))→ BNSt(X)

is a weak equivalence.

Proof. We show that all subcomplexes 〈σ〉 which are generated by non-degenerate
simplices σ of St(X) are contractible. Then Lemma 4.2 of [1] implies that the
map π is a weak equivalence.

A non-degenerate simplex σ has the form σ = (x0, x1, . . . , xk) with xi 6=
xi+1. The simplices τ of 〈σ〉 have the form

τ = θ∗σ = (xθ(0), . . . , xθ(k)),

where θ : k→ n is an ordinal number morphism.
For each such θ, the list

(x0, xθ(0), . . . , xθ(k))

defines a simplex τ∗ of 〈σ〉, since τ∗ is a face of the simplex

s0(σ) = (x0, x0, . . . , xk).

The simplices τ∗ define functors

x0
//

��

x0
//

��

. . . // x0

��
xθ(0)

// xθ(1)
// . . . // xθ(m)

or homotopies, that consist of simplices of 〈σ〉 that patch together to give a
contracting homotopy 〈σ〉 ×∆1 → 〈σ〉.
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Theorem 16. Suppose that X is a totally ordered ep-metric space. Then there
is a diagram of weak equivalences

BNVt(X)

η∗

��

sd(Vt(X))
π
∼=
oo γ //

η∗

��

Vt(X)

η

��
BNSt(X) sd(St(X))

π
oo

γ
// St(X)

In particular, the map η : Vt(X)→ St(X) is a weak equivalence.
This diagram is natural in t.

Proof. The map η∗ : BNVt(X) → BNSt(X) is a weak equivalence by Lemma
14. The map π : sd(St(X)) → BNSt(X) is a weak equivalence by Lemma 15.
The instances of the maps γ are weak equivalences [1]. It follows that the maps
η∗ : sd(Vt(X))→ sd(St(X)) and η : Vt(X)→ St(X) are weak equivalences.

Remark 17. The total ordering on the ep-metric space X in Theorem 16 is
intimately involved in the definition of the Vietoris-Rips system V∗(X), the
morphism

η : Vt(X)→ St(Re(V∗(X))) = St(X),

and all induced maps η∗.
The counit η : Z → S(Re(Z)) is not a sectionwise weak equivalence in

general. One can show that S∞(Re(Z)) is the nerve of the trivial groupoid on
the vertex set of Z∞ (Proposition 7), and is therefore contractible, whereas the
space Z∞ may not be contractible. For example, if K is a simplicial set, then
there is an identification K = (LsK)∞.

It may be that the map

η : BPt(X)→ St(Re(BP∗(X)))

is a weak equivalence for arbitrary ep-metric spaces X, but this has not been
proved. Such a result would give a non-oriented version of Theorem 16.

The following is a classical result, which is included here for the sake of
completeness. This result is usually neither expressed nor proved in the form
displayed here.

Lemma 18. Suppose that σ is an n-simplex of a simplicial set X. Then there is
a unique iterated degeneracy and a non-degenerate simplex x such that σ = s(x).

An iterated degeneracy is a surjective ordinal number map s : n→ k. Such
a map induces a function s : Xk → Xn for a simplicial set X. Lemma 18 says
that σ = s(x) for some iterated degeneracy s and a non-degenerate simplex x,
and that this representation is unique.

Proof of Lemma 18. Suppose that σ = s(x) = s′(x′) where s, s′ are iterated
degeneracies and x, x′ are non-degenerate.
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The x = d(σ) for some face map d such that d · s = 1, and so d(s′(x′)) =
s′′(d′′(x)) for some iterated degeneracy s′′ and face map d′′. But x is non-
degenerate, so that s′′ = 1 and x = d′′(x′). Similarly, x′ = d̃(x) for some face
map d̃. But then x and x′ have the same dimension, and d = 1, so that x = x′.

If s 6= s′ there is a face map d such that d · s = 1 but d · s′ 6= 1. Then
σ = s(x) = s′(x) for s 6= s′ and x non-degenerate, then

d(σ) = x = d(s′(x)) = s′′(d′′(x))

for some degeneracy s′′ and face map d′′, at least one of which is non-trivial.
But x is non-degenerate, so that s′′ = 1 and x = d′′(x) only if d′′ = 1. This

contradicts the assumption that s 6= s′.
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