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Abstract

The hierarchy associated to clusters in the HDBSCAN algorithm has
layers, which are defined by cardinality. The layers define a subposet
of the HDBSCAN hierarchy, which is a strong deformation retract and
admits a stability analysis. That stability analysis is introduced here.
Cardinality arguments lead to sharper stability results than one sees for
branch points.

Introduction

Every finite metric space X = (X, d) has an associated system of partially
ordered sets Ps(X), where s is a non-negative real number. This system is
filtered by the systems Ps,k(X) where k is a positive integer.

The poset Ps(X) consists of those subsets σ of X such that d(x, y) ≤ s for
all x, y ∈ σ.

The poset Ps,k(X) consists of those subsets τ of X such that each x ∈ τ has
at least k distinct neighbours y ∈ X such that d(x, y) ≤ s. We also require that
d(x, x′) ≤ s for any two members x, x′ of τ .

The poset Ps(X) is the poset of simplices for the Vietoris-Rips complex
Vs(X), and the poset Ps,k(X) is the poset of simplices of the degree Rips comples
Ls,k(X).

Observe that Ps,0(X) = Ps(X), so that the complex Ls,0(X) is the Vietoris-
Rips complex Vs(X).

For a fixed density parameter k, the path component functor π0 defines an
assignment s 7→ π0Ls,k(X), giving a functor defined on the poset [0,∞] that
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takes values in sets. The sets of path components π0Ls,k(X) are commonly
called clusters.

This functor defines a graph Γk(X), with vertices consisting of pairs (s, [x])
with [x] ∈ π0Ls,k(X). There is an edge (s, [x]) → (t, [y]) if s ≤ t and [x] = [y]
in π0Lt,k(X). This graph is a hierarchy, or tree, which is commonly called the
HDBSCAN hierarchy. It is also a poset because the edges can be composed,
and this poset has a terminal object. I write (s, [x]) ≤ (t, [y]) for edges (or
morphisms) of Γk(X) to reflect the poset structure.

A vertex (s, [x]) of Γk(X) is a branch point if either (s, [x]) has no antecedents
(t, [y]) ≤ (s, [x]), or if (s, [x]) has distinct antecedents (t, [y1]) and (t, [y2]) for
sufficiently close t < s.

A vertex (t, [y]) is a layer point if it has no antecedents, or if for all an-
tecedents (s, [z]) ≤ (t, [y]) with s < t, the set [z] is strictly smaller than [y] as a
subset of X.

Every branch point is a layer point, but the converse assertion does not hold
in general. Layer points and branch points do coincide for the Vietoris-Rips
system Vs(X) = Ls,0(X), since the underlying system of vertex sets is constant.

The branch points and layer points, respectively, define subposets Brk(X)
and Lk(X) of the tree Γk(X), and there are poset inclusions

Brk(X) ⊆ Lk(X) ⊂ Γk(X).

These subposets are themselves hierarchies.
The purpose of this note is to describe stability properties of the layer poset

Lk(X). There is a similar investigation of stability properties of branch points
in [2] — the posets Brk(X) of branch points and Lk(X) of layer points have
similar properties, but the cardinality counts associated with layer points are
sharper tools.

The first section of this paper establishes the formal properties of the poset
Lk(X) of layer points. The most important feature of Lk(X) is that it has a
calculus of least upper bounds (Lemma 4), which mirrors the theory of least
upper bounds for the branch point poset Brk(X) that appears in [2]. The
inclusion Brk(X) ⊂ Lk(X) preserves least upper bounds. The poset morphisms

Brk(X) ⊆ Lk(X) ⊂ Γk(X)

define both Brk(X) and Lk(X) as strong deformation retracts of the poset
Γk(X), in a way that is consistent with the inclusion Brk(X) ⊂ Lk(X) — see
Lemma 5 and Lemma 6. The retraction map max : Γk(X)→ Lk(X) is defined
by setting max(t, [x]) to be the maximal layer point below (t, [x]). The layer
point max(t, [x]) can also be defined to be the minimal point (s, [z]) ≤ (t, [x])
such that [z] = [x] as subsets of the set X.

If i : X ⊂ Y is an inclusion of finite metric spaces, then there is an induced
poset map i∗ : Lk(X) → Lk(Y ), where i∗(t, [x]) is defined to be the maximal
layer point below (t, [i(x)]) in Γk(Y ).
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The degree Rips stability theorem (Theorem 4 of [3]) says that there are
homotopy commutative diagrams

Ls,k(X)
σ //

i

��

Ls+2r,k(X)

i

��
Ls,k(Y )

σ
//

θ

88

Ls+2r,k(Y )

(1)

in the presence of a condition dH(Xk
dis, Y

k
dis) < r on Hausdorff distance between

spaces of k + 1 distinct points in X and Y . Theorem 8 of Section 2 says that
the diagram (1) induces a homotopy commutative diagram

Lk(X)
σ∗ //

i∗

��

Lk(X)

i∗

��
Lk(Y )

σ∗
//

θ∗

::

Lk(Y )

(2)

The map i∗ in (2) has already been defined, and all other maps in (2) are
defined analogously. For example, the shift homomorphism σ∗ is defined, for
a layer point (t, [x]), by taking σ∗(t, [x]) to be the maximal layer point below
(t + 2r, [x]). The homotopy commutativity of (2) amounts to the existence of
natural relations

θ∗ · i∗ ≤ σ∗ and i∗ · θ∗ ≤ σ∗.
These relations have to be interpreted a bit carefully. If, for example, (s.[x])

is a layer point of Γk(X), then (t, [x]) is a layer point below (t+ 2r, [x]) so that
(t, [x]) ≤ σ∗(t, [x]). This means that σ∗(t, [x]) is a common upper bound for
(t, [x]) and θ∗i∗(t, [x]), while σ∗(t, [x]) has the form (u, [x]) for some parameter
value t ≤ u ≤ t+ 2r.

I have not yet found a good way to estimate the corresponding parameter
value of θ∗i∗(t, [x]) without some extra assumptions. At this level of generality,
we have the same issues with locating parameter values for the points i∗(t, [x])
and θ∗(s, [y]), relative to t and s, respectively.

We can sharpen these relations if the layer points are sufficiently sparse.
The layer parameters are the parameters t associated to the layer points (t, [x])
of Γk(X). A layer parameter t can have a successor t+ and a predecessor t−.
Lemma 14 of this paper says that, if r < t < t+ − 2r, then i∗(t, [x]) = (s, [y]),
where t − 2r ≤ s ≤ t. Under the same assumptions, Corollary 15 further says
that θ∗i∗(t, [x]) = (t, [x]).

Lemma 14 and Corollary 15 deal with layer points (t, [x]) of Γk(X) which
have enough room “above” them. If r is sufficiently small such that r < t <
t+ − 2r for all layer parameters t of X, then θ∗i∗(t, [x]) = (t, [x]) for all layer
points (t, [x]) of X, so that Γk(X) is a retract of Γk(Y ).

This can be achieved, for example, if X ⊂ Z is an inclusion of metric spaces,
where X is interpreted as a set of marked points, r is chosen sufficently small
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that r < t < t+ − 2r for all layer parameters t of X, and the points of Y ⊂ Z
are chosen such that dH(Xk

dis, Y
k
dis) < r in Zkdis.

The analysis simplifies for Vietoris-Rips complexes. In that case, X and Y
are the vertex sets of Vs(X) and Vs(Y ), respectively, for all s. Then Lemma 17
says that if (s, [y]) is a layer point of Γ0(Y ) and (t, [x]) is a maximal layer point
below (s+ 2r, [θ(y)]), then s ≤ t ≤ s+ 2r. This means, for example, that every
layer parameter s of Γ0(Y ) satisfies t − 2r ≤ s ≤ t for some layer parameter
t of Γ0(X). Lemma 14 and Lemma 17 together say that the layer parameters
of Γ0(X) and Γ0(Y ) for the respective Vietoris-Rips systems are very tightly
bound, in a predictable way.

1 Layer points

Suppose that X is a finite metric space and that k is a positive integer. The
functor s 7→ π0Ls,k(X) has a homotopy colimit Γk(X) having objects (s, [x])
with [x] ∈ π0Ls,k(X) and morphisms (s, [x]) → (t, [x]) with s ≤ t. Here, the
distance parameters s are positive real numbers, and hence members of the
interval [0,∞].

This category Γk(X) is a partially ordered set, and has the structure of a
tree, and one writes (s, [x]) ≤ (t, [y]) for its morphisms. The spaces Ls,k(X) are
connected for s sufficiently large, say s ≥ R, since X is a finite set.

I often write [x]s for [x] ∈ π0Ls,k. The path component [x]s is a subset of
the vertices of Ls,k(X). There is a relation (s, [x]) ≤ (t, [y]) if and only if s ≤ t
and [x]s ⊂ [y]t as subsets of X.

A branch point in the tree Γk(X) is a vertex (t, [x]) such that either of
following two conditions hold:

1) there is an s0 < t such that for all s0 ≤ s < t there are distinct vertices
(s, [x0]) and (s, [x1]) with (s, [x0]) ≤ (t, [x]) and (s, [x1]) ≤ (t, [x]), or

2) there is no relation (s, [y]) ≤ (t, [x]) with s < t.

The second condition means that the path component [x] does not have a repre-
sentative in Ls,k(X) for s < t. Write Brk(X) for the subposet of Γk(X), which
is defined by the branch points.

A layer point of Γk(X) is a vertex (t, [x]) such that one of the following two
conditions hold:

1) if there is a relation (s, [y]) ≤ (t, [x]) with s < t, then [y]s is a proper
subset of [x]t, equivalently there is a proper inequality |[y]s| < |[x]t| in
cardinality, or

2) there is no relation (s, [y]) ≤ (t, [x]) with s < t.

The layer points form a subposet Lk(X) of Γk(X).
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Remark 1. There is a maximal finite subsequence

0 6= t1 < · · · < tp

of positive real numbers tj , which are the distances between vertices of

Lk,tp(X) = Lk,∞(X).

The numbers ti are the phase change numbers for the system L∗,k(X). Observe
that the vertices of Lk,ti(X) and Lk,ti+1

(X) could coincide.
We can find the layer points for Γk(X) by induction on i, starting with the

observation that all points (t1, [z]) are layer points. If [x] ∈ π0Lti,k(X), then
[x] ∩ Lti−1,k(X)0 is a disjoint union of path components [y]. This intersection
could be empty, in which case (ti, [x]) is a layer point. Otherwise, (ti, [x]) is a
layer point if all [y] ⊂ [x] ∩ Lti−1,k(X)0 satisfy |[y]| < |[x]|.

Lemma 2. All branch points are layer points, and so there are poset inclusions

Brk(X) ⊆ Lk(X) ⊂ Γk(X).

Proof. Suppose that condition 1) holds for the branch point (t, [x]): there is an
s0 < t that for all s0 ≤ s < t there are distinct points (s, [x0]) and (s, [x1]) such
that (s, [xi]) ≤ (t, [x]).

If (s, [z]) ≤ (t, [x]) then [z] is one of multiple path components [v]s of Ls,k(X)
that map to [x]t in Lt,k(X). All such components are proper subsets of [x]t.

Recall that L0,s(X) is the Vietoris-Rips complex Vs(X), and that the ele-
ments of X are the vertices of the Vietoris-Rips complex Vs(X). All complexes
Vs(X) have the same vertices, namely the set X.

Lemma 3. Every layer point of Γ0(X) is a branch point, so that Br0(X) =
L0(X).

Proof. The underlying sets of vertices for Vs(X) and Vt(X) coincide. Thus, if
(t, [x]) is a layer point of Γ0(X) and s < t, then the collection [y] of components
of Vs(X) that map to [x] in Vt(X) is non-empty and satisfies t [y]s = [x]t.
There are multiple such summands [y]s, since (t, [x]) is a layer point, so that
all inclusions [y]s ⊂ [x]t are proper. In particular, there are distinct elements
(s, [y]) and (s, [y′]) below (t, [x]).

Suppose that (s, [x]) and (t, [y]) are vertices of the graph Γk(X). There is
a unique smallest vertex (u, [z]) which is an upper bound for both (s, [x]) and
(t, [y]) in Γk(X). The number u is the smallest parameter (necessarily a phase
change number) such that [x]u = [y]u in π0Lu,k(X), and so [z]u = [x]u = [y]u.
In this case, one writes

(s, [x]) ∪ (t, [y]) = (u, [z]).

The vertex (u, [z]) is the least upper bound (or join) of (s, [x]) and (t, [y]).
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Every finite collection of points (s1, [x1]), . . . , (sp, [xp]) has a least upper
bound

(s1, [x1]) ∪ · · · ∪ (sp, [xp])

in the tree Γk(X).
We know from [2] that the least upper bound of two branch points is a

branch point, and we have an analogous result for layer points:

Lemma 4. The least upper bound (u, [z]) of layer points (s, [x]) and (t, [y]) is
a layer point.

Proof. If there is a number v such that s, t < v < u, then (v, [x]) and (v, [y]) are
distinct because (u, [z]) is a least upper bound. This implies that Lv,k(X) has
distinct path components [w] which map to [z] in π0Lu,k(X). It follows that
(u, [z]) is a branch point, and is therefore a layer point by L:emma 2.

Otherwise, s = u or t = u, in which case (u, [z]) = (s, [x]) or (u, [z]) = (t, [y]).
In either case, (u, [z]) is a layer point.

Lemma 4 implies that every collection of layer points (s1, [x1]), . . . , (sp, [xp])
has a least upper bound

(s1, [x1]) ∪ · · · ∪ (sp, [xp])

in Lk(X). The maximal (or terminal) element of Lk(X) is the least upper bound
of all members of Lk(X).

It follows from Lemma 4 and the corresponding result for branch points of
[2] that the poset inclusions

Brk(X) ⊆ Lk(X) ⊂ Γk(X)

preserve least upper bounds.

Lemma 5. Every vertex (s, [x]) of Γk(X) has a unique largest layer point (t, [y])
such that (t, [y]) ≤ (s, [x]). In this case, [y]t = [x]s.

Proof. There is a smallest phase change number t such that there is a relation
(t, [y]) ≤ (s, [x]) with [y]t = [x]s. The corresponding point (t, [y]) is a layer
point, by the minimality of the phase change number t.

The point (t, [y]) is also an upper bound on the layer points below (s, [x]),
since [y]t = [x]s: if (u, [z]) is a layer point below (s, [x]), then z ∈ [y]t and u ≤ t
since otherwise (u, [z]) is not a layer point.

The first statement of Lemma 5 is also a corollary of Lemma 4: take the
least upper bound of all layer points below (s, [x]).

Lemma 6. The poset inclusion Lk(X) ⊂ Γk(X) has an inverse

max : Γk(X)→ Lk(X),

up to homotopy, and Lk(X) is a strong deformation retract of Γk(X).
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Proof. Every vertex (s, [x]) of Γk(X) has a unique maximal layer point (s0, [x0])
such that (s0, [x0]) ≤ (s, [x]), by Lemma 5. Set

max(s, [x]) = (s0, [x0]).

The maximality condition implies that the function max preserves the ordering.
The composite max ·α is the identity on Lk(X), and the relations (s0, [x0]) ≤
(s, x) define a homotopy α ·max ≤ 1 that restricts to the identity on Lk(X).

Remark 7. Lemma 5 of [2] says that every (s, [x]) has a unique maximal
branch point (s1, [x1]) such that (s1, [x]1) ≤ (s, [x]). The branch point (s1, [x1])
is a layer point by Lemma 2, so that there are relations.

(s1, [x1]) ≤ (s0, [x0]) ≤ (s, [x]),

which are natural in points (s, [x]) of Γk(X).
It follows that the poset inclusions

Brk(X) ⊆ Lk(X) ⊂ Γk(X)

define strong deformation retractions, and that the respective contracting ho-
motopies are compatible.

Recall from Lemma 3 that Br0(X) = L0(X), so that the discussion simplifies
for Vietoris-Rips complexes.

2 Stability

The general setup for stability of degree Rips complexes is the following: we
suppose given finite metric spaces X ⊂ Y such that the Hausdorff distance
between the corresponding spaces Xk

dis and Y kdis of sets of k+1 distinct elements
in X and Y respectively satisfies dH(Xk

dis, Y
k
dis) < r, where r is a fixed non-zero

positive real number.
Under these assumptions, the degree Rips stability theorem (Theorem 4 of

[3]) says that there are homotopy commutative diagrams

Ls,k(X)
σ //

i

��

Ls+2r,k(X)

i

��
Ls,k(Y )

σ
//

θ

88

Ls+2r,k(Y )

(3)

Applying the path component functor π0 gives commutative diagrams

π0Ls,k(X)
σ //

i

��

π0Ls+2r,k(X)

i

��
π0Ls,k(Y )

σ
//

θ

77

π0Ls+2r,k(Y )

(4)
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and there is an induced commutative diagram of hierarchies

Γk(X)
σ //

i

��

Γk(X)

i

��
Γk(Y )

σ
//

θ

::

Γk(Y )

(5)

Here,
i((s, [x])) = (s, [i(x)]),

σ((s, [x])) = (s+ 2r, [σ(x)]), and

θ((s, [y]) = (s+ 2r, [θ(y)]).

Write i∗ : Lk(X)→ Lk(Y ) for the composite poset morphism

Lk(X) ⊂ Γk(X)
i∗−→ Γk(Y )

max−−−→ Lk(Y )

This map takes a layer point (s, [x]) to the maximal layer point below (s, [i(x)]).
Poset morphisms θ∗ : Lk(Y )→ Lk(X) and σ∗ : Lk(X)→ Lk(X) are similarly

defined, respectively, by the poset morphisms θ : Γk(Y )→ Γk(X) and the shift
morphism σ : Γk(X)→ Γk(X).

1) Consider the poset maps

Lk(X)
i∗−→ Lk(Y )

θ∗−→ Lk(X).

If (s, [x]) is a layer point for X, choose maximal layer points (s0, [x0]) ≤
(s, [i(x)], (s1, [x1]) ≤ (s0 + 2r, [θ(x0)]) and (v, [y]) ≤ (s + 2r, [x]) below the
respective objects.

Then θ∗i∗(s, [x]) = (s1, [x1]), and there is a natural relation

θ∗i∗(s, [x]) = (s1, [x1]) ≤ (v, [y]) = σ∗(s, [x])

by a maximality argument. We therefore have a homotopy of poset maps

θ∗i∗ ≤ σ∗ : Lk(X)→ Lk(X). (6)

2) Similarly, if (t, [y]) is a layer point of Y , then

i∗θ∗(t, [y]) ≤ σ∗(t, [y]),

giving a homotopy
i∗θ∗ ≤ σ∗ : Lk(Y )→ Lk(Y ). (7)

There are relations

(s, [x]) ≤ σ∗(s, [x]) ≤ (s+ 2r, [x]) (8)

for branch points (s, [x]). It follows that the poset map σ∗ : Lk(X)→ Lk(X) is
homotopic to the identity on Lk(X).

The construction of the poset maps i∗, θ∗ and σ∗, together with the relations
(6) and (7), complete the construction/proof of the following result:
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Theorem 8. Suppose that X ⊂ Y is an inclusion of finite metric spaces, and
that dH(Xk

dis, Y
k
dis) < r. Then there is a homotopy commutative diagram

Lk(X)
σ∗ //

i∗

��

Lk(X)

i∗

��
Lk(Y )

θ∗

::

σ∗
// Lk(Y )

(9)

that relates the layer posets Lk(X) and Lk(Y ) of the spaces X and Y , respec-
tively.

Remark 9. The element σ∗(s, [x]) = (t, [x]) is close to (s, [x]) in the sense that
there are relations

(s, [x]) ≤ (t, [x]) ≤ (s+ 2r, [x])

so that 0 ≤ t − s ≤ 2r. Thus, the layer points (s, [x]) and θ∗i∗(s, [x]) have a
common upper bound, namely σ∗(s, [x]), which is close to (s, [x]).

If (t, [y]) is a layer point of Γk(Y ), the layer point σ∗(t, [y]) ≤ (t+ 2r, [y]) is
similarly an upper bound for (t, [y]) and i∗θ∗(t, [y]), and is close to (t, [y]).

The subobject of Lk(X) consisting of all layer points of the form (s, [x]) as
s varies has an obvious notion of distance: the distance between points (s, [x])
and (t, [x]) is |t− s|.

Suppose that
0 < t1 < · · · < tk

are the phase change numbers for the system Ls,k(X).
The assumption that dH(Xk

dis, Y
k
dis) < r forces the function

π0Ls,k(X)→ π0Ls,k(Y )

to be surjective if s ≥ r.

Lemma 10. Suppose, that y1, y2 ∈ Y have elements θ(y1), θ(y2) ∈ X such
that d(yi, θ(yi)) < r. Then d(y1, y2) is in the interval (t − 2r, t + 2r), where
t = d(θ(y1), θ(y2)).

Proof. We shall assume that t− 2r > 0.
Consider the picture

θ(y1)

y1 z1 z2 y2

θ(y2)
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Suppose that v is the point of intersection of the lines (z1, z2) and (θ(y1), θ(y2)).
Then

d(θ(y1), θ(y2)) ≥ d(z1, z2) = d(z1, v) + d(v, z2) ≥ d(y1, y2)− 2r.

The assertion that d(θ(y1), θ(y2)) < d(y1, y2) + 2r is a simple application of the
triangle inequality.

Corollary 11. All phase change numbers s for Y lie in intervals (t−2r, t+2r)
around phase change numbers t of X.

There is a finite collection of numbers t such that (t, [x]) is a layer point for
Γk(X). Say that such numbers t are the layer parameters for X. Each layer
parameter is a phase change number.

Observe that the inclusions σ : Ls,k(X) ⊆ Lt,k(X) for s ≤ t induce inclusions
[x]s ⊂ [x]t for all vertices x of Ls,k(X).

Recall from the proof of Lemma 5 that the maximal layer point below (s, [x])
can be constructed by finding the smallest phase change number t such that
there is a relations (t, [u]) ≤ (s, [x]) such that [u]t = [x]s as subsets of X.

Lemma 12. Suppose that s < t and there are no layer points of the form (u, [x])
in Γk(X), where s < u ≤ t. Then the induced function

σ∗ : π0Ls,k(X)→ π0Lt,k(X)

is a bijection.

Proof. We can assume that Lt,k(X) 6= ∅, for otherwise Ls,k(X) = Lt,k(X) = ∅.
Suppose that (t, [x]) ∈ Γk(X) and that (u, [y]) is a maximal layer point with

(u, [y]) ≤ (t, [x]). Then u ≤ s and the relations (u, [y]) ≤ (s, [y]) ≤ (t, [x]) force
[y]s = [x]t. In particular, the function σ∗ is surjective.

If [y1], [ys] ∈ π0Ls,k(X) have the same image [x] ∈ π0Lt,k(X), then [y1]s =
[x]t = [y2]s as subsets of X, so that [y1] = [y2] in π0Ls,k(X), and so σ∗ is
injective.

Given a layer parameter t for X, write t+ for the smallest layer parameter
of X with t < t+, and write t− for the largest layer parameter of X with t− < t.

Lemma 13. Suppose that t is a layer parameter for X such that r < t < t+−2r.
Then the function i : π0Lt,k(X)→ π0Lt,k(Y ) is a bijection.

Proof. The diagram

π0Lt,k(X)
∼= //

i

��

π0Lt+2r,k(X)

π0Lt,k(Y )

θ

77

commutes, and the displayed function is a bijection by Lemma 12, so the func-
tion i is injective. The surjectivity of i follows from the assumption t > r.
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Lemma 14. Suppose that (t, [x]) is a layer point of Γk(X) with r < t < t+−2r,
and suppose that (s, [y]) is a maximal layer point below (t, [i(x)]) in Γk(Y ). Then
t− 2r ≤ s ≤ t.

Proof. Suppose that s < t− 2r.
The map i∗ : π0Lt,k(X) → π0Lt,k(Y ) is a bijection by Lemma 13 and

i∗([x]) = i∗([θ(y)]) = [i(x)] in π0Lt,k(Y ). It follows that there is a commu-
tative diagram of functions

[θ(y)]s+2r
σ // [x]t

i

��
[y]s

θ

::

σ

∼= // [i(x)]t

in which the map i : [x]t → [i(x)]t is a monomorphism since it is a subobject of
a monomorphism of vertices.

The functions i and σ · θ are bijections, and so σ : [θ(y)]s+2r → [x]tj is an
epimorphism. This function σ is also a monomorphism, since it is a subobject
of the monomorphism of vertices Ls+2r,k(X)0 → Lt,k(X)0.

It follows that the function σ : [θ(y)]s+2r → [x]t is a bijection, so that (t, [x])
is not a layer point.

Corollary 15. Suppose that (t, [x]) is a layer point for Γk(X) such that r <
t < t+ − 2r. Then we have

θ∗i∗(t, [x]) = (t, [x]).

Proof. Suppose that (s, [z]) is a maximal layer point below (t, [i(x)]) in Γk(Y ).
Then t− 2r ≤ s ≤ t by Lemma 14, so that t ≤ s+ 2r ≤ t+ 2r < t+.

The layer point (t, [x]) is a maximal layer point below (t + 2r, [x]), since
t + 2r < t+, so that [x]t = [x]t+2r. The layer point θ∗(s, [z]) is the maximal
layer point below (s+ 2r, [θ(z)]), and the relation

(s+ 2r, [θ(z)]) ≤ (t+ 2r, [x])

implies that θ(z) ∈ [x]t+2r = [x]s+2r, so that x ∈ [θ(z)]s+2r. It follows that the
maximal layer point below (s+ 2r, [θ(z)]) must also be the maximal layer point
below (t+ 2r, [x]), which is (t, [x]).

Lemma 16. Suppose that (s, [y]) is a layer point of Γk(Y ), and that s < s+−2r.
Suppose that (t, [z]) is a maximal layer point below (s + 2r, [θ(y)]). Then s ≤
t ≤ s+ 2r.

Proof. Suppose that t < s.
The map σ : π0Ls,k(Y ) → π0Ls+2r,k(Y ) is a bijection, since Γk(Y ) has no

layer parameters in the interval (s, s + 2r], by assumption and Lemma 12. It
follows that the map θ : π0Ls,k(Y )→ π0Ls+2r(X) is a monomorphism.
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Then θ([y]) = θ([i(z)] implies that [y]s = [i(z)]s, so the diagram

[i(z)]t
σ //

θ

$$

[y]s
σ //

θ

$$

[y]s+2r

[z]t

i

OO

σ
// [z]t+2r σ

// [θ(y)]s+2r

i

OO

commutes.
The commutativity of the triangle on the right implies that θ : [y]s →

[θ(y)]s+2r is a monomorphism.
The function σ : [z]t → [θ(y)]s+2r a bijection, so θ : [y]s → [θ(y)]s+2r is a

bijection.
The composite

[z]t
i−→ [i(z)]t

σ−→ [y]s

a bijection, so σ : [i(z)]t → [y]s is a bijection, and it follows that (s, [y]) is not
a layer point.

The analysis of the morphism

θ∗ : V (Y ) = L0(Y )→ L0(X) = V (X)

for Vietoris-Rips complexes is sharper, because all complexes Vs(Y ) share the
same set of vertices, namely Y . In this case, we have a stronger version of
Lemma 16, with a very different argument.

Lemma 17. Suppose that (s, [y]) is a layer point of Γ0(Y ), and that (t, [z]) is
a maximal layer point of Γ0(X) below (s+ 2r, [θ(y)]). Then s ≤ t ≤ s+ 2r.

Proof. The sets [z]t and [θ(y)]s+2r have the same cardinality, and so θ(y) ∈ [z]t.
Consider the collection of elements [u] ∈ π0Vt−2r(Y ) which map to [z]t =

[θ(y)]t in π0Vt(X). Then θ−1([z]t) = t [u] as a subset of the vertices Y of
Vt−2r(Y ), and y ∈ [u] for some [u]. All such components [u] map to the same
path component [y]t in Vt(X).

In the diagram

θ−1([z]t) //

��

θ−1([θ(y)]s+2r) //

��

Y

θ

��
[z]t ∼=

// [θ(y)]s+2r
// X

both squares are pullbacks, so the function

θ−1([z]t)→ θ−1([θ(y)]s+2r

is a bijection.
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Suppose that t < s. Then

θ−1([z]t) = t [u] ⊂ [y]t ⊂ [y]s ⊂ θ−1([θ(y)]s+2r)

while θ−1([z]t) = θ−1([θ(y)]s+2r) as subsets of Y .
It follows that [y]t = [y]s, so that (s, [y]) is not a layer point.

Lemma 17 and Lemma 14 together impose rather tight constraints on the
layer points of Γ0(Y ), in relation to those of Γ0(X). Recall that the comparison
Γ0(X) → Γ0(Y ) arises from applying path component functors to the compar-
ison V∗(X) → V∗(Y ). In this case, dH(X,Y ) = r is the bound on Hausdorff
distance which leads to the interleaving diagrams (3), (4) and (5).

To repeat the statement of Lemma 17, suppose that (s, [y]) is a layer point
for Γ0(Y ), and suppose that (t, [x]) is a maximal layer point below (s+2r, [θ(y)]).
Then s ≤ t ≤ s+ 2r.

It follows, in particular, that all layer points of Γ0(Y ) are in the intervals
[t− 2r, t] corresponding to layer points (t, [x]) of Γ0(X).
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