Layers and stability

J.F. Jardine^{*}

Department of Mathematics University of Western Ontario London, Ontario, Canada

jardine@uwo.ca

January 15, 2021

Abstract

The hierarchy associated to clusters in the HDBSCAN algorithm has layers, which are defined by cardinality. The layers define a subposet of the HDBSCAN hierarchy, which is a strong deformation retract and admits a stability analysis. That stability analysis is introduced here. Cardinality arguments lead to sharper stability results than one sees for branch points.

Introduction

Every finite metric space X = (X, d) has an associated system of partially ordered sets $P_s(X)$, where s is a non-negative real number. This system is filtered by the systems $P_{s,k}(X)$ where k is a positive integer.

The poset $P_s(X)$ consists of those subsets σ of X such that $d(x, y) \leq s$ for all $x, y \in \sigma$.

The poset $P_{s,k}(X)$ consists of those subsets τ of X such that each $x \in \tau$ has at least k distinct neighbours $y \in X$ such that $d(x, y) \leq s$. We also require that $d(x, x') \leq s$ for any two members x, x' of τ .

The poset $P_s(X)$ is the poset of simplices for the Vietoris-Rips complex $V_s(X)$, and the poset $P_{s,k}(X)$ is the poset of simplices of the degree Rips comples $L_{s,k}(X)$.

Observe that $P_{s,0}(X) = P_s(X)$, so that the complex $L_{s,0}(X)$ is the Vietoris-Rips complex $V_s(X)$.

For a fixed density parameter k, the path component functor π_0 defines an assignment $s \mapsto \pi_0 L_{s,k}(X)$, giving a functor defined on the poset $[0, \infty]$ that

^{*}Supported by NSERC.

takes values in sets. The sets of path components $\pi_0 L_{s,k}(X)$ are commonly called clusters.

This functor defines a graph $\Gamma_k(X)$, with vertices consisting of pairs (s, [x])with $[x] \in \pi_0 L_{s,k}(X)$. There is an edge $(s, [x]) \to (t, [y])$ if $s \leq t$ and [x] = [y]in $\pi_0 L_{t,k}(X)$. This graph is a hierarchy, or tree, which is commonly called the HDBSCAN hierarchy. It is also a poset because the edges can be composed, and this poset has a terminal object. I write $(s, [x]) \leq (t, [y])$ for edges (or morphisms) of $\Gamma_k(X)$ to reflect the poset structure.

A vertex (s, [x]) of $\Gamma_k(X)$ is a branch point if either (s, [x]) has no antecedents $(t, [y]) \leq (s, [x])$, or if (s, [x]) has distinct antecedents $(t, [y_1])$ and $(t, [y_2])$ for sufficiently close t < s.

A vertex (t, [y]) is a *layer point* if it has no antecedents, or if for all antecedents $(s, [z]) \leq (t, [y])$ with s < t, the set [z] is strictly smaller than [y] as a subset of X.

Every branch point is a layer point, but the converse assertion does not hold in general. Layer points and branch points do coincide for the Vietoris-Rips system $V_s(X) = L_{s,0}(X)$, since the underlying system of vertex sets is constant.

The branch points and layer points, respectively, define subposets $Br_k(X)$ and $L_k(X)$ of the tree $\Gamma_k(X)$, and there are poset inclusions

$$\operatorname{Br}_k(X) \subseteq \operatorname{L}_k(X) \subset \Gamma_k(X).$$

These subposets are themselves hierarchies.

The purpose of this note is to describe stability properties of the layer poset $L_k(X)$. There is a similar investigation of stability properties of branch points in [2] — the posets $Br_k(X)$ of branch points and $L_k(X)$ of layer points have similar properties, but the cardinality counts associated with layer points are sharper tools.

The first section of this paper establishes the formal properties of the poset $L_k(X)$ of layer points. The most important feature of $L_k(X)$ is that it has a calculus of least upper bounds (Lemma 4), which mirrors the theory of least upper bounds for the branch point poset $\operatorname{Br}_k(X)$ that appears in [2]. The inclusion $\operatorname{Br}_k(X) \subset L_k(X)$ preserves least upper bounds. The poset morphisms

$$\operatorname{Br}_k(X) \subseteq L_k(X) \subset \Gamma_k(X)$$

define both $\operatorname{Br}_k(X)$ and $\operatorname{L}_k(X)$ as strong deformation retracts of the poset $\Gamma_k(X)$, in a way that is consistent with the inclusion $\operatorname{Br}_k(X) \subset L_k(X)$ — see Lemma 5 and Lemma 6. The retraction map max : $\Gamma_k(X) \to L_k(X)$ is defined by setting max(t, [x]) to be the maximal layer point below (t, [x]). The layer point max(t, [x]) can also be defined to be the minimal point $(s, [z]) \leq (t, [x])$ such that [z] = [x] as subsets of the set X.

If $i: X \subset Y$ is an inclusion of finite metric spaces, then there is an induced poset map $i_*: L_k(X) \to L_k(Y)$, where $i_*(t, [x])$ is defined to be the maximal layer point below (t, [i(x)]) in $\Gamma_k(Y)$. The degree Rips stability theorem (Theorem 4 of [3]) says that there are homotopy commutative diagrams

$$L_{s,k}(X) \xrightarrow{\sigma} L_{s+2r,k}(X) \tag{1}$$

$$\downarrow i \qquad \qquad \downarrow i$$

$$L_{s,k}(Y) \xrightarrow{\sigma} L_{s+2r,k}(Y)$$

in the presence of a condition $d_H(X_{dis}^k, Y_{dis}^k) < r$ on Hausdorff distance between spaces of k + 1 distinct points in X and Y. Theorem 8 of Section 2 says that the diagram (1) induces a homotopy commutative diagram

$$L_{k}(X) \xrightarrow{\sigma_{*}} L_{k}(X) \tag{2}$$

$$i_{*} \downarrow \xrightarrow{\theta_{*}} \downarrow^{i_{*}} \downarrow^{i_{*}}$$

$$L_{k}(Y) \xrightarrow{\sigma_{*}} L_{k}(Y)$$

The map i_* in (2) has already been defined, and all other maps in (2) are defined analogously. For example, the shift homomorphism σ_* is defined, for a layer point (t, [x]), by taking $\sigma_*(t, [x])$ to be the maximal layer point below (t + 2r, [x]). The homotopy commutativity of (2) amounts to the existence of natural relations

$$\theta_* \cdot i_* \leq \sigma_*$$
 and $i_* \cdot \theta_* \leq \sigma_*$.

These relations have to be interpreted a bit carefully. If, for example, (s.[x]) is a layer point of $\Gamma_k(X)$, then (t, [x]) is a layer point below (t + 2r, [x]) so that $(t, [x]) \leq \sigma_*(t, [x])$. This means that $\sigma_*(t, [x])$ is a common upper bound for (t, [x]) and $\theta_* i_*(t, [x])$, while $\sigma_*(t, [x])$ has the form (u, [x]) for some parameter value $t \leq u \leq t + 2r$.

I have not yet found a good way to estimate the corresponding parameter value of $\theta_* i_*(t, [x])$ without some extra assumptions. At this level of generality, we have the same issues with locating parameter values for the points $i_*(t, [x])$ and $\theta_*(s, [y])$, relative to t and s, respectively.

We can sharpen these relations if the layer points are sufficiently sparse. The *layer parameters* are the parameters t associated to the layer points (t, [x]) of $\Gamma_k(X)$. A layer parameter t can have a successor t_+ and a predecessor t_- . Lemma 14 of this paper says that, if $r < t < t_+ - 2r$, then $i_*(t, [x]) = (s, [y])$, where $t - 2r \leq s \leq t$. Under the same assumptions, Corollary 15 further says that $\theta_*i_*(t, [x]) = (t, [x])$.

Lemma 14 and Corollary 15 deal with layer points (t, [x]) of $\Gamma_k(X)$ which have enough room "above" them. If r is sufficiently small such that $r < t < t_+ - 2r$ for all layer parameters t of X, then $\theta_* i_*(t, [x]) = (t, [x])$ for all layer points (t, [x]) of X, so that $\Gamma_k(X)$ is a retract of $\Gamma_k(Y)$.

This can be achieved, for example, if $X \subset Z$ is an inclusion of metric spaces, where X is interpreted as a set of marked points, r is chosen sufficiently small that $r < t < t_+ - 2r$ for all layer parameters t of X, and the points of $Y \subset Z$ are chosen such that $d_H(X_{dis}^k, Y_{dis}^k) < r$ in Z_{dis}^k .

The analysis simplifies for Vietoris-Rips complexes. In that case, X and Y are the vertex sets of $V_s(X)$ and $V_s(Y)$, respectively, for all s. Then Lemma 17 says that if (s, [y]) is a layer point of $\Gamma_0(Y)$ and (t, [x]) is a maximal layer point below $(s + 2r, [\theta(y)])$, then $s \leq t \leq s + 2r$. This means, for example, that every layer parameter s of $\Gamma_0(Y)$ satisfies $t - 2r \leq s \leq t$ for some layer parameter t of $\Gamma_0(X)$. Lemma 14 and Lemma 17 together say that the layer parameters of $\Gamma_0(X)$ and $\Gamma_0(Y)$ for the respective Vietoris-Rips systems are very tightly bound, in a predictable way.

1 Layer points

Suppose that X is a finite metric space and that k is a positive integer. The functor $s \mapsto \pi_0 L_{s,k}(X)$ has a homotopy colimit $\Gamma_k(X)$ having objects (s, [x]) with $[x] \in \pi_0 L_{s,k}(X)$ and morphisms $(s, [x]) \to (t, [x])$ with $s \leq t$. Here, the distance parameters s are positive real numbers, and hence members of the interval $[0, \infty]$.

This category $\Gamma_k(X)$ is a partially ordered set, and has the structure of a tree, and one writes $(s, [x]) \leq (t, [y])$ for its morphisms. The spaces $L_{s,k}(X)$ are connected for s sufficiently large, say $s \geq R$, since X is a finite set.

I often write $[x]_s$ for $[x] \in \pi_0 L_{s,k}$. The path component $[x]_s$ is a subset of the vertices of $L_{s,k}(X)$. There is a relation $(s, [x]) \leq (t, [y])$ if and only if $s \leq t$ and $[x]_s \subset [y]_t$ as subsets of X.

A branch point in the tree $\Gamma_k(X)$ is a vertex (t, [x]) such that either of following two conditions hold:

- 1) there is an $s_0 < t$ such that for all $s_0 \leq s < t$ there are distinct vertices $(s, [x_0])$ and $(s, [x_1])$ with $(s, [x_0]) \leq (t, [x])$ and $(s, [x_1]) \leq (t, [x])$, or
- 2) there is no relation $(s, [y]) \leq (t, [x])$ with s < t.

The second condition means that the path component [x] does not have a representative in $L_{s,k}(X)$ for s < t. Write $\operatorname{Br}_k(X)$ for the subposet of $\Gamma_k(X)$, which is defined by the branch points.

A layer point of $\Gamma_k(X)$ is a vertex (t, [x]) such that one of the following two conditions hold:

- 1) if there is a relation $(s, [y]) \leq (t, [x])$ with s < t, then $[y]_s$ is a proper subset of $[x]_t$, equivalently there is a proper inequality $|[y]_s| < |[x]_t|$ in cardinality, or
- 2) there is no relation $(s, [y]) \leq (t, [x])$ with s < t.

The layer points form a subposet $L_k(X)$ of $\Gamma_k(X)$.

Remark 1. There is a maximal finite subsequence

$$0 \neq t_1 < \cdots < t_p$$

of positive real numbers t_j , which are the distances between vertices of

$$L_{k,t_p}(X) = L_{k,\infty}(X).$$

The numbers t_i are the *phase change* numbers for the system $L_{*,k}(X)$. Observe that the vertices of $L_{k,t_i}(X)$ and $L_{k,t_{i+1}}(X)$ could coincide.

We can find the layer points for $\Gamma_k(X)$ by induction on *i*, starting with the observation that all points $(t_1, [z])$ are layer points. If $[x] \in \pi_0 L_{t_i,k}(X)$, then $[x] \cap L_{t_{i-1},k}(X)_0$ is a disjoint union of path components [y]. This intersection could be empty, in which case $(t_i, [x])$ is a layer point. Otherwise, $(t_i, [x])$ is a layer point if all $[y] \subset [x] \cap L_{t_{i-1},k}(X)_0$ satisfy |[y]| < |[x]|.

Lemma 2. All branch points are layer points, and so there are poset inclusions

$$\operatorname{Br}_k(X) \subseteq \operatorname{L}_k(X) \subset \Gamma_k(X).$$

Proof. Suppose that condition 1) holds for the branch point (t, [x]): there is an $s_0 < t$ that for all $s_0 \leq s < t$ there are distinct points $(s, [x_0])$ and $(s, [x_1])$ such that $(s, [x_i]) \leq (t, [x])$.

If $(s, [z]) \leq (t, [x])$ then [z] is one of multiple path components $[v]_s$ of $L_{s,k}(X)$ that map to $[x]_t$ in $L_{t,k}(X)$. All such components are proper subsets of $[x]_t$. \Box

Recall that $L_{0,s}(X)$ is the Vietoris-Rips complex $V_s(X)$, and that the elements of X are the vertices of the Vietoris-Rips complex $V_s(X)$. All complexes $V_s(X)$ have the same vertices, namely the set X.

Lemma 3. Every layer point of $\Gamma_0(X)$ is a branch point, so that $Br_0(X) = L_0(X)$.

Proof. The underlying sets of vertices for $V_s(X)$ and $V_t(X)$ coincide. Thus, if (t, [x]) is a layer point of $\Gamma_0(X)$ and s < t, then the collection [y] of components of $V_s(X)$ that map to [x] in $V_t(X)$ is non-empty and satisfies $\sqcup [y]_s = [x]_t$. There are multiple such summands $[y]_s$, since (t, [x]) is a layer point, so that all inclusions $[y]_s \subset [x]_t$ are proper. In particular, there are distinct elements (s, [y]) and (s, [y']) below (t, [x]).

Suppose that (s, [x]) and (t, [y]) are vertices of the graph $\Gamma_k(X)$. There is a unique smallest vertex (u, [z]) which is an upper bound for both (s, [x]) and (t, [y]) in $\Gamma_k(X)$. The number u is the smallest parameter (necessarily a phase change number) such that $[x]_u = [y]_u$ in $\pi_0 L_{u,k}(X)$, and so $[z]_u = [x]_u = [y]_u$. In this case, one writes

$$(s, [x]) \cup (t, [y]) = (u, [z]).$$

The vertex (u, [z]) is the *least upper bound* (or join) of (s, [x]) and (t, [y]).

Every finite collection of points $(s_1, [x_1]), \ldots, (s_p, [x_p])$ has a least upper bound

$$(s_1, [x_1]) \cup \cdots \cup (s_p, [x_p])$$

in the tree $\Gamma_k(X)$.

We know from [2] that the least upper bound of two branch points is a branch point, and we have an analogous result for layer points:

Lemma 4. The least upper bound (u, [z]) of layer points (s, [x]) and (t, [y]) is a layer point.

Proof. If there is a number v such that s, t < v < u, then (v, [x]) and (v, [y]) are distinct because (u, [z]) is a least upper bound. This implies that $L_{v,k}(X)$ has distinct path components [w] which map to [z] in $\pi_0 L_{u,k}(X)$. It follows that (u, [z]) is a branch point, and is therefore a layer point by L:emma 2.

Otherwise, s = u or t = u, in which case (u, [z]) = (s, [x]) or (u, [z]) = (t, [y]). In either case, (u, [z]) is a layer point.

Lemma 4 implies that every collection of layer points $(s_1, [x_1]), \ldots, (s_p, [x_p])$ has a least upper bound

$$(s_1, [x_1]) \cup \cdots \cup (s_p, [x_p])$$

in $L_k(X)$. The maximal (or terminal) element of $L_k(X)$ is the least upper bound of all members of $L_k(X)$.

It follows from Lemma 4 and the corresponding result for branch points of [2] that the poset inclusions

$$\operatorname{Br}_k(X) \subseteq \operatorname{L}_k(X) \subset \Gamma_k(X)$$

preserve least upper bounds.

Lemma 5. Every vertex (s, [x]) of $\Gamma_k(X)$ has a unique largest layer point (t, [y]) such that $(t, [y]) \leq (s, [x])$. In this case, $[y]_t = [x]_s$.

Proof. There is a smallest phase change number t such that there is a relation $(t, [y]) \leq (s, [x])$ with $[y]_t = [x]_s$. The corresponding point (t, [y]) is a layer point, by the minimality of the phase change number t.

The point (t, [y]) is also an upper bound on the layer points below (s, [x]), since $[y]_t = [x]_s$: if (u, [z]) is a layer point below (s, [x]), then $z \in [y]_t$ and $u \leq t$ since otherwise (u, [z]) is not a layer point.

The first statement of Lemma 5 is also a corollary of Lemma 4: take the least upper bound of all layer points below (s, [x]).

Lemma 6. The poset inclusion $L_k(X) \subset \Gamma_k(X)$ has an inverse

$$\max: \Gamma_k(X) \to \mathcal{L}_k(X),$$

up to homotopy, and $L_k(X)$ is a strong deformation retract of $\Gamma_k(X)$.

Proof. Every vertex (s, [x]) of $\Gamma_k(X)$ has a unique maximal layer point $(s_0, [x_0])$ such that $(s_0, [x_0]) \leq (s, [x])$, by Lemma 5. Set

$$\max(s, [x]) = (s_0, [x_0]).$$

The maximality condition implies that the function max preserves the ordering. The composite $\max \cdot \alpha$ is the identity on $L_k(X)$, and the relations $(s_0, [x_0]) \leq (s, x)$ define a homotopy $\alpha \cdot \max \leq 1$ that restricts to the identity on $L_k(X)$. \Box

Remark 7. Lemma 5 of [2] says that every (s, [x]) has a unique maximal branch point $(s_1, [x_1])$ such that $(s_1, [x_1]) \leq (s, [x])$. The branch point $(s_1, [x_1])$ is a layer point by Lemma 2, so that there are relations.

$$(s_1, [x_1]) \le (s_0, [x_0]) \le (s, [x]),$$

which are natural in points (s, [x]) of $\Gamma_k(X)$.

It follows that the poset inclusions

$$\operatorname{Br}_k(X) \subseteq \operatorname{L}_k(X) \subset \Gamma_k(X)$$

define strong deformation retractions, and that the respective contracting homotopies are compatible.

Recall from Lemma 3 that $Br_0(X) = L_0(X)$, so that the discussion simplifies for Vietoris-Rips complexes.

2 Stability

The general setup for stability of degree Rips complexes is the following: we suppose given finite metric spaces $X \subset Y$ such that the Hausdorff distance between the corresponding spaces X_{dis}^k and Y_{dis}^k of sets of k+1 distinct elements in X and Y respectively satisfies $d_H(X_{dis}^k, Y_{dis}^k) < r$, where r is a fixed non-zero positive real number.

Under these assumptions, the degree Rips stability theorem (Theorem 4 of [3]) says that there are homotopy commutative diagrams

$$L_{s,k}(X) \xrightarrow{\sigma} L_{s+2r,k}(X) \tag{3}$$

$$i \bigvee_{\sigma} \bigvee_{i} \bigvee_{k} L_{s,k}(Y) \xrightarrow{\sigma} L_{s+2r,k}(Y)$$

Applying the path component functor π_0 gives commutative diagrams

and there is an induced commutative diagram of hierarchies

$$\Gamma_{k}(X) \xrightarrow{\sigma} \Gamma_{k}(X) \tag{5}$$

$$i \bigvee_{\sigma} \stackrel{\theta}{\longrightarrow} \bigvee_{i} \stackrel{\theta}{\longrightarrow} \Gamma_{k}(Y)$$

Here,

$$\begin{split} &i((s,[x])) = (s,[i(x)]),\\ &\sigma((s,[x])) = (s+2r,[\sigma(x)]), \text{ and }\\ &\theta((s,[y]) = (s+2r,[\theta(y)]). \end{split}$$

Write $i_* : L_k(X) \to L_k(Y)$ for the composite poset morphism

$$L_k(X) \subset \Gamma_k(X) \xrightarrow{\iota_*} \Gamma_k(Y) \xrightarrow{\max} L_k(Y)$$

This map takes a layer point (s, [x]) to the maximal layer point below (s, [i(x)]).

Poset morphisms $\theta_* : L_k(Y) \to L_k(X)$ and $\sigma_* : L_k(X) \to L_k(X)$ are similarly defined, respectively, by the poset morphisms $\theta : \Gamma_k(Y) \to \Gamma_k(X)$ and the shift morphism $\sigma : \Gamma_k(X) \to \Gamma_k(X)$.

1) Consider the poset maps

$$L_k(X) \xrightarrow{i_*} L_k(Y) \xrightarrow{\theta_*} L_k(X).$$

If (s, [x]) is a layer point for X, choose maximal layer points $(s_0, [x_0]) \leq (s, [i(x)], (s_1, [x_1]) \leq (s_0 + 2r, [\theta(x_0)])$ and $(v, [y]) \leq (s + 2r, [x])$ below the respective objects.

Then $\theta_* i_*(s, [x]) = (s_1, [x_1])$, and there is a natural relation

$$\theta_* i_*(s, [x]) = (s_1, [x_1]) \le (v, [y]) = \sigma_*(s, [x])$$

by a maximality argument. We therefore have a homotopy of poset maps

$$\theta_* i_* \le \sigma_* : \mathcal{L}_k(X) \to \mathcal{L}_k(X). \tag{6}$$

2) Similarly, if (t, [y]) is a layer point of Y, then

$$i_*\theta_*(t,[y]) \le \sigma_*(t,[y]),$$

giving a homotopy

$$i_*\theta_* \le \sigma_* : \mathcal{L}_k(Y) \to \mathcal{L}_k(Y).$$
 (7)

There are relations

$$(s, [x]) \le \sigma_*(s, [x]) \le (s + 2r, [x]) \tag{8}$$

for branch points (s, [x]). It follows that the poset map $\sigma_* : L_k(X) \to L_k(X)$ is homotopic to the identity on $L_k(X)$.

The construction of the poset maps i_* , θ_* and σ_* , together with the relations (6) and (7), complete the construction/proof of the following result:

Theorem 8. Suppose that $X \subset Y$ is an inclusion of finite metric spaces, and that $d_H(X_{dis}^k, Y_{dis}^k) < r$. Then there is a homotopy commutative diagram

that relates the layer posets $L_k(X)$ and $L_k(Y)$ of the spaces X and Y, respectively.

Remark 9. The element $\sigma_*(s, [x]) = (t, [x])$ is close to (s, [x]) in the sense that there are relations

$$(s, [x]) \le (t, [x]) \le (s + 2r, [x])$$

so that $0 \le t - s \le 2r$. Thus, the layer points (s, [x]) and $\theta_* i_*(s, [x])$ have a common upper bound, namely $\sigma_*(s, [x])$, which is close to (s, [x]).

If (t, [y]) is a layer point of $\Gamma_k(Y)$, the layer point $\sigma_*(t, [y]) \leq (t + 2r, [y])$ is similarly an upper bound for (t, [y]) and $i_*\theta_*(t, [y])$, and is close to (t, [y]).

The subobject of $L_k(X)$ consisting of all layer points of the form (s, [x]) as s varies has an obvious notion of distance: the distance between points (s, [x]) and (t, [x]) is |t - s|.

Suppose that

$$0 < t_1 < \cdots < t_k$$

are the phase change numbers for the system $L_{s,k}(X)$.

The assumption that $d_H(X_{dis}^k, Y_{dis}^k) < r$ forces the function

$$\pi_0 L_{s,k}(X) \to \pi_0 L_{s,k}(Y)$$

to be surjective if $s \geq r$.

Lemma 10. Suppose, that $y_1, y_2 \in Y$ have elements $\theta(y_1), \theta(y_2) \in X$ such that $d(y_i, \theta(y_i)) < r$. Then $d(y_1, y_2)$ is in the interval (t - 2r, t + 2r), where $t = d(\theta(y_1), \theta(y_2))$.

Proof. We shall assume that t - 2r > 0. Consider the picture

Suppose that v is the point of intersection of the lines (z_1, z_2) and $(\theta(y_1), \theta(y_2))$. Then

$$d(\theta(y_1), \theta(y_2)) \ge d(z_1, z_2) = d(z_1, v) + d(v, z_2) \ge d(y_1, y_2) - 2r.$$

The assertion that $d(\theta(y_1), \theta(y_2)) < d(y_1, y_2) + 2r$ is a simple application of the triangle inequality.

Corollary 11. All phase change numbers s for Y lie in intervals (t-2r, t+2r) around phase change numbers t of X.

There is a finite collection of numbers t such that (t, [x]) is a layer point for $\Gamma_k(X)$. Say that such numbers t are the layer parameters for X. Each layer parameter is a phase change number.

Observe that the inclusions $\sigma : L_{s,k}(X) \subseteq L_{t,k}(X)$ for $s \leq t$ induce inclusions $[x]_s \subset [x]_t$ for all vertices x of $L_{s,k}(X)$.

Recall from the proof of Lemma 5 that the maximal layer point below (s, [x]) can be constructed by finding the smallest phase change number t such that there is a relations $(t, [u]) \leq (s, [x])$ such that $[u]_t = [x]_s$ as subsets of X.

Lemma 12. Suppose that s < t and there are no layer points of the form (u, [x]) in $\Gamma_k(X)$, where $s < u \le t$. Then the induced function

$$\sigma_*: \pi_0 L_{s,k}(X) \to \pi_0 L_{t,k}(X)$$

is a bijection.

Proof. We can assume that $L_{t,k}(X) \neq \emptyset$, for otherwise $L_{s,k}(X) = L_{t,k}(X) = \emptyset$. Suppose that $(t, [x]) \in \Gamma_k(X)$ and that (u, [y]) is a maximal layer point with $(u, [y]) \leq (t, [x])$. Then $u \leq s$ and the relations $(u, [y]) \leq (s, [y]) \leq (t, [x])$ force $[y]_s = [x]_t$. In particular, the function σ_* is surjective.

If $[y_1], [y_s] \in \pi_0 L_{s,k}(X)$ have the same image $[x] \in \pi_0 L_{t,k}(X)$, then $[y_1]_s = [x]_t = [y_2]_s$ as subsets of X, so that $[y_1] = [y_2]$ in $\pi_0 L_{s,k}(X)$, and so σ_* is injective.

Given a layer parameter t for X, write t_+ for the smallest layer parameter of X with $t < t_+$, and write t_- for the largest layer parameter of X with $t_- < t$.

Lemma 13. Suppose that t is a layer parameter for X such that $r < t < t_+ -2r$. Then the function $i : \pi_0 L_{t,k}(X) \to \pi_0 L_{t,k}(Y)$ is a bijection.

Proof. The diagram

commutes, and the displayed function is a bijection by Lemma 12, so the function i is injective. The surjectivity of i follows from the assumption t > r.

Lemma 14. Suppose that (t, [x]) is a layer point of $\Gamma_k(X)$ with $r < t < t_+ - 2r$, and suppose that (s, [y]) is a maximal layer point below (t, [i(x)]) in $\Gamma_k(Y)$. Then $t - 2r \le s \le t$.

Proof. Suppose that s < t - 2r.

The map $i_*: \pi_0 L_{t,k}(X) \to \pi_0 L_{t,k}(Y)$ is a bijection by Lemma 13 and $i_*([x]) = i_*([\theta(y)]) = [i(x)]$ in $\pi_0 L_{t,k}(Y)$. It follows that there is a commutative diagram of functions

in which the map $i : [x]_t \to [i(x)]_t$ is a monomorphism since it is a subobject of a monomorphism of vertices.

The functions i and $\sigma \cdot \theta$ are bijections, and so $\sigma : [\theta(y)]_{s+2r} \to [x]_{t_j}$ is an epimorphism. This function σ is also a monomorphism, since it is a subobject of the monomorphism of vertices $L_{s+2r,k}(X)_0 \to L_{t,k}(X)_0$.

It follows that the function $\sigma : [\theta(y)]_{s+2r} \to [x]_t$ is a bijection, so that (t, [x]) is not a layer point.

Corollary 15. Suppose that (t, [x]) is a layer point for $\Gamma_k(X)$ such that $r < t < t_+ - 2r$. Then we have

$$\theta_* i_*(t, [x]) = (t, [x]).$$

Proof. Suppose that (s, [z]) is a maximal layer point below (t, [i(x)]) in $\Gamma_k(Y)$. Then $t - 2r \le s \le t$ by Lemma 14, so that $t \le s + 2r \le t + 2r < t_+$.

The layer point (t, [x]) is a maximal layer point below (t + 2r, [x]), since $t + 2r < t_+$, so that $[x]_t = [x]_{t+2r}$. The layer point $\theta_*(s, [z])$ is the maximal layer point below $(s + 2r, [\theta(z)])$, and the relation

$$(s+2r, [\theta(z)]) \le (t+2r, [x])$$

implies that $\theta(z) \in [x]_{t+2r} = [x]_{s+2r}$, so that $x \in [\theta(z)]_{s+2r}$. It follows that the maximal layer point below $(s + 2r, [\theta(z)])$ must also be the maximal layer point below (t + 2r, [x]), which is (t, [x]).

Lemma 16. Suppose that (s, [y]) is a layer point of $\Gamma_k(Y)$, and that $s < s_+ - 2r$. Suppose that (t, [z]) is a maximal layer point below $(s + 2r, [\theta(y)])$. Then $s \le t \le s + 2r$.

Proof. Suppose that t < s.

The map $\sigma : \pi_0 L_{s,k}(Y) \to \pi_0 L_{s+2r,k}(Y)$ is a bijection, since $\Gamma_k(Y)$ has no layer parameters in the interval (s, s+2r], by assumption and Lemma 12. It follows that the map $\theta : \pi_0 L_{s,k}(Y) \to \pi_0 L_{s+2r}(X)$ is a monomorphism.

Then $\theta([y]) = \theta([i(z)])$ implies that $[y]_s = [i(z)]_s$, so the diagram

commutes.

The commutativity of the triangle on the right implies that $\theta : [y]_s \to [\theta(y)]_{s+2r}$ is a monomorphism.

The function $\sigma : [z]_t \to [\theta(y)]_{s+2r}$ a bijection, so $\theta : [y]_s \to [\theta(y)]_{s+2r}$ is a bijection.

The composite

$$[z]_t \xrightarrow{i} [i(z)]_t \xrightarrow{\sigma} [y]_s$$

a bijection, so $\sigma : [i(z)]_t \to [y]_s$ is a bijection, and it follows that (s, [y]) is not a layer point.

The analysis of the morphism

$$\theta_*: V(Y) = \mathcal{L}_0(Y) \to \mathcal{L}_0(X) = V(X)$$

for Vietoris-Rips complexes is sharper, because all complexes $V_s(Y)$ share the same set of vertices, namely Y. In this case, we have a stronger version of Lemma 16, with a very different argument.

Lemma 17. Suppose that (s, [y]) is a layer point of $\Gamma_0(Y)$, and that (t, [z]) is a maximal layer point of $\Gamma_0(X)$ below $(s + 2r, [\theta(y)])$. Then $s \le t \le s + 2r$.

Proof. The sets $[z]_t$ and $[\theta(y)]_{s+2r}$ have the same cardinality, and so $\theta(y) \in [z]_t$. Consider the collection of elements $[u] \in \pi_0 V_{t-2r}(Y)$ which map to $[z]_t =$

 $[\theta(y)]_t$ in $\pi_0 V_t(X)$. Then $\theta^{-1}([z]_t) = \sqcup [u]$ as a subset of the vertices Y of $V_{t-2r}(Y)$, and $y \in [u]$ for some [u]. All such components [u] map to the same path component $[y]_t$ in $V_t(X)$.

In the diagram

both squares are pullbacks, so the function

$$\theta^{-1}([z]_t) \to \theta^{-1}([\theta(y)]_{s+2r})$$

is a bijection.

Suppose that t < s. Then

$$\theta^{-1}([z]_t) = \sqcup [u] \subset [y]_t \subset [y]_s \subset \theta^{-1}([\theta(y)]_{s+2r})$$

while $\theta^{-1}([z]_t) = \theta^{-1}([\theta(y)]_{s+2r})$ as subsets of Y.

It follows that $[y]_t = [y]_s$, so that (s, [y]) is not a layer point.

Lemma 17 and Lemma 14 together impose rather tight constraints on the layer points of $\Gamma_0(Y)$, in relation to those of $\Gamma_0(X)$. Recall that the comparison $\Gamma_0(X) \to \Gamma_0(Y)$ arises from applying path component functors to the comparison $V_*(X) \to V_*(Y)$. In this case, $d_H(X,Y) = r$ is the bound on Hausdorff distance which leads to the interleaving diagrams (3), (4) and (5).

To repeat the statement of Lemma 17, suppose that (s, [y]) is a layer point for $\Gamma_0(Y)$, and suppose that (t, [x]) is a maximal layer point below $(s+2r, [\theta(y)])$. Then $s \leq t \leq s+2r$.

It follows, in particular, that all layer points of $\Gamma_0(Y)$ are in the intervals [t - 2r, t] corresponding to layer points (t, [x]) of $\Gamma_0(X)$.

References

- J. F. Jardine. Stable components and layers. Canad. Math. Bull., 63(3):562– 576, 2020.
- [2] J.F. Jardine. Branch points and stability. Preprint, arXiv: 2003:06285 [math.AT], 2020.
- [3] J.F. Jardine. Persistent homotopy theory. Preprint, arXiv: 2002:10013 [math.AT], 2020.