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Abstract

Vietoris-Rips and degree Rips complexes are represented as homotopy
types by their underlying posets of simplices, and basic homotopy stability
theorems are recast in these terms. These homotopy types are viewed
as systems (or functors), which are defined on a parameter space. The
category of systems of spaces admits a partial homotopy theory that is
based on controlled equivalences, suitably defined, that are the output of
homotopy stability results.

Introduction

A prototypical homotopy stability result asserts that, if one adds points to a
data set X that are close in a suitable sense to form a new data set Y , then
the corresponding inclusion V∗(X)→ V∗(Y ) of Vietoris-Rips systems is a strong
deformation retract up to a bounded shift, where the bound depends linearly
on how close the points of Y are to points of X.

The language in this last paragraph is a bit colloquial, and it involves new
terms that need to be explained. In particular, a system of spaces X is a functor
s 7→ Xs where s is a member of the real parameter poset [0,∞) and each Xs is
a “space” or simplicial set, while a map of systems is a natural transformation
of functors.

For a finite metric space X (a data set), the Vietoris-Rips complexes s 7→
Vs(X) form such a system, and an inclusion of finite metric spaces X ⊂ Y
induces a transformation Vs(X)→ Vs(Y ) that is natural in the distance param-
eter s. Recall that Vs(X) is the finite simplicial complex whose simplices are
subsets σ of X such that the distance d(x, y) ≤ s for all x, y ∈ σ.
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The Vietoris-Rips complex Vs(X) is defined as an abstract simplicial com-
plex, and one usually makes it into a space by constructing its realization. An
alternative is to put a total order on the vertices (which is consistent with listing
the data set X), and then form an associated simplicial set as a subobject of
a simplex that is determined by the order on X. This simplicial set also has a
realization, which is homeomorphic to the realization of the abstract simplicial
complex. Both routes lead to the same space, and hence represent the same
homotopy type.

There is a different approach. The basic method of this paper is to treat
the poset Ps(X) of simplices of Vs(X) as a homotopy theoretic object in its
own right by using the nerve BPs(X) of Ps(X). The space BPs(X) is the
barycentric subdivision of the Vietoris-Rips complex Vs(X), and therefore has
the same homotopy type.

This construction may seem fraught with complexity, but one can restrict to
low dimensional simplices as necessary. The advantage of the poset approach is
that the nerves of the posets Ps(X) can be employed to great theoretical effect,
by using basic features of Quillen’s theory of homotopy types of posets [8].

For example, suppose that Y is a finite metric space, and that X is a subset
of Y . Suppose that r ≥ 0 is a real parameter and that for each y ∈ Y there is an
x ∈ X such that d(x, y) < r, where d is the metric on Y . Then one constructs
a retraction function θ : Y → X by insisting that θ(y) is a point of X such that
d(y, θ(y)) < r. It follows from the triangle identity shows the function θ induces
a poset morphism θ : Ps(Y )→ Ps+2r(X), and there is a diagram of morphisms

Ps(X) //

i

��

Ps+2r(X)

i

��
Ps(Y ) //

θ

99

Ps+2r(Y )

(1)

in which the upper triangle commutes on the nose, and the bottom triangle
commutes up to a natural transformation that fixes Ps(X). The horizontal and
vertical morphisms are the natural inclusions.

This construction translates directly to a proof of the Rips stability theorem
after applying the nerve functor — this is Theorem 4 below. There is a cor-
responding construction and result for the degree Rips filtration (Theorem 6),
where one uses a more interesting distance criterion that involves configuration
spaces. We also present, in Theorem 5, a quick proof of the version of the Rips
stability theorem given by Blumberg-Lesnick [1] that uses only poset techniques.

These results are proved in Section 2. The basic terminology appears in
Section 1, along with a relatively simple model for the fundmental groupoid of
the space BPs(X).

The diagram (1) is a “homotopy interleaving”, and is a strong deformation
retraction up to a shift — in this case the shift is 2r. Its existence implies that
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there is a commutative diagram

πn(BPs(X), x) //

i∗

��

πn(BPs+2r(X), x)

i∗

��
πn(BPs(Y ), x) //

θ

55

πn(BPs+2r(Y ), x)

of maps between homotopy groups for each choice of base point x ∈ X. There
are similar induced diagrams in path components and in homology groups.

It follows that if α ∈ πn(BPs(X), x) maps to 0 ∈ πn(BPs(Y ), x), then
α maps to 0 in πn(BPs+2r(X), x), so that the vertical maps i∗ are 2r-mono-
morphisms, suitably defined. Similarly, the maps i∗ are 2r-epimorphisms, in
that every β ∈ πn(BPs(Y ), x) maps to an element of πn(BPs+2r(Y ), x) which
is in the image of the homomorphism i∗.

The maps i∗ : πn(BPs(X), x) → πn(BP (Y ), x) are 2r-isomorphisms in the
sense that they are 2r-monomorphisms and a 2r-epimorphisms. A similar ob-
servation holds for path components, and one says that the 2r-interleaving pro-
duced by the Rips stability theorem is a 2r-equivalence.

More generally, one defines families of r-equivalences of systems of spaces
for all r ≥ 0, and a map X → Y of systems of spaces is a controlled equivalence
if it is an r-equivalence for some r ≥ 0.

The third section of this paper is a general study of controlled equivalences
of systems of spaces, along with their interactions with sectionwise fibrations
and sectionwise cofibrations.

A map of systems f : X → Y is a sectionwise fibration if all of its constituent
maps f : Xs → Ys are fibrations of simplicial sets. Sectionwise cofibrations and
sectionwise weak equivalences are defined analogously.

Quillen’s triangle axiom CM2 does not hold for the class of r-equivalences,
but a modification is possible: Lemma 12 implies, for example, that if f : X → Y
is an s-equivalence and g : Y → Z is an r-equivalence, then the composite
g · f : X → Z is an (r + s)-equivalence.

It is shown, in a sequence of lemmas leading to Theorem 15, that maps
p : X → Y which are both sectionwise fibrations and r-equivalences pull back
to maps which are sectionwise fibrations and 2r-equivalences. The doubling of
the parameter from r to 2r reflects the usual two obstructions in the argument
for the corresponding classical result for simplicial sets.

It is tempting to think that Theorem 15 has a dual formulation that holds
for sectionwise cofibrations, but such a result has not been proved.

We still have partial glueing results. Perhaps most usefully, if there is a
pushout diagram of systems

A //

i

��

C

i∗
��

B // D
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where i is a sectionwise cofibration, then i∗ is a sectionwise cofibration, and the
following statements hold:

1) If the map π0A→ π0B is an r-isomorphism then the map i∗ : π0C → π0D
is an r-isomorphism.

2) If the maps Hk(A) → Hk(B) are r-isomorphisms in homology (arbi-
trary coefficients) for k ≥ 0, then the maps Hk(C) → Hk(D) are 2r-
isomorphisms.

These statements are proved in Lemma 18 of this paper — the arguments are
not difficult.

We also show, in Lemma 17, that if i : A → B is an r-interleaving, or a
strong deformation retraction up to shift r, then the same holds for the map
i∗ : C → D.

This applies in particular to cofibrations that arise from stability theorems.
Thus, if i is a map BP∗(X)→ BP∗(Y ) that is associated to an inclusion X ⊂ Y
of finite metric spaces that satisfies dH(X,Y ) < r, then the map i∗ : C → D is
a strong deformation retraction up to shift 2r.
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1 Posets

A data set X is a finite subset of a metric space Z. The collection of data sets
in Z with inclusions between them forms a poset, which is denoted by D(Z).

Suppose that s ≥ 0, and that X is a data set in Z. Write Ps(X) for the
poset of all subsets σ ⊂ X such that d(x, y) ≤ s for all x, y ∈ σ.

The poset Ps(X) is the poset of simplices of the Vietoris-Rips complex Vs(X)
of X. The members σ ⊂ X of Ps(X) are simplices of dimension n − 1, where
n = |σ| is the number of elements of σ.

Each poset Ps(X) is a finite category. Other examples of finite posets are
given by the finite ordinal numbers

n = {0, 1, . . . , n},

with the obvious ordering.
There is a functorial method of assigning a simplicial set BC to a small

category C, where the n-simplices of BC are the functors α : n→ C, or strings
of composable morphisms in C of length n. The simplicial structure maps of
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BC are defined by composition with the functors (poset maps) m→ n between
finite ordinal numbers. The simplicial set BC is variously called the nerve or
the classifying space of C.

A group G is a category (groupoid) with one object, and BG is a model for
the classifying space of G.

The nerve construction can also be applied to the ordinal number posets n,
and there is a natural isomorphism

Bn ∼= ∆n,

where ∆n is the standard n-simplex in simplicial sets.
The nerve functor C 7→ BC also preserves products, so that there is an

isomorphism
B(C × 1) ∼= BC ×∆1.

The existence of this isomorphism implies that the nerve functor takes natural
transformations to simplicial homotopies.

It is standard to identify natural transformations with homotopies in this
form of categorical homotopy theory.

We have poset inclusions

σ : Ps(X) ⊂ Pt(X), s ≤ t,

for the data set X.
Observe that P0(X) is the discrete poset (category) whose objects are the

elements of X, and that Pt(X) is the poset P(X) of all subsets of X for t
sufficiently large.

There is an isomorphism of posets

P(X) ∼= 1×m,

where 1 is the poset {0, 1} and m is the cardinality of the set X. The isomor-
phism sends a subset A of X to the m-tuple (εx)x∈X , where

εx =

{
1 if x ∈ A, and

0 if x /∈ A.

It follows that there is an isomorphism of simplicial sets

BP(X) ∼= (∆1)×m.

In particular, the simplicial set (or space) BPt(X) is contractible if t is suffi-
ciently large.

The Vietoris-Rips complex Vs(X) is a finite abstract simplicial complex, and
Ps(X) is its poset of simplices.

The realization |Vs(X)| of Vs(X) is constructed, as a space, by glueing affine
simplices together along face relationships, and it is standard to identify the
simpilicial complex Vs(X) with its realization.
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The nerve BPs(X) of the poset Ps(X) is a simplicial set whose realization
is the barycentric subdivision sd(Vs(X)) of Vs(X). The subdivision sd(Vs(X))
is naturally weakly equivalent to Vs(X) [3, III.4], [4].

There is a non-canonical method of associating a simplicial set structure to
Vs(X) that arises from a total ordering, or listing

φ : N
∼=−→ X

of the elements of the data set X. In the presence of such a listing, the set
X has N + 1 elements, and the simplicial set Vs(X) is the subcomplex of the
standard simplex ∆N whose non-degenerate simplices are the members of the
original abstract simplicial complex. In this case, the simplicial set Vs(X) is
oriented by the total ordering φ on X. Its realization, as a simplicial set, is
homeomorphic to the realization of the underlying abstract simplicial complex,
so that its homotopy type is independent of the ordering.

The method of this paper is to identify the poset Ps(X) with the homotopy
type BPs(X) directly, without either constructing a realization or assuming a
particular list structure on X. This is consistent with the general identification
of small categories with homotopy types, which was pioneered by Quillen [7],
[8] during the early development of algebraic K-theory.

Suppose that k is a non-negative integer. The poset Ps(X) has a subobject
Ps,k(X) ⊂ Ps(X), which is the subposet of simplices σ such that each element
x ∈ σ has at least k distinct “neighbours” y in X (not necessarily in σ) such
that d(x, y) ≤ s.

The poset Ps,k(X) is the poset of simplices of the degree Rips complex (or
Lesnick complex) Ls,k(X).

For s ≤ t we have a diagram of poset inclusions

Ps(X)
σ // Pt(X)

Ps,k(X)

OO

σ // Pt,k(X)

OO

Ps.k+1(X)
σ
//

OO

Pt.k+1(X)

OO

The notation σ will always be used for poset inclusions associated to changes of
distance parameter.

Observe also that

1) Ps,0(X) = Ps(X) for all s, and

2) Ps,k(X) = ∅ for k sufficiently large.

The objects P∗,k(X) form the degree Rips filtration of the Vietoris-Rips system
of posets P∗(X).
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The simplicial set BPs(X) is model for Vs(X) in the homotopy category,
but it may seem intractably large since all simplices of Vs(X) are vertices of
BPs(X), while one can only practically recover the low dimensional part of the
simplicial structure of Vs(X) in concrete examples. That said, one only needs
low dimensional simplices to compute low dimensional homotopy or homology
groups of BPs(X). This is illustrated as follows.

Suppose, generally, that the poset P is a subobject of a power set P(X) is
a subposet that is closed under taking non-empty subsets, so that P defines an
abstract simplicial complex.

Suppose given a list x0, . . . , xk of elements of X such that d(xi, xj) ≤ s. This
list may have repeats, and can be viewed as a function x : {0, 1, . . . , k} → X
which may not be injective. Write

[x0, . . . , xk] = {x0} ∪ · · · ∪ {xk}.

in X. This set can be identified with the image of the function x.
There is a graph Gr(P ) whose vertices are the singleton elements (vertices)

{x} of P , and there is an edge x→ y if [x, y] is an object of P .
Observe that there is an edge [x, y] : x → y if and only if there is an edge

[y, x] : y → x, and there is an edge [x, x] : x→ x.
Write Γ(P ) for the category generated by Gr(P ), subject to relations defined

by the simplices [x0, x1, x2]. Then we have the following:

Proposition 1. The category Γ(P ) is a groupoid, and there are equivalences

Γ(P ) ' G(P ) ' π(BP ),

where π(BP ) is the fundamental groupoid of the space BP , and G(P ) is the free
groupoid on the poset P .

The groupoid G(P ) can be identified up to natural equivalence with the
fundamental groupoid π(BP ) by [3, III.2.1]. In more detail, πBP is isomr-
phic to G(P∗(BP )) where P∗(BP ) is the path category of BP , and there is an
isomorphism P∗(BP ) ∼= P , essentially by inspection (see also [5]).

Corollary 2. The category Γ(Ps(X)) is a groupoid, and there are equivalences

Γ(Ps(X)) ' G(Ps(X)) ' π(BPs(X)).

There is an equivalence of groupoids π(BPs(X)) ' π(Vs(X)), since the
spacesBPs(X) and Vs(X) are weakly equivalent, and so the fundamental groupoid
π(Vs(X)) is weakly equivalent to Γ(Ps(X)).

Proof of Proposition 1. We show that

1) The category Γ(P ) is a groupoid.

2) There is an equivalence of groupoids Γ(P ) ' G(P ).
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For the first claim, the edges [x, x] represent 2-sided identities, on account of
the existence of the simplices [x, x, y] and [x, y, y]. Then the simplices [x, y, x]
and [y, x, y] are used to show that each edge [x, y] represents an invertible mor-
phism of Γs(X).

For the second claim, pick an element xσ ∈ σ for each simplex σ ∈ P .
For σ ⊂ τ in P , the list xσ, xτ consists of elements of τ , so that [xσ, xτ ] ⊂ τ

is a simplex of P . If σ ⊂ τ ⊂ γ are morphisms of P , then [xσ, xτ , xγ ] ⊂ γ is a
simplex of P , and so there is a commutative diagram

xσ
[xσ,xτ ]//

[xσ,xγ ] !!

xτ

[xτ ,xγ ]

��
xγ

in Γ(P ). It follows that sending the morphism σ ⊂ τ to [xσ, xτ ] : xσ → xτ
defines a functor P → Γ(P ), which induces a functor

φ : G(P )→ Γ(P ).

Suppose that [x, y] : x → y is an edge of the graph Gr(P ). Then the
associated inclusions

{x} → [x, y]← {y}

in P define a morphism [x, y]∗ : {x} → {y} of G(P ).
If [x, y, z] is a simplex of P then the diagram of inclusions

{y}

zz �� ##
[x, y] // [x, y, z] [y, z]oo

{x}

<< 55

// [x, z]

OO

{z}oo

ii bb

is used to show that [y, z]∗ · [x, y]∗ = [x, z]∗ in the groupoid G(P ).
It follows that the assignment that takes an edge x → y of Gr(P ) to the

morphism [x, y]∗ : {x} → {y} defines a functor

ψ : Γ(P )→ G(P ).

The inclusions {xσ} ⊂ σ define a natural isomorphism

ψ · φ
∼=−→ 1G(P ),

and the composite φ · ψ is the identity on Γ(P ).
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2 Stability

Suppose that Z is a metric space, and let D(Z) be the poset of finite subsets
(data sets) in Z.

The poset D(Z) has the Hausdorff metric dH , which can be described heuris-
tically, relative to a fixed r ≥ 0, as follows:

1) Suppose that X ⊂ Y in D(Z). Then dH(X,Y ) < r if for all y ∈ Y there
is an x ∈ X such that d(y, x) < r.

2) For arbitrary X,Y ∈ D(Z): dH(X,Y ) < r if and only if (equivalently)

a) dH(X,X ∪ Y ) < r and dH(Y,X ∪ Y ) < r.

b) for all x ∈ X there is a y ∈ Y such that d(x, y) < r, and for all y ∈ Y
there is an x ∈ X such that d(y, x) < r.

We also have the following:

Lemma 3. Suppose that X and Y are data sets in a metric space Z, and
suppose that dH(X ∩ Y,X) < r.Then dH(Y,X ∪ Y ) < r.

Lemma 3 is easily proved. The statement can be visualized by the following
diagram of labelled inclusions:

X ∩ Y //

r

��

Y

r

��
X // X ∪ Y

Now suppose that X ⊂ Y are data sets in Z, and supppose that dH(X,Y ) <
r. Construct a function θ : Y → X such that

θ(y) =

{
y if y ∈ X
xy where xy ∈ X with d(y, xy) < r, if y /∈ X.

The function θ is a retraction and is not an inclusion. We are interested in the
images θ(τ) of subsets τ of Y .

If τ ∈ Ps(Y ) then θ(τ) ∈ Ps+2r(X) by the triangle identity, and the assign-
ment τ 7→ θ(τ) respects inclusions of finite sets τ .

It follows that we have a diagram of poset morphisms

Ps(X)
σ //

i

��

Ps+2r(X)

i

��
Ps(Y )

σ
//

θ

99

Ps+2r(Y )
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such that upper triangle commutes, and lower triangle commutes up to homo-
topy, in the sense that there are inclusions

σ(τ)→ σ(τ) ∪ i(θ(τ))← i(θ(τ)), (2)

which are natural in τ ∈ Ps(Y ). The inclusions of (2) are identities for τ ∈
Ps(X).

For τ ∈ Ps(Y ) the subset σ(τ) ∪ i(θ(τ)) is in Ps+2r(Y ). The inclusions of
(2) define natural transformations, and hence homotopies

BPs(Y )×∆1 → BPs+2r(Y )

of simplicial set maps BPs(Y )→ BPs+2r(Y ).
We have proved the following:

Theorem 4. Suppose X ⊂ Y in D(Z) such that dH(X,Y ) < r. Then there is
a homotopy commutative diagram of poset morphisms

Ps(X)
σ //

i

��

Ps+2r(X)

i

��
Ps(Y )

σ
//

θ

99

Ps+2r(Y )

(3)

in which the upper triangle commutes, and the lower triangle commutes up to a
homotopy that fixes the subobject Ps(X).

The diagram (3) in the statement of Theorem 4 is a homotopy interleaving.
Theorem 4 is a form of the Rips stability theorem. The form of this result that
appears in the Blumberg-Lesnick paper [1] is the following:

Theorem 5. Suppose given X,Y ⊂ Z are data sets with dH(X,Y ) < r.

Then there are maps φ : Ps(X) → Ps+2r(Y ) and ψ : Ps(Y ) → Ps+2r(X)
such that

ψ · φ ' σ : Ps(X)→ Ps+4r(X) and

φ · ψ ' σ : Ps(Y )→ Ps+4r(Y ).

Theorem 5 is a consequence of Theorem 4, but it also has a poset-theoretic
proof, given below, that follows the outline given by Blumberg-Lesnick [1], and
uses Quillen’s Theorem A [7], [3, IV.5.6]. The use of Theorem A for proofs of
stability results was introduced by Memoli [6].

Proof of Theorem 5. Set

U = {(x, y) | x ∈ X, y ∈ Y, d(x, y) < r }.

The poset Ps,X(U) ⊂ P(U) consists of all subsets σ ⊂ U such that d(x, x′) ≤ s
for all (x, y), (x′, y′) ∈ σ. Define the poset Ps,Y (U) similarly, by constraining
distances between coordinates in Y .
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Projection on the X-factor defines a poset map pX : Ps,X(U)→ Ps(X), and
projection on the Y -factor defines pY : Ps,Y (U) → Ps(Y ). The maps pX and
pY are weak equivalences, by Quillen’s Theorem A. In effect, the slice category
pX/σ can be identified with the power set of the collection of all pairs (x, y)
such that x ∈ σ, and power sets are contractible posets.

There are inclusions

Ps,X(U) ⊂ Ps+2r,Y (U), Ps,Y (U) ⊂ Ps+2r,X(U),

by the triangle identity, and these maps define the maps φ and ψ, respectvely,
via the weak equivalences pX and pY .

Suppose that X is a finite subset of a metric space Z. Write Xk+1
dis for the

set of k + 1 distinct points of X, and think of it as a subobject of Zk+1. The
product Zk+1 has a product metric space structure, and so we have a Hausdorff
metric on its poset D(Zk+1) of finite subsets.

We have the following analogue (and generalization) of Theorem 4:

Theorem 6. Suppose X ⊂ Y in D(Z) such that dH(Xk+1
dis , Y

k+1
dis ) < r. Then

there is a homotopy commutative diagram of poset diagrams

Ps,k(X)
σ //

i

��

Ps+2r,k(X)

i

��
Ps,k(Y )

σ
//

θ

88

Ps+2r,k(Y )

in which the upper triangle commutes, and the lower triangle commutes up to a
homotopy which fixes the image of Ps,k(X).

Proof. Write Ps,k(X)0 for the set of one-point members (vertices) of Ps,k(X).
Suppose that y ∈ Ps,k(Y )0−Ps,k(X)0. Then there are k points y1, . . . , yk of

Y , distinct from y such that d(y, yi) < s. There is a (k+1)-tuple (x0, x1, . . . , xk)
such that

d((x0, . . . , xk), (y, y1, . . . , yk)) < r,

by assumption. Then d(y, x0) < r, d(yi, xi) < r, and so d(x0, xi) < s+ 2r, and
x0 is a vertex of Ps+2r,k(X). Set θ(y) = x0, and observe that d(y, θ(y)) < r.

If [y0, . . . , yp] is a simplex of Ps,k(Y ) then [θ(y0), . . . , θ(yp)] is a simplex of
Ps+2r,k(Y ), as is the subset

[y0, . . . , yp, θ(y0), . . . , θ(yp)].

Finish according to the method of proof for Theorem 4.

A data set Y ∈ D(Z) is finite, so there is a finite string of parameter values

0 = s0 < s1 < · · · < sr,

consisting of the distances between elements of Y . I say that the si are the
phase-change numbers for Y .
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Corollary 7. Suppose that X ⊂ Y in D(Z) and that dH(Xk+1
dis , Y

k+1
dis ) < r.

Suppose that 2r < si+1 − si. Then the inclusion i : Psi,k(X) → Psi,k(Y ) is a
weak homotopy equivalence.

Lemma 8. Suppose that X ⊂ Y in D(Z) and that dH(Xk+1
dis , Y

k+1
dis ) < r.

Suppose that that Y k+1
dis 6= ∅. Then dH(Xk

dis, Y
k
dis) < r.

Proof. Suppose that {y0, . . . , yk−1} is a set of k distinct points of Y . Then
there is a yk ∈ Y which is distinct from the yi, for otherwise Y has only k
elements. Then (y0, y1, . . . , yk) is a (k + 1)-tuple of distinct points of Y . There
is a (k + 1)-tuple (x0, . . . , xk) of distinct points of X such that

d((y0, . . . , yk−1, yk), (x0, . . . , xk−1, xk)) < r.

It follows that
d((y0, . . . , yk−1), (x0, . . . , xk−1)) < r.

Corollary 9. Suppose X ⊂ Y in D(Z) such that dH(Xk+1
dis , Y

k+1
dis ) < r for some

non-negative number r. Then for 0 ≤ j ≤ k there is a homotopy commutative
diagram of poset diagrams

Ps,j(X)
σ //

i

��

Ps+2r,j(X)

i

��
Ps,j(Y )

σ
//

θ

88

Ps+2r,j(Y )

in which the upper triangle commutes, and the lower triangle commutes up to a
homotopy that fixes the image of Ps,j(X).

Proof. Use Theorem 6 and Lemma 8.

3 Controlled equivalences

A system of simplicial sets (or spaces) is a functor X : [0,∞) → sSet which
takes values in the category of simplicial sets. One also says that such a functor
is a diagram of simplicial sets with index category [0,∞). A map of systems
X → Y is a natural transformation of functors that are defined on [0,∞).

We shall also discuss systems of sets, groups and chain complexes as functors
defined on the poset [0,∞), which take values in the respective categories.

Examples

1) The functors s 7→ Vs(X), BPs(X) are systems of spaces, for a data set X ⊂ Z.
The functor s 7→ Ps(X) is a system of posets.

2) If X ⊂ Y ⊂ Z are data sets, the induced maps Ps(X)→ Ps(Y ) and Vs(X)→
Vs(Y ) define maps of systems P∗(X)→ P∗(Y ) and V∗(X)→ V∗(Y ).
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There are various ways to discuss homotopy theories of systems. The oldest
of these is the projective model structure of Bousfield and Kan [2], although
they do not use the term “projective” — this term arose much later in motivic
homotopy theory.

In the projective structure, a map f : X → Y is a weak equivalence (re-
spectively fibration) if each map Xs → Ys is a weak equivalence (respectively
fibration) of simplicial sets. The maps which are both weak equivalences and
fibrations are called trivial fibrations.

A map A→ B of systems is a projective cofibration if it has the “left lifting
property” with respect all maps which are weak equivalences and fibrations.
Projective cofibrations are intensely studied and important, but will not be
used here.

A map of systems f : X → Y such that each map f : Xs → Ys is a
weak equivalence (respectively fibration) is often said to be a sectionwise weak
equivalence (respectively sectionwise fibration). A sectionwise cofibration is a
map of systems A → B such the each map As → Bs is a monomorphism
(or cofibration) of simplicial sets. Every projective cofibration is a sectionwise
cofibration, but the converse is not true.

Suppose that X ⊂ Y in D(Z) such that dH(X,Y ) < r. The Rips stability
theorem (Theorem 4) says that we have a homotopy interleaving

BPs(X)
σ //

i

��

BPs+2r(X)

i

��
BPs(Y )

σ
//

θ

88

BPs+2r(Y )

where the upper triangle commutes and the lower triangle commutes up to
homotopy which is constant on the space BPs(X).

Then we have the following:

1) The natural transformation i : π0BP∗(X) → π0BP∗(Y ) is a 2r-mono-
morphism: if i([x]) = i([y]) in π0BPs(Y ) then σ[x] = σ[y] in π0BPs+2r(X).

2) The transformation i : π0BP∗(X) → π0BP∗(Y ) is a 2r-epimorphism:
given [y] ∈ π0BPs(Y ), σ[y] = i[x] for some [x] ∈ π0BPs+2r(X).

3) All natural transformations i : πn(BP∗(X), x) → πn(BP∗(Y ), i(x)) of
homotopy group functors are 2r-isomorphisms in the sense that they are
both 2r-monomorphisms and 2r-epimorphisms.

The statements 1)–3) are “derived”, and depend on having a way to talk
about higher homotopy groups.

There is a functorial weak equivalence γ : X → Ex∞X of simplicial sets,
where Ex∞X is a system of Kan complexes, and therefore have combinatorially
defined homotopy groups [3]. Thus, for example, the notation πn(BPs(X), x)
can refer to the combinatorial homotopy group πn(Ex∞BPs(X), x).

13



There is an alternative, in that one could use the adjunction weak equivalence
η : X → S(|X|), where S is the singular functor and |X| is the topological real-
ization of X. The combinatorial homotopy groups of the Kan complex S(|X|)
coincide up to natural isomorphism with the standard homotopy groups of the
space |X|. In this case, we would write πn(BPs(X), x) to mean πn(|BPs(X)|, x).

There is a natural isomorphism

πn(Ex∞ Y, y) ∼= πn(|Y |, y)

for all simplicial sets Y and vertices y of Y , so the combinatorial and topological
constructions produce isomorphic homotopy groups.

The Kan Ex∞ functor is combinatorial and therefore plays well with alge-
braic constructions, while the realization functor is familiar but transcendental.

The homotopy groups πn(BPs(X), x) coincide with the homotopy groups
πn(Vs(X), x) of the Vietoris-Rips complex Vs(X) up to natural isomorphism.
A similar observation holds for the extant constructions of the degree Rips
complexes.

The natural maps γ : Y → Ex∞ Y and η : Y → S(|Y |) are fibrant mod-
els for simplicial sets Y , in that the maps are weak equivalences which take
values in fibrant simplicial sets (Kan complexes). Both constructions preserve
monomorphisms.

We shall write Y → FY for an arbitrary fibrant model construction that
preserves monomorphisms. A formal nonsense argument implies that the choice
of fibrant model does not matter.

Suppose f : X → Y is a map of systems. Say that f is an r-equivalence if

1) the map f : π0(X)→ π0(Y ) is an r-isomorphism of systems of sets

2) the maps f : πk(Xt, x) → πk(Yt.f(x)) are r-isomorphisms of systems of
groups for t ≥ s, for all s ≥ 0 and x ∈ Xs.

Remark 10. Note the variation of condition 2) from the Vietoris-Rips example.
In the general definition, we do not assume that all simplicial sets Xs of the
system X have the same vertices, so the base points of condition 2) have to
be chosen section by section. This is relevant for comparisons of degree Rips
systems BP∗,k(X)→ BP∗,k(Y ).

Examples: 1) A map f : X → Y is a sectionwise equivalence if and only if it
is a 0-equivalence.

2) If r ≤ s and f : X → Y is an r-equivalence, then f is an s-equivalence.

3) If X ⊂ Y are (finite) data sets in a metric space Z, then there is a homotopy
r-interleaving

BPs(X)
σ //

i

��

BPs+r(X)

i

��
BPs(Y )

σ
//

θ

88

BPs+r(Y )
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for sufficiently large r: take r/2 > dH(X,Y ). This means that the map of
systems BPs(X)→ BPs(Y ) is an r-equivalence for large r.

A similar observation holds for the comparison BPs,k(X) → BPs,k(Y ) of
degree Rips systems.

Say that a map of systems X → Y is a controlled equivalence if it is an
r-equivalence for some r ≥ 0.

The class of controlled equivalences of systems has a list of formal properties,
which begins with the following result.

Lemma 11. Suppose given a diagram of systems

X1
f1 //

'
��

Y1

'
��

X2
f2

// Y2

in which the vertical maps are sectionwise weak equivalences. Then f1 is an
r-equivalence if and only if f2 is an r-equivalence.

Lemma 12. Suppose given a commutative triangle

X
f //

h   

Y

g

��
Z

of maps of systems,’
Then if one of the maps is an r-equivalence, a second is an s-equivalence,

then the third map is a (r + s)-equivalence.

Proof. The arguments are set theoretic. We present an example.
Suppose X,Y, Z are systems of sets, h is an r-isomorphism and g is an s-

isomorphism. Given z ∈ Yt, g(z) = h(w) for some w ∈ Xt+s. Then g(z) =
g(f(w)) in Zt+s so z = f(w) in Yt+s+r. It follows that f is an (r + s)-
epimorphism.

Lemma 12 is an approximation of the triangle axiom for weak equivalences
in the definition of a Quillen model structure.

There is a calculus of controlled equivalences and sectionwise fibrations,
which starts with the following result and concludes with Theorem 15.

Lemma 13. Suppose that p : X → Y is a sectionwise fibration of systems of
Kan complexes, and that p is an r-equivalence.

15



Then each lifting problem

∂∆n α //

��

Xs

��

σ // Xs+2r

p

��
∆n

β
//

θ

66

Ys σ
// Ys+2r

can be solved up to shift 2r in the sense that the indicated dotted arrow lifting
exists.

Lemma 13 is the analogue of a classical result of simplicial homotopy the-
ory [3, I.7.10], and its proof is a variant of the standard obstruction theoretic
argument for that result.

Proof of Lemma 13. The original diagram can be replaced up to homotopy by
a diagram

∂∆n
(α0,∗,...,∗) //

��

Xs

p

��

σ // Xs+r

p

��
∆n

β
// Ys σ

// Ys+r

(4)

Then p∗([α0]) = 0 in πn−1(Ys, ∗), so σ∗([α0]) = 0 in πn−1(Xs+r, ∗).
The trivializing homotopy for σ(α0) in Xs+r defines a homotopy from the

outer square of (4) to the diagram

∂∆n ∗ //

��

Xs+r

p

��
∆n

ω
// Ys+r

The element [ω] ∈ πn(Ys+2r, ∗) lifts to an element of πn(Xs+2r, ∗) up to
homotopy, giving the desired lifting.

Lemma 14. Suppose that p : X → Y is a sectionwise fibration of systems of
Kan complexes, and that all lifting problems

∂∆n //

��

Xs

��

σ // Xs+r

p

��
∆n //

θ

66

Ys σ
// Ys+r

have solutions up to shift r, in the sense that the dotted arrow exists making the
diagram commute. Then the map p : X → Y is an r-equivalence.
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Proof. If p∗([α]) = 0 for [α] ∈ πn−1(Xs, ∗), then there is a diagram on the left
above. The existence of θ gives σ∗([α]) = 0 in πn−1(Xs+r, ∗).

The argument for r-surjectivity is similar.

Lemma 13 and Lemma 14 together imply the following:

Theorem 15. Suppose given a pullback diagram

X ′ //

p′

��

X

p

��
Y ′ // Y

where p is a sectionwise fibration and an r-equivalence.
Then the map p′ is a sectionwise fibration and a 2r-equivalence.

Proof. All lifting problems

∂∆n α //

��

X ′s

��

σ // X ′s+2r

p′

��
∆n

β
//

θ

66

Y ′s σ
// Y ′s+2r

for p′ have solutions up to shift 2r, since it is a pullback of a map p that has that
property by Lemma 13. Then Lemma 14 implies that p′ is a 2r-equivalence.

Suppose that i : A → B is a sectionwise cofibration of projective cofibrant
systems (i.e. systems of monomorphisms), and form the diagram

A
η //

i

��

FA

i∗
��

B
η
// FB

in which the horizontal maps are fibrant models, and in particular sectionwise
equivalences. Typically, one sets FA = Ex∞A.

Say that the map i admits an r-interleaving if, for all s, there are maps
θ : Bs → FAs+r such that the diagram

As
σ //

i

��

As+r
η // FAs+r

Bs

θ

55
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commutes, and the diagram

FAs+r

i∗

��
Bs

θ

55

σ
// Bs+r η

// FBs+r

commutes up to a homotopy which restricts to the constant homotopy on As.

An r-interleaving is effectively a strong deformation retraction up to shift r.

Lemma 16. Suppose that the map i : A → B admits an r-interleaving. Then
the map i : A→ B is an r-equivalence.

Proof. The map η : As+r → FAs+r is a weak equivalence, so that θ : Bs →
FAs+r induces functions θ∗ : π0Bs → π0As+r and homomorphisms

θ∗ : πn(Bs, i(x))→ πn(As+r, σ(x)).

The diagram

π0As
σ //

i

��

π0As+r

i

��
π0Bs σ

//

θ

::

π0Bs+r

commutes, so that the map of systems of sets π0A→ π0B is an r-isomorphism.
The diagram

πn(As, x)
σ //

i

��

πn(As+r, σ(x))

i

��
πn(Bs, i(x))

θ

66

σ
// πn(Bs+r, σi(x))

also commutes. In effect, σ(i(x)) = i(θ(i(x)), and the homotopy σ ' i · θ
restricts to the identity on i(x), so that [σ(α)] = [i(θ(α)] in πn(Bs+r, σi(x))
for any representing simplex α : ∆n → FBs of a homotopy group element
[α] ∈ πn(Bs, i(x)).

Lemma 17. Suppose that i : A → B is a sectionwise cofibration between sys-
tems, such that i admits an r-interleaving. Suppose also that the diagram

A
α //

i

��

C

i′

��
B

β
// D

(5)

is a pushout. Then the map i′ admits an r-interleaving.
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Proof. The composites

Bs
θ−→ FAs+r

α∗−−→ FCs+r,

Cs
σ−→ Cs+r

η−→ FCs+r

together determine a unique map θ′ : Ds → FCs+r.
The homotopy i∗ · θ ' η · σ is defined by a map

h : Bs ×∆1 → FBs+r.

This homotopy restricts to a constant homotopy on As, which means that the
diagram

As ×∆1 pr //

i×∆1

��

As
σ // As+r

η // FAs+r

i∗

��
Bs ×∆1

h
// FBs+r

commutes, where pr is a projection.
The diagram

As ×∆1 α×∆1

//

i×∆1

��

Cs ×∆1

i∗×∆1

��
Bs ×∆1

β×∆1
// Ds ×∆1

is a pushout, and the composites

Bs ×∆1 h−→ FBs+r
β∗−→ FDs+r

Cs ×∆1 pr−→ Cs
σ−→ Cs+r

η−→ FCs+r
i∗−→ FDs+r

together determine a homotopy

h′ : Ds ×∆1 → FDs+r

from i∗ · θ′ to η ·σ. The homotopy h′ restricts to the constant homotopy on Cs,
by construction.

Theorem 15 says that the pullback of a map which is a sectionwise fibration
and an r-equivalence is a sectionwise fibration and a 2r-equivalence. The “dual”
statement, namely that a pushout of a map which is a cofibration and an r-
equivalence is a cofibration and a 2r-equivalence, has not been proved for any
relevant class of cofibrations.

The practical examples of cofibrations which are r-weak equivalences are
cofibrations which admit r-interleavings. These arise from stability results, and
Lemma 17 says that the class of cofibrations which admit r-interleavings is
closed under pushout.
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Thus, if one has a pushout diagram such as (5) for which the cofibration i
admits an r-interleaving, then the induced map i∗ also admits an r-interleaving.
The map i∗ induces r-isomorphisms Hk(C)→ Hk(D) and π0C → π0D.

We have more general statements for homology and path components, as
follows.

Lemma 18. Supppose given a pushout diagram

A
α //

i

��

C

��
B

β
// D

of systems in which i is a cofibration. Then the following hold:

1) If the map π0A → π0B is an r-isomorphism, then the π0C → π0D is an
r-isomorphism.

2) If the maps Hk(A) → Hk(B) are r-isomorphisms for k ≥ 0 (arbitrary
coefficients, then the map Hk(C)→ Hk(D) is a 2r-isomorphism, for k ≥
0.

Proof. Statement 1) follows from Lemma 19 below, since the path component
functor preserves pushouts.

For statement 2) there is a system of exact sequences

· · · → Hk(A)→ Hk(B)→ Hk(B/A)
∂−→ Hk−1(A)→ Hk−1(B)→ . . .

An element chase within this system shows that the map 0 → Hk(B/A) is a
2r-isomorphism for all k ≥ 0. One uses the system of exact sequences

· · · → Hk(C)→ Hk(D)→ Hk(B/A)
∂−→ Hk−1(C)→ Hk−1(DB)→ . . .

to show that the map Hk(C)→ Hk(D) is a 2r-isomorphism for all k ≥ 0.

Lemma 19. Suppose that the diagram

A
α //

f

��

C

f ′

��
B // D

is a pushout of systems of sets, and that f is an r-bijection. Then f ′ is an
r-bijection.

Proof. The map f has an epi-monic factorization

A
p−→ Z

j−→ B
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and there are corresponding pushout diagrams

A //
p ��

C
p′��

Z
j ��

// Z ′

j′��
B // D

The map j′ is a sectionwise monomorphism, and j′ is an r-epimorphism since
j is an r-epimorphism.

The sectionwise epimorphism p′ is constructed by collapsing images of fi-
bres of p to points, and it follows that p′ is an r-monomorphism as well as a
sectionwise epimorphism.

The conclusion follows: the composite j′ · p′ is an r-monomorphism and an
r-epimorphism.
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