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Abstract

This paper gives an introduction to homotopy theoretic descent, and its
applications in algebraic K-theory computations for fields. On the étale
site of a field, a fibrant model of a space can be constructed from naive
Galois cohomological objects given by homotopy fixed point constructions,
but only up to pro-equivalence. The homotopy fixed point spaces define
finite Galois descent for spaces, and a pro categorical construction is a
necessary second step for passage from finite descent conditions to full
homotopy theoretic descent in a Galois cohomological setting.

Introduction

Descent theory is a large subject, which appears in many forms in areas of
geometry, number theory and topology.

Initially, descent was a set of methods for constructing global features of a
“space” from a set of local data that satisfies patching conditions, or for defining
a variety over a base field from a variety over a finite separable extension that
comes equipped with a some type of cocycle. The latter field of definition
problem appears in early work of Weil [20]; it was later subsumed by a general
approach of Grothendieck to what we now call “faithfully flat descent” that
appeared in FGA [7].

The early descriptions of patching conditions were later generalized to iso-
morphisms of structures on patches which are defined up to coherent isomor-
phism, in the formulation of the notion of effective descent that one finds in the
theory of stacks and, more generally, higher stacks [16].

Cohomological descent is a spectral sequence technique for computing the
cohomology of a “space” S from the cohomology of the members of a covering.
The theory is discussed in detail in SGA4, [1, Exp. Vbis], while the original
spectral sequence for an ordinary covering was introduced by Godement [4].

The construction of the descent spectral sequence for a covering U → S
(sheaf epimorphism) starts with a Čech resolution Č(U) → S for the covering
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and an injective resolution A → I• of a coefficient abelian sheaf A. One forms
the third quadrant bicomplex

hom(Č(U), I•)

and the resulting spectral sequence has the form

Ep,q2 = Hp(Hq(Č(U), A))⇒ Hp+q(S,A). (1)

It is a more recent observation that the spectral sequence (1) converges to
Hp+q(S,A), since the resolution Č(U) → S is a stalkwise weak equivalence
of simplicial sheaves. The Čech resolution Č(U) is a simplicial object which is
made up of the components of the covering U and their iterated intersections.

The variation of the descent spectral sequence that is discussed in SGA4
is constructed by replacing the Čech resolution by a hypercover V → S. In
modern terms, a hypercover is a local trivial fibration. Initially, a hypercover
V was a simplicial scheme over S which satisfied a set of local epimorphism
conditions defined by its coskeleta [2].

The key observation for these constructions is that, if X → Y is a stalk-
wise equivalence of simplicial sheaves (or presheaves), then the induced map of
bicomplexes

hom(Y, I•)→ hom(X, I•) (2)

induces a cohomology isomorphism of total complexes. Thus, one has a defini-
tion

Hn(X,A) := Hn(Tot hom(X, I•))

of the cohomology of a simplicial presheaf X with coefficients in an abelian
sheaf A that is independent of the stalkwise homotopy type of X, along with a
spectral sequence that computes it.

Descent theory became a homotopy theoretic pursuit with the introduction
of local homotopy theories for simplicial presheaves and sheaves, and presheaves
of spectra. These homotopy theories evolved from ideas of Grothendieck; their
formalization essentially began with Illusie’s thesis [8].

The local homotopy theories are Quillen model structures: a local weak
equivalence of simplicial presheaves or sheaves is a map which induces weak
equivalences at all stalks, and a cofibration is a monomorphism. The local
homotopy theory of presheaves of spectra is constructed from the homotopy
theory of simplicial presheaves by using methods of Bousfield and Friedlander.
The fibrations for these theories are now commonly called injective fibrations.

In the setup for the cohomological descent spectral sequence (1), the injec-
tive resolution I• “satisfies descent”, in that it behaves like an injective fibrant
object, with the result that a local weak equivalence X → Y induces a quasi-
isomorphism (2). Homotopical descent theory is the study of simplicial objects
and spectrum objects that are nearly fibrant.

One says that a simplicial presheafX satisfies descent (or homotopy theoretic
descent) if any local weak equivalence X → Z with Z injective fibrant is a
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sectionwise weak equivalence, in the sense that the maps X(U) → Z(U) are
weak equivalences of simplicial sets for all objects U in the underlying site.

This form of descent is a statement about the sectionwise behaviour of sim-
plicial presheaves, or presheaves of spectra, and is oriented towards computing
homotopy groups in sections. The role of sheaves is incidental, except in the
analysis of local behaviour.

There are many examples:

1) Every local weak equivalence Z → Z ′ of injective fibrant objects is a sec-
tionwise equivalence by formal nonsense (discussed below), so that all injective
fibrant objects satisfy descent.

2) One can show [13, Sec. 9.2] that a sheaf of groupoids G is a stack (ie. satisfies
the effective descent condition) if and only if its nerve BG satisfies homotopy
theoretic descent.

The advantage of having in hand an object X which satisfies descent is that
there are machines (eg. Postnikov tower, or Godement resolution) that can be
used to produce a spectral sequence

Es,t2 = Ht(S, π̃sX) “⇒ ” πt−s(X(S)) (3)

which computes the homotopy groups of the space X(S) in global sections from
sheaf cohomology for S with coefficients in the homotopy group sheaves of X.
This is the homotopy theoretic descent spectral sequence.

The spectral sequence (3) is a Bousfield-Kan spectral sequence for a tower
of fibrations, so convergence can be a problem, and there may also be a problem
with knowing what it converges to. Both issues are circumvented in practice by
insisting on a universal bound on cohomological dimension — see Section 4.

The availability of a calculational device such as (3) for objects X which
satisfy descent means that the hunt is on for such objects, for various topologies
and in different contexts.

The algebraic K-theory presheaf of spectra K, for example, satisfies descent
for the Nisnevich topology on the category Sm|S of smooth S-schemes, where
S is a regular Noetherian scheme of finite dimension. This follows from the
existence of localization sequences in K-theory for such schemes, so that the
K-theory presheaf satisfies a “cd-excision” property.

There is a general result of Morel and Voevodsky [14], [13, Th. 5.39], which
says that any simplicial presheaf on Sm|S that satisfies the cd-excision property
satisfies Nisnevich descent. The proof of the Morel-Voevodsky theorem is based
on an earlier theorem of Brown and Gersten, which gives a descent criterion
for simplicial presheaves on the standard site of open subsets of a Noetherian
topological space. The descent criterion of Brown-Gersten amounts to homotopy
cartesian patching for pairs of open subsets.

The arguments for the Morel-Voevodsky and Brown-Gersten descent theo-
rems are geometric and a subtle, and depend strongly on the ambient Grothen-
dieck topologies. Descent theorems are interesting and important geometric
results, and finding one of them is a big event.
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Homotopy theoretic descent problems originated in algebraic K-theory, in
the complex of problems related to the Lichtenbaum-Quillen conjecture.

Suppose that k is a field, that ` is a prime number which is distinct from
the characteristic of k. The mod ` algebraic K-theory presheaf of spectra K/`
on smooth k-schemes is the cofibre of multiplication by ` on the algebraic K-
theory presheaf K, and the stable homotopy groups πpK/`(k) are the mod `
K-groups Kp(k,Z/`) of the field k. The presheaf of spectra K/` has a fibrant
model j : K/` → LK/` for the étale topology on k, and the stable homotopy
groups πpLK/`(k) are the étale K-groups Ket

p (k,Z/`) of k. The map j induces
a comparison

Kp(k,Z/`)→ Ket
p (k,Z/`), (4)

and the Lichtenbaum-Quillen conjecture asserts that this map is an isomorphism
in an infinite range of degrees above the Galois cohomological dimension of k.

The point of this conjecture is that algebraic K-theory with coefficients
should be computable from étale (or Galois) cohomology. At the time that it
was formulated, the conjecture was a striking leap of faith from calculations in
low degrees. The precise form of the conjecture that incorporates the injective
fibrant model j : K/`→ LK/` followed much later.

Thomason’s descent theorem for Bott periodic K-theory [18] was a first ap-
proximation to Lichtenbaum-Quillen. His theorem says that formally inverting
the Bott element β in K∗(k,Z/`) produces a presheaf of spectra K/`(1/β) which
satisfies homotopy theoretic descent for the étale topology on the field k. For-
mally inverting the Bott element has no effect on étale K-theory, so that the
Bott periodic K-theory spectrum object K/`(1/β) is sectionwise stably equiv-
alent to the étale K-theory presheaf.

The Lichtenbaum-Quillen conjecture was proved much later — it is a conse-
quence of the Bloch-Kato conjecture [17], while Voevodsky’s proof of Bloch-Kato
appears in [19].

Voevodsky’s work on Bloch-Kato depended on the introduction and use of
motivic techniques, and was a radical departure from the methods that were
used in attempts to calculate the K-theory of fields up to the mid 1990s.

Before Voevodsky, the general plan for showing that the étale descent spec-
tral sequence converged to the algebraic K-theory of the base field followed
the methods of Thomason, and in part amounted to attempts to mimic, for K-
theory, the observation that the Galois cohomology of a field k can be computed
from Čech cohomology. At the time, the E2-term of the étale descent spectral
sequence for the K-theory of fields was known from Suslin’s calculations of the
K-theory of algebraically closed fields.

Explicitly, if A is an abelian sheaf on the étale site of k, then there is an
isomorphism

Hp
Gal(k,A) ∼= lim−→

L/k

Hp hom(EG×G Sp(L), A), (5)

Here, L varies through the finite Galois extensions of k, and we write G =
Gal(L/k) for the Galois group of such an extension L. The simplicial sheaf
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EG ×G Sp(L) is the Borel construction for the action of G on the étale sheaf
represented by the k-scheme Sp(L). The complex hom(EG ×G Sp(L), A) has
n-cochains given by

hom(EG×G Sp(L), A)n =
∏
G×n

A(L),

and is the “homotopy” fixed points complex for the action of G on the abelian
group A(L) of L-points of A.

It is a critical observation of Thomason that if B is an abelian presheaf
which is additive in the sense that it takes finite disjoint unions of schemes to
products, then there is an isomorphism

Hp
Gal(k, B̃) ∼= lim−→

L/k

Hp hom(EG×G Sp(L), B), (6)

which computes cohomology with coefficients in the associated sheaf B̃ from the
presheaf-theoretic cochain complexes hom(EG×G Sp(L), B).

The K-theory presheaf of spectra K/` is additive, and it’s still a leap, but
one could hope that the analogous comparison map of spectra

K/`(k)→ lim−→
L/k

hom(EG×G Sp(L),K/`) (7)

induces an isomorphism in stable homotopy groups in an appropriate range, and
that the colimit on the right would be equivalent to the mod ` étale K-theory
spectrum of the field k.

There are variations of this hope. The map (6) is a colimit of the comparison
maps

K/`(k)→ hom(EG×G Sp(L),K/`), (8)

and one could ask that each such map induces an isomorphism in homotopy
groups in an appropriate range.

The function complex spectrum hom(EG×G Sp(L),K/`) is the homotopy
fixed points spectrum for the action of G on the spectrum K/`(L), and the
question of whether or not (8) is a weak equivalence is commonly called a
homotopy fixed points problem. It is also a finite descent problem.

There were many attempts to solve homotopy fixed points problems for
algebraic K-theory in the pre-motives era, with the general expectation that
the question of identifying the colimit in (8) with the étale K-theory spectrum
should take care of itself.

The identification problem, however, turned out to be hard. Attempts to ad-
dress it at the time invariably ended in failure, and always involved the “canon-
ical mistake”, which is the false assumption that inverse limits to commute with
filtered colimits.

It is a technical application of the methods of this paper that the identifica-
tion of the colimit

lim−→
L/k

hom(EG×G Sp(L),K/`)
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with the étale K-theory spectrum cannot work out, except in a suitable pro
category.

This is expressed in more abstract terms as Theorem 24 below for a cer-
tain class of simplicial presheaves on the étale site for k. The mod ` K-theory
presheaf of spectra K/`, or rather its component level spaces (K/`)n are exam-
ples of such objects.

The main body of this paper is set in the context of simplicial presheaves
and sheaves on the site G− Setdf of discrete finite G-sets for a profinite group
G and their G-equivariant maps. The coverings for this site are the surjective
maps.

If k is a field, then the finite étale site is equivalent to the site G−Setdf for
the absolute Galois group G of k, via imbeddings of finite separable extensions
of k in its algebraic closure.

Until one reaches the specialized calculations of Section 4, everything that
is said about simplicial presheaves and presheaves of spectra on the étale sites
of fields is a consequence of general results about the corresponding objects
associated to the sites G− Setdf for profinite groups G.

The local homotopy theory for general profinite groups was first explicitly
described by Goerss [6], and has since become a central structural component
of the chromatic picture of the stable homotopy groups of spheres.

This paper proceeds on a separate track, and reflects the focus on generalized
Galois cohomology and descent questions which arose in algebraic K-theory, as
partially described above. See also [10].

Some basic facts about the local homotopy theory for profinite groups are
recalled in Section 1, and some basic facts about cosimplicial spaces are recalled
in Section 2.

With this collection of ideas in hand, we arrive at the following:

Theorem 1. Suppose that f : X → Y is a local weak equivalence between
presheaves of Kan complexes on the site G − Setdf such that X and Y have
only finitely many non-trivial presheaves of homotopy groups. Then the induced
map

f∗ : lim−→
i

hom(EGi ×Gi
Gi, X)→ lim−→

i

hom(EGi ×Gi
Gi, Y )

is a weak equivalence.

This result appears as Theorem 9 below. It has the following special case:

Corollary 2. Suppose that f : X → Y is a local weak equivalence between
presheaves of Kan complexes on the finite étale site of a field k such that X and
Y have only finitely many non-trivial presheaves of homotopy groups. Then the
induced map

f∗ : lim−→
L/k

hom(EG×G Sp(L), X)→ lim−→
L/k

hom(EG×G Sp(L), Y )

is a weak equivalence.
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Theorem 1 is proved by inductively solving obstructions for cosimplicial
spaces after refining along the filtered diagram associated to the profinite group
G, by using methods that are displayed in Section 2. The assumption that the
simplicial presheaf X has only finitely many non-trivial presheaves of homotopy
groups means that the obstructions can be solved in finitely many steps.

When specialized to the fields case, Theorem 1 implies that the colimit

lim−→
L/k

hom(EG×G Sp(L), X)

is weakly equivalent to the simplicial set Z(k) of global sections of a fibrant
model j : X → Z on the finite étale site of a field k, provided that X has only
finitely many non-trivial presheaves of homotopy groups.

In particular, if X satisfies this finiteness condition on its presheaves of
homotopy groups and if X also satisfies finite descent, then the map X(k) →
Z(k) in global sections is a weak equivalence.

Generally, Theorem 1 means that you can use Galois cohomological methods
to construct injective fibrant models for simplicial presheaves X having finitely
many non-trivial presheaves of homotopy groups. This construction specializes
to (and incorporates) the identification (5) of Galois cohomology with Čech
cohomology.

Going further involves use of the homotopy theory of pro objects, which is
enabled by [11].

In general, a simplicial presheaf Y is pro-equivalent to its derived Postnikov
tower, via the canonical map Y → P∗Y . The Postnikov tower P∗Y has a
fibrant model P∗(Y )→ LP∗(Y ) in the model category of pro objects and pro-
equivalences of simplicial presheaves. One then has a string of pro-equivalences

Y → P∗Y → LP∗Y,

and it follows from Corollary 2 that the induced composite in global sections is
weakly equivalent to the pro-map

θ : Y (k)→ lim−→
L/k

hom(EG×G Sp(L),P∗Y ).

There are two questions:

1) Is the displayed map θ a pro-equivalence?

2) Is the map

LY (k)→ LP∗Y (k)
'−→ lim−→

L/k

hom(EG×G Sp(L), LP∗Y )

a pro-equivalence?
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If the answer to both questions is yes, then the map Y (k) → LY (k) is a
pro-equivalence of spaces, and hence a weak equivalence by Corollary 13 of this
paper. These questions are the Galois descent criteria for simplicial presheaves
Y on the étale site of a field.

The imposition of a global bound on cohomological dimension forces a posi-
tive answer to question 2) — see the proof of Theorem 24 below. In such cases,
the simplicial presheaf Y satisfies Galois descent if and only if the map θ is a
pro-equivalence.

Observe finally that the necessity of answering question 2) disappears if we
are willing to take our fibrant model of Y in the pro category. This is consistent
with the basic setup for étale homotopy theory and the extant definitions of
continuous cohomology theory in number theory and geometry. Maybe one
should have been working in the pro category all along.

Contents

1 Profinite groups 8

2 Cosimplicial spaces 14

3 Pro objects 20

4 Galois descent 23

1 Profinite groups

We begin with a discussion of some generalities about profinite groups, in order
to establish notation.

Suppose that the group-valued functor G : I → Grp is a profinite group.
This means that I is left filtered (any two objects i, i′ have a common lower
bound, and any two morphisms i ⇒ j have a weak equalizer), and that all of
the constituent groups Gi, i ∈ I, are finite. We shall also assume that all of the
transition homomorphisms Gi → Gj in the diagram are surjective.

Example 3. The standard example is the absolute Galois group Gk of a field
k. One takes all finite Galois extensions L/k inside an algebraically closed field
Ω containing k in the sense that one has a fixed imbedding i : k → Ω, and the
Galois extensions are specific field extensions L = k(α) of k inside Ω.

These are the objects of a right filtered category, for which the morphisms
L → L′ are extensions inside Ω. The contravariant functor Gk that associates
the Galois group Gk(L) = G(L/k) to each of these extensions is the absolute
Galois group.

It is basic field theory that if L ⊂ L′ inside Ω which are finite Galois ex-
tensions, then every field automorphism α : L′ → L′ that fixes k also permutes
the roots of which define L over k, and hence restricts to an automorphism
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α|L : L → L. The assignment α 7→ α|L determines a surjective group homo-
morphism G(L′/k)→ G(L/k).

Let G−Setdf be the category of finite discrete G-sets, as in [10]. A discrete
G-set is a set F equipped with an action

G× F → Gi × F → F,

where G = lim←−i Gi, and a morphism of discrete G-sets is a G-equivariant map.
Every finite discrete G-set X has the form

X = G/H1 t . . . G/Hn,

where the groups Hi are stabilizers of elements of x. In this way, the category
G − Setdf is a thickening of the orbit category OG for the profinite group
G, whose are quotients G/H, and with equivariant maps between them. The
subgroups H are special: they are preimages of normal subgroups of the Gi
under the maps G→ Gi.

Example 4. The finite étale site fet|k of k is a category of schemes which has
as objects all finite disjoint unions

Sp(L1) t · · · t Sp(Ln)

of schemes defined by finite separable extensions Li/k. The morphisms of fet|k
are the scheme homomorphisms

Sp(L1) t · · · t Sp(Ln)→ Sp(N1) t · · · t Sp(Nm),

or equivalently k-algebra homomorphisms∏
j

Nj →
∏
i

Li.

A finite separable extension N = k(α) of k is specified by the root α of
some separable polynomial f(x). The set of k-linear maps N → Ω is specified
by the roots of f(x), and thus determines f(x) and hence determines the field
L = k[x]/f(x).

One finds a finite Galois extension L of N by adjoining all roots of f(x) to N .
Then L/N is Galois with Galois group H = G(L/N) which is a normal subgroup
of G = G(L/k). The set of k-linear imbeddings N → Ω can be identified with
the set G/H.

It follows that there is a one-to-one correspondence

{finite separable L/k} ↔ {Gk-sets G/H, G = G(L/k) finite, H E G}

This correspondence determines an isomorphism of categories

fet|k ∼= Gk − Setdf .

If k ⊂ L ⊂ N are finite separable extensions in Ω, then the function

homk(N,Ω)→ homk(L,Ω)

is surjective, while the scheme homomorphism Sp(N)→ Sp(L) is an étale cover.
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For a general profinite group G, the category G−Setdf has a Grothendieck
topology for which the covering families are the G-equivariant surjections U →
V .

A presheaf F is a sheaf for this topology if and only if F (∅) is a point, and
every surjection φ = (φi) : t Ui → V (covering family) induces a coequalizer

F (V )→
∏
i

F (Ui)⇒
∏
i 6=j

F (Ui ×V Uj). (9)

The resulting sheaf category

BG := Shv(G− Setdf )

is the often called the classifying topos for the profinite group G.

Lemma 5. A presheaf F on G− Setdf is a sheaf if and only if

1) F takes disjoint unions to products, and

2) each canonical map Gi → Gi/H induces a bijection

F (Gi/H)
∼=−→ F (Gi)

H .

The assertion that a presheaf F takes disjoint unions to products is often called
the additivity condition for F .

Proof. If F is a sheaf, then the covering given by the inclusions U → U tV and
V → U t V defines an isomorphism

F (U t V )
∼=−→ F (U)× F (V ),

since U×UtV V = ∅. Also, if H ⊂ Gi is a subgroup then Gi×Gi/HGi
∼= tH Gi,

and the coequalizer

F (Gi/H)→ F (Gi)⇒
∏
H

F (Gi)

identifies F (Gi/H) with the set of H-invariants F (Gi)
H .

Conversely, if the presheaf F satisfies conditions 1) and 2) and Gi/K →
Gi/H is an equivariant map, then H is a subgroup of K and F (G)K is the set
of K-invariants of F (G)H , so that the G-equivariant covering Gi/K → Gi/H
defines an equalizer of the form (9).

It follows from Lemma 5 that every discrete G-set F represents a sheaf

F := hom( , F )

on G− Setdf .

Let
π : G− Setdf → Set

10



be the functor which takes a finite discrete G-set to its underlying set. Every
set X represents a sheaf π∗X on G− Setdf with

π∗X(U) = hom(π(U), X).

The left adjoint π∗ of the corresponding functor π∗ has the form

π∗F = lim−→
i

F (Gi),

by a cofinality argument.

A map f : F → G of presheaves is a local epimorphism if, given y ∈ G(U)
there is a covering φ : V → U such that φ∗(y) is in the image of f : F (V ) →
G(V ).

The presheaf map f : F → G is a local monomorphism if, given x, y ∈ F (U)
such that f(x) = f(y) there is a covering φ : V → U such that φ∗(x) = φ∗(y)
in F (V ).

It is a general fact that a morphism f : F → G of sheaves is an isomorphism
if and only if it is both a local monomorphism and a local epimorphism.

Finally, one can show that a map f : F → G of sheaves on G − Setdf is a
local epimorphism (respectively local monomorphism) if and only the induced
function

π∗(f) : π∗(F )→ π∗(G)

is surjective (respectively injective). It follows that f is an isomorphism if and
only the function π∗(f) is bijective.

We have a functor π∗ which is both exact (ie. preserves finite limits) and is
faithful. This means that the corresponding geometric morphism

π = (π∗, π∗ : Shv(G− Setdf )→ Set

is a stalk (or Boolean localization) for the category of sheaves and presheaves
on G−Setdf , and gives a complete description of the local behaviour of sheaves
and presheaves on this site.

We use these observations to start up a homotopy theoretic machine [13]. A
map f : X → Y of simplicial presheaves (or simplicial sheaves) on G− Setdf is
a local weak equivalence if and only if the induced map π∗X → π∗Y is a weak
equivalence of simplicial sets.

The local weak equivalences are the weak equivalences of the injective model
structure on the simplicial presheaf category for the site G−Setdf . The cofibra-
tions are the monomorphisms of simplicial presheaves (or simplicial sheaves).
The fibrations for this structure, also called the injective fibrations, are the maps
which have the right lifting property with respect to all cofibrations which are
local weak equivalences.

There are two model structures here, for the category sPre(G − Setdf ) of
simplicial presheaves and the category sShv(G − Setdf ) of simplicial sheaves,
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respectively. The forgetful and associated sheaf functors determine an adjoint
pair of functors

L2 : sPre(G− Setdf )� sShv(G− Setdf ) : u,

which is a Quillen equivalence, essentially since the canonical associated sheaf
map η : X → L2X = uL2(X) is a local isomorphism, and hence a local weak
equivalence.

The associated sheaf functor L2 usually has a rather formal construction,
but in this case there is a nice description:

L2F (Gi/H) = lim−→
Gj→Gi

F (Gj)
p−1(H),

where p : Gj → Gi varies over the transition maps of G which take values in
Gi.

Here’s a trick: suppose that f : E → F is a function, and form the groupoid
E/f whose objects are the elements of S, and such that there is a unique mor-
phism x→ y if f(x) = f(y). The corresponding nerve B(E/f) has contractible
path components, since each path component is the nerve of a trivial groupoid,
and there is an isomorphism π0B(E/f) ∼= f(E). It follows that there are sim-
plicial set maps

B(E/f)
'−→ f(E) ⊂ F,

where the sets f(E) and F are identified with discrete simplicial sets. In par-
ticular, if f is surjective then the map B(E/f)→ F is a weak equivalence.

This construction is functorial, and hence applies to presheaves and sheaves.
In particular, suppose that φ : V → U is a local epimorphism of presheaves.
Then the simplicial presheaf map

Č(V ) := B(E/φ)→ U

is a local weak equivalence of simplicial presheaves, because B(E/φ)→ φ(V ) is a
sectionwise hence local weak equivalence and φ(V )→ U induces an isomorphism
of associated sheaves.

As the notation suggests, Č(V ) is the Čech resolution for the covering φ.
All Čech resolutions arise from this construction.

Examples: 1) Suppose that G = {Gi} is a profinite group. The one-point set ∗
is a terminal object of the category G = Setdf . The group Gi defines a covering
Gi = hom( , Gi) → ∗ of the terminal object, while the group Gi acts on the
sheaf Gi = hom( , Gi) by composition. There is a simplicial presheaf map

η : EGi ×Gi Gi → Č(Gi)

which takes a morphism φ→ g · φ to the pair (φ, g · φ). The map η induces an
isomorphism in sections corresponding to quotients Gj/H for j ≥ i, hence in
stalks, and is therefore the associated sheaf map and a local weak equivalence.
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2) Suppose that L/k is a finite Galois extension with Galois group G, and let
Sp(L) → ∗ be the corresponding sheaf epimorphism on the finite étale site for
k. The Galois group G acts on Sp(L), and there is a canonical map

η : EG×G Sp(L)→ Č(L).

For a finite separable extension N/k, the sections Sp(L)(N) are the k-linear
field maps L→ N . Any two such maps determine a commutative diagram

L

%%
σ

��
N

L
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where σ is a uniquely determined element of the Galois group G. It follows that
η is an isomorphism in sections corresponding to all such extensions N , and so
η is the associated sheaf map for the simplicial presheaf EG×G Sp(L), and is a
local weak equivalence of simplicial presheaves for the étale topology.

Remark 6. Every category of simplicial presheaves has an auxiliary model
structure which is defined by cofibrations as above and sectionwise weak equiv-
alences. A map X → Y is a sectionwise weak equivalence if all induced maps
X(U)→ Y (U) in sections are weak equivalences of simplicial sets for all objects
U in the underlying site. This model structure is a special case of the injec-
tive model structure for simplicial presheaves on a site, for the so-called chaotic
topology [13, Ex. 5.10].

The fibrations for this model structure will be called injective fibrations of
diagrams in what follows. These are the maps which have the right lifting
property with respect to all cofibrations A → B which are sectionwise weak
equivalences.

Every injective fibration of simplicial presheaves is an injective fibration of
diagrams, since every sectionwise weak equivalence is a local weak equivalence.
The converse is not true.

In all that follows, an injective fibrant model of a simplicial presheaf X is a
local weak equivalence j : X → Z such that Z is injective fibrant.

Every simplicial presheaf X has an injective fibrant model: factorize the
canonical map X → ∗ to the terminal object as a trivial cofibration j : X → Z,
followed by an injective fibration Z → ∗.

Here is an example: if F is a presheaf, identified with a simplicial presheaf
which is discrete in the simplicial direction, then the associated sheaf map η :
F → F̃ is an injective fibrant model.

Any two injective fibrant models of a fixed simplicial presheaf X are equiv-
alent in a very strong sense — they are homotopy equivalent.

In effect, every local weak equivalence Z1 → Z2 of injective fibrant objects is
a homotopy equivalence, for the cylinder object that is defined by the standard 1-
simplex ∆1. It follows that all simplicial set maps Z1(U)→ Z2(U) are homotopy
equivalences.
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In particular, every local weak equivalence of injective fibrant objects is a
sectionwise equivalence.

The injective model structure on the simplicial presheaf category sPre(G−
Setdf ) is a simplicial model structure, where the function complex hom(X,Y )
has n-simplices given by the maps X ×∆n → Y .

All simplicial presheaves are cofibrant. It follows that, if Z is an injective
fibrant simplicial presheaf and the map θ : A → B is a local weak equivalence,
then the induced map

θ∗ : hom(B,Z)→ hom(A,Z)

is a weak equivalence of simplicial sets.

2 Cosimplicial spaces

We shall use the Bousfield-Kan model structure for cosimplicial spaces [3], [12].
The weak equivalences for this structure are defined sectionwise: a map f : X →
Y is a weak equivalence of cosimplicial spaces if and only if all maps Xn → Y n

are weak equivalences of simplicial sets. The fibrations for the structure are
those maps p : X → Y for which all induced maps

(p, s) : Xn+1 → Y n+1 ×MnY M
nX

are fibrations of simplicial sets. Recall that MnX is the subcomplex of
∏n
j=0X

n

which consists of those elements (x0, . . . , xn) such that sjxi = sixj+1 for i ≤ j,
and the canonical map s : Xn+1 →MnX is defined by

s(x) = (s0x, s1x, . . . , snx).

The total complex Tot(X) for a fibrant cosimplicial space X is defined by

Tot(X) = hom(∆, X),

where hom(∆, X) is the standard presheaf-theoretic function complex, and ∆ is
the cosimplicial space of standard simplices, given by the assignments n 7→ ∆n.
The p-simplices of hom(∆, X) are the cosimplicial space maps ∆×∆p → X.

If X and U are simplicial presheaves, write hom(U•, X) for the cosimplicial
space n 7→ hom(Un, X). If U is representable by a simplicial object U in the
underlying site, then hom(U•, X) can be identified up to isomorphism with the
cosimplicial space n 7→ X(Un).

There are adjunction isomorphisms

hom(∆×∆p,hom(U•, X)) ∼= hom(U,hom(∆p, X))
∼= hom(U ×∆p, X),
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which relate cosimplicial space maps to simplicial set maps. Letting k vary gives
a natural isomorphism

Tot(hom(U•, X)) = hom(∆,hom(U•, X)) ∼= hom(U,X)

of simplicial sets, for all simplicial presheaves U and X.

Lemma 7. Suppose that U is a simplicial presheaf. Then the functor X 7→
hom(U•, X) takes injective fibrations of diagrams to Bousfield-Kan fibrations of
cosimplicial spaces.

Proof. There is an isomorphism

Mn hom(U•, X) ∼= hom(DUn+1, X
n+1),

where DUn+1 ⊂ Un+1 is the degenerate part of Un+1 in the presheaf category.
Suppose that p : X → Y is an injective fibration. Then p has the right lifting
property with respect to the trivial cofibrations

(Un+1 × Λmk ) ∪ (DUn+1 ×∆m) ⊂ Un+1 ×∆m,

so that the map

hom(Un+1, X)→ hom(Un+1, Y )×hom(DUn+1,Y ) hom(DUn+1, X)

is a fibration.

Remark 8. If Y is a Bousfield-Kan fibrant cosimplicial space then there is a
weak equivalence

TotY = hom(∆, Y ) ' holim←−−− n Y
n,

which is natural in Y .
This is most easily seen by using the injective model structure for cosimplicial

spaces (ie. for cosimplicial diagrams) of Remark 6 (see also [12]).
In effect, if j : Y → Z is an injective fibrant model for Y in cosimplicial

spaces, then j is a weak equivalence of Bousfield-Kan fibrant objects, so the
map j∗ : Tot(Y ) → Tot(Z) is a weak equivalence. It follows that there is a
natural string of weak equivalences

Tot(Y )
'−→ Tot(Z) = hom(∆, Z)

'←− hom(∗, Z) = lim←− Z =: holim←−−− Y,

since the cosimplicial space ∆ is cofibrant for the Bousfield-Kan structure.
It follows from Lemma 7 that if U and Z are simplicial presheaves such that

Z is injective fibrant, then there is a natural weak equivalence

hom(U,Z) ' holim←−−− n hom(Un, Z).

Examples: 1) Suppose that L/k is a finite Galois extension with Galois group
G, and let Y be a presheaf of Kan complexes for the finite étale site over k. The
function complex

hom(EG×G Sp(L), Y )

15



can be rewritten as a homotopy inverse limit

holim←−−− n Y (tG×n Sp(L)) = holim←−−− n(
∏
G×n

Y (L)) = holim←−−−G Y (L) = Y (L)hG,

which is the homotopy fixed points space for the action of G on the space Y (L)
of L-sections of Y .

2) Similarly, if G = {Gi} is a profinite group and X is a presheaf of Kan
complexes on G− Setdf , then

hom(EGi ×Gi
Gi, X) ' holim←−−−Gi

X(Gi) = X(Gi)
hGi

is the homotopy fixed points space for the action of the group Gi on the space
X(Gi).

We prove the following:

Theorem 9. Suppose that f : X → Y is a local weak equivalence between
presheaves of Kan complexes on the site G − Setdf such that X and Y have
only finitely many non-trivial presheaves of homotopy groups. Then the induced
map

f∗ : lim−→
i

hom(EGi ×Gi
Gi, X)→ lim−→

i

hom(EGi ×Gi
Gi, Y )

is a weak equivalence.

Corollary 10. Suppose that X is a presheaf of Kan complexes on G − Setdf
which has only finitely many non-trivial homotopy groups, and let j : X → Z
be an injective fibrant model. Then the induced map of simplicial sets weak
equivalences

lim−→
i

hom(EGi ×Gi
Gi, X)

'−→
j∗

lim−→
i

hom(EGi ×Gi
Gi, Z)

is a weak equivalence.

Proof. If the presheaves of homotopy groups πiX are trivial for i ≥ N , then the
homotopy groups πiZ are trivial for i ≥ N — this is a special case of a very
general fact [10, Prop. 6.11]. Thus, j∗ is a weak equivalence by Theorem 9.

Proof of Theorem 9. We can suppose that X and Y are injective fibrant as
diagrams on G−Setdf and that f : X → Y is an injective fibration of diagrams.
By Lemma 7, all induced maps

f : hom((EGi ×Gi
Gi)•, X)→ hom((EGi ×Gi

Gi)•, Y )

are Bousfield-Kan fibrations of Bousfield-Kan fibrant cosimplicial spaces, and
we want to show that the induced map

lim−→
i

Tot hom((EGi ×Gi
Gi)•, X)→ lim−→

i

Tot hom((EGi ×Gi
Gi)•, Y )
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is a trivial fibration of simplicial sets.
The idea is to show that all lifting problems

∂∆n //

��

Tot hom((EGi ×Gi
Gi)•, X)

f

��
∆n //

55

Tot hom((EGi ×Gi
Gi)•, Y )

can be solved in the filtered colimit. This is equivalent to the solution of all
cosimplicial space lifting problems

hom((EGi ×Gi
Gi)•, X

∆n

)

��
∆ //

44

hom((EGi ×Gi
Gi)•, X

∂∆n ×Y ∂∆n Y ∆n

)

in the filtered colimit.
The induced map

X∆n

→ X∂∆n

×Y ∂∆n Y ∆n

is an injective fibration of injective fibrant diagrams which is a local weak equiv-
alence, between objects which have only finitely many non-trivial presheaves of
homotopy groups. It therefore suffices to show that all lifting problems

hom((EGi ×Gi
Gi)•, X)

f

��
∆

α
//

66

hom((EGi ×Gi Gi)•, Y )

(10)

can be solved in the filtered colimit, for maps f : X → Y which are locally
trivial injective fibrations of diagrams between injective fibrant objects, which
objects have only finitely many non-trivial presheaves of homotopy groups.

Suppose that p : Z →W is a locally trivial fibration of simplicial presheaves
on G− Setdf , and suppose given a lifting problem

∂∆n //

��

Z((EGi ×Gi Gi)n)

p

��
∆n //

77

W ((EGi ×Gi
Gi)n)

(11)

There is a surjection

U → (EGi ×Gi Gi)n = tG×n
i

Gi

17



of finite discrete G-sets such that the lift exists in the diagram

∂∆n //

��

Z((EGi ×Gi
Gi)n) // Z(U)

p

��
∆n //

33

W ((EGi ×Gi Gi)n) // W (U)

There is a transition morphism γ : Gj → Gi in the pro group G and a discrete
G-sets morphism tG×n

j
Gj → U such that the composite

tG×n
j

Gj → U → tG×n
i

Gi

is the G-sets homomorphism which is induced by γ. It follows that the lifting
problem (11) has a solution

∂∆n //

��

Z((EGi ×Gi Gi)n)
γ∗ // Z((EGj ×Gj Gj)n)

p

��
∆n //

22

W ((EGi ×Gi Gi)n)
γ∗
// W (EGj ×Gj Gj)n)

after refinement along the induced map γ : EGj ×Gj
Gj → EGi ×Gi

Gi.
All induced maps

f : hom((EGi ×Gi Gi)•, X)→ hom((EGi ×Gi Gi)•, Y )

are Bousfield-Kan fibrations of cosimplicial spaces by Lemma 7, as is their fil-
tered colimit

f∗ : lim−→
i

hom((EGi ×Gi
Gi)•, X)→ lim−→

i

hom((EGi ×Gi
Gi)•, Y ).

The map f∗ is a weak equivalence of cosimplicial spaces by the previous para-
graph, and is therefore a trivial fibration.

In general, solving the lifting problem

Z

p

��
∆

α
//

>>

W

for a map of cosimplicial spaces p : Z → W amounts to inductively solving a
sequence of lifting problems

∂∆n+1 //

��

Zn+1

��
∆n+1 //

77

Yn+1 ×MnY M
nZ

(12)
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It follows from the paragraphs above that, given a number N ≥ 0, there is a
structure map γ : Gj → Gi for the pro group G, such that the lifting problems
(12) associated to lifting a specific map

α : ∆→ hom((EGi ×Gi Gi)•, Y )

to the total space of the map

f∗ : hom((EGi ×Gi
Gi)•, X)→ hom((EGi ×Gi

Gi)•, Y )

have a simultaneous solution in hom((EGj ×Gj Gj)•, X) for n ≤ N .
If the presheaves of homotopy groups πkX and πkY are trivial for k ≥ N ,

then hom((EGj ×Gj
Gj , X)•, X) and hom((EGj ×Gj

Gj , X)•, Y ) satisfy the
conditions of Lemma 11 below. The obstructions to the lifting problem (12) for
f∗ lie in πkX(t

G
×(k+1)
j

Gj) and in

πk+1((t
G
×(k+1)
j

Gj)×Mk hom((EGj×Gj
Gj)•,Y ) M

k hom((EGj ×Gj Gj)•, X),

which groups are 0 since k ≥ N .
It follows that, given a lifting problem (10), there is a structure homomor-

phism γ : Gj → Gi of the pro group G such that the problem (10) is solved over
Gj in the sense that there is a commutative diagram

hom((EGj ×Gj
Gj)•, X)

f

��
∆

α
//

33

hom((EGi ×Gi Gi)•, Y )
γ∗
// hom((EGj ×Gj Gj)•, Y )

Lemma 11. Suppose that p : X → Y is a Bousfield-Kan fibration between
Bousfield-Kan fibrant cosimplicial spaces. Suppose that the homotopy groups
πkX

n and πkY
n are trivial for k ≥ N and for all n ≥ 0. Then the groups

πk(MnX ×MnY Y
n+1) are trivial for all k ≥ N and for all n ≥ 0.

Proof. The assertion that the homotopy groups πkX
n are trivial for k ≥ N

means that πk(Xn, x) = 0 for all choices of base point x ∈ Xn and for all
k ≥ N .

Recall that MnX = Mn
nX, where Mn

pX is the iterated pullback of the maps

si : Xn+1 → Xn for i ≤ p. Let s : Xn+1 → Mn
pX be the map (s0, . . . , sp).

There are natural pullback diagrams

Mn
pX //

��

Xn

s

��
Mn
p−1X // Mn−1

p−1 X
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The map s : Xn+1 → MnX = Mn
nX is a fibration, so that all of the maps

s : Xn →Mn
pX are fibrations by an inductive argument.

Inductively, if all πkM
n−1
p−1 X and πkM

n
p−1X are trivial for k ≥ N , then

πkM
n
pX is trivial for k ≥ N . It follows that πkM

nX is trivial for k ≥ N .
In the pullback diagram

MnX ×MnY Y
n+1 //

��

Y n+1

s

��
MnX // MnY

the map s is a fibration and the groups πkX
n+1, πkM

nX and πkM
nY are trivial

for k ≤ N , and it follows that πk(MnX ×MnY Y
n+1) is trivial for k ≥ N .

3 Pro objects

Suppose that X is a presheaf if Kan complexes on the site G−Setdf of discrete
finite G-sets, where G is a profinite group. Corollary 10 implies (see Corollary
15 below, or argue directly) that the space

lim−→
i

hom(EGi ×Gi
Gi, X)

is weakly equivalent to the space Z(∗) of global sections of an injective fibrant
model Z of X, provided that the simplicial presheaf X has only finitely many
non-trivial presheaves of homotopy groups.

The main (and only) examples of such are the finite Postnikov sections PnY
of a simplicial presheaf Y .

To be specific, every simplicial presheaf Y has a sectionwise fibrant model
i : Y → Ex∞ Y , where the latter is constructed by applying Kan’s Ex∞-functor
in all sections. Then

PnY := Pn Ex∞ Y,

which is the result of applying the Moore Postnikov section functor Pn [5, VI.3.4]
sectionwise to the Kan complexes Ex∞ Y (U), where U varies through the un-
derlying site.

To summarize, there are natural maps

Y (U)
i−→ Ex∞ Y (U)

p−→ Pn Ex∞ Y (U),

where i is a weak equivalence.
The functor Pn preserves weak equivalences of Kan complexes, so we can

skip the derived step by assuming that Y is a presheaf of Kan complexes, and
write PnY = PnY for such objects.

It is a basic property of Moore’s construction [5, VI.3] that the map

p : Y (U)→ PnY (U)
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is a Kan fibration which induces an isomorphism

πk(Y (U), x)
∼=−→ πk(PnY (U)

for all vertices x ∈ Y (U) and for 0 ≤ k ≤ n. Furthermore πk(PnY (U), x) = 0 for
all vertices x and k ≥ n. The maps p are arranged into a comparison diagram

Pn+1Y

π

��
Y

p 66

p ((
PnY

in which all maps are sectionwise Kan fibrations. The tower P∗Y of sectionwise
fibrations is the Postnikov tower of the presheaf of Kan complexes Y .

A presheaf of Kan complexes Y has only finitely many non-trivial presheaves
of homotopy groups if and only if the map p : Y → PnY is a sectionwise weak
equivalence for some n.

There are other, localization theoretic, constructions of the Postnikov tower
which can be more useful, particularly for spectra — see [13].

Recall that a pro-object in a category C is a functor I → C, where I is a
small left filtered category.

Examples: 1) A profinite group is a pro-object G : J → Grp in groups such
that each Gj = G(j) is a finite group. As noted in the first section, we also insist
that all maps i→ j in J induce surjective group homomorphisms Gi → Gj .

2) If X is a simplicial presheaf, then associated the Postnikov tower P∗X is a
pro-object in simplicial presheaves.

Every pro object E : I → C in a category C represents a functor hE : C →
Set, with

hE(X) = lim−→
i

hom(Ei, X).

A pro-map E → F is a natural transformation hF → hE .
Every object Z in the category C is a pro-object, defined on the one-

point category. A Yoneda Lemma argument shows that a natural transfor-
mation hZ → hE can be identified with an element of the filtered colimit
lim−→i

hom(Ei, Z), and we usually think of pro-maps E → Z in this way.
If F : J → C is a pro-object and i ∈ J , then there is a pro-map F →

Fi which is defined by the image of the identity on Fi in the filtered colimit
lim−→j

hom(Fj , Fi).

Any pro-map φ : E → F can be composed with the canonical maps F → Fi,
and the map φ can be identified with an element of the set

lim←−
j

lim−→
i

hom(Ei, Fj).
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Every simplicial presheaf is a pro-object in simplicial presheaves, and the
Postnikov tower construction

Pn+1X

��
X

66

((
PnX

defines a natural pro-map X → P∗X.

There is a hierarchy of model structures for the category of pro-simplicial
presheaves, which is developed in [11].

The “base” model structure is the Edwards-Hastings model structure, for
which a cofibration A → B is map that is isomorphic in the pro category to a
monomorphism in a category of diagrams. A weak equivalence for this structure,
which is said to be an Edwards-Hastings weak equivalence, is a map f : X → Y
of pro objects (that are defined on filtered categories I and J , respectively) such
that the induced map of filtered colimits

lim−→
j∈J

hom(Yj , Z)→ lim−→
i∈I

hom(Xi, Z)

is a weak equivalence of simplicial sets for all injective fibrant objects Z.
Every pro-simplicial presheaf has a functorially defined Postnikov tower

P∗X, which is again a pro-object, albeit with a larger indexing category.
It is shown in [11] that the functor X 7→ P∗X satisfies the criteria for

Bousfield-Friedlander localization within the Edwards-Hastings model struc-
ture, and thus behaves somewhat like stabilization of spectra. In particular,
one has a model structure for which the weak equivalences (the pro equiva-
lences) are those maps X → Y which induce an Edwards-Hastings equivalence
P∗X → P∗Y . This is the pro-equivalence structure for pro-simplicial presheaves.
It has the same cofibrations as the Edwards-Hastings structure.

The Edwards-Hastings structure and the pro-equivalence structure both spe-
cialize to model structures for pro objects in simplicial sets. The special case
of the Edwards-Hastings structure for simplicial sets was first constructed by
Isaksen in [9], where it is called the strict model structure.

We shall need the following:

Lemma 12. Suppose that the map f : Z →W of simplicial presheaves is a pro
equivalence. Then it is a local weak equivalence.

Corollary 13. Suppose that the map f : Z → W of simplicial sets is a pro
equivalence. Then f is a weak equivalence.

Proof of Lemma 12. The natural map Z → P∗Z induces an Edwards-Hastings
weak equivalence

PnZ → PnP∗Z
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for all n ≥ 0. The induced map

PnP∗Z → PnP∗W

is an Edwards-Hastings weak equivalence, since the Postnikov section functors
preserve Edwards-Hastings equivalences (Lemma 25 of [11]). It follows that all
simplicial presheaf maps

PnZ → PnW

are Edwards-Hastings weak equivalences, and hence local weak equivalences of
simplicial presheaves. This is true for all n, so the map f : Z → W is a local
weak equivalence.

4 Galois descent

Suppose again that G = {Gi} is a profinite group, and let one of the groups Gi
represent a sheaf on the category G− Setdf of discrete finite modules.

Recall that the group Gi acts on the sheaf Gi which is represented by the
G-set Gi, and the canonical map of simplicial sheaves EGi×Gi

Gi → ∗ is a local
weak equivalence, where ∗ is the terminal simplicial sheaf.

It follows that, if Z is injective fibrant, then the induced map

hom(∗, Z)→ hom(EGi ×Gi Gi, Z)

between function complexes is a weak equivalence of simplicial sets. The space
hom(∗, Z) = Z(∗), and so we have a weak equivalence

Z(∗) '−→ hom(EGi ×Gi
Gi, Z)

between global sections of Z and the homotopy fixed points for the action of
Gi on the simplicial set Z(Gi). This is the finite descent property for injective
fibrant simplicial presheaves Z.

More generally, if X is a presheaf of Kan complexes on G − Setdf , we say
that X satisfies finite descent if the induced map

X(∗)→ hom(EGi ×Gi
Gi, X)

is a weak equivalence for each of the groups Gi making up the profinite group
G. We have just seen that all injective fibrant simplicial presheaves satisfy finite
descent.

Recall (from Section 1) that, if f : Z → W is a local weak equivalence
between injective fibrant objects, then f is a sectionwise equivalence.

It follows that any two injective fibrant models j : X → Z and j′ : X → Z ′

of a fixed simplicial presheaf X are sectionwise equivalent.
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To see this, we can assume that j is a trivial cofibration, and then construct
an extension θ so that the diagram

Z

θ

��
X

j 77

j′ &&
Z ′

commutes. Then θ is a local weak equivalence between injective fibrant objects,
and must therefore be a sectionwise equivalence.

One says that a simplicial presheaf X satisfies descent if some (hence any)
injective fibrant model j : X → Z is a sectionwise equivalence.

The general relationship between descent and finite descent is the following:

Lemma 14. Suppose that the presheaf of Kan complexes X on G− Setdf sat-
isfies descent. Then it satisfies finite descent.

Proof. Take an injective fibrant model j : X → Z, and form the diagram

X(∗)
j

'
//

��

Z(∗)

'
��

hom(EGi ×Gi
Gi, X)

j∗
// hom(EGi ×Gi

Gi, X)

The map j∗ coincides with the map

holim←−−−Gi X(Gi)→ holim←−−−Gi Z(Gi)

of homotopy fixed point spaces which is defined by the Gi-equivariant weak
equivalence X(Gi) → Z(Gi), and is therefore a weak equivalence. It follows
that the map

X(∗)→ hom(EGi ×Gi
Gi, X)

is a weak equivalence.

It is unknown whether or not there is a converse to Lemma 14. The best
statement of this kind that we have, for now, is the following consequence of
Corollary 10:

Corollary 15. Suppose that X is a presheaf of Kan complexes on G − Setdf
which has only finitely many non-trivial presheaves of homotopy groups, and
suppose that X satisfies finite descent. Suppose that j : X → Z is an injective
fibrant model. Then the map j : X(∗) → Z(∗) in global sections is a weak
equivalence.
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Proof. Form the diagram

X(∗)
j //

��

Z(∗)

��
lim−→i

hom(EGi ×Gi Gi, X)
j∗

' // lim−→i
hom(EGi ×Gi Gi, Z)

(13)

The map j∗ is a weak equivalence by Corollary 10. All maps

X(∗)→ hom(EGi ×Gi
Gi, X) and Z(∗)→ hom(EGi ×Gi

Gi, Z)

are weak equivalences since X and Z satisfy finite descent, so the vertical maps
in the diagram are weak equivalences. It follows that j : X(∗)→ Z(∗) is a weak
equivalence.

The proof of Corollary 15 also implies the following:

Corollary 16. Suppose that X is a presheaf of Kan complexes on G − Setdf
which has only finitely many non-trivial presheaves of homotopy groups. Suppose
that j : X → Z is an injective fibrant model. Then the map j : X(∗)→ Z(∗) is
weakly equivalent to the map

X(∗)→ lim−→
i

hom(EGi ×Gi
Gi, X).

We say, in general, that a simplicial presheaf X on an arbitrary site satisfies
descent if some (hence any) injective fibrant model j : X → Z is a sectionwise
equivalence.

We can translate the finite descent concept to étale sites for fields: a presheaf
of Kan complexes X on the finite étale site fet|k of a field k satisfies finite
descent if, for any finite Galois extension L/k with Galois group G, the local
weak equivalence EG×G Sp(L)→ ∗ induces a weak equivalence

X(k)→ hom(EG×G Sp(L), X) = holim←−−−G X(L). (14)

Remark 17. We have already seen the arguments for the following statements:

1) Every injective fibrant simplicial presheaf Z on fet|k satisfies descent and
satisfies finite descent.

2) If a presheaf of Kan complexes X on fet|k satisfies descent, then it satisfies
finite descent.

Theorem 9 and its corollaries also translate directly.

Theorem 18. Suppose that f : X → Y is a local weak equivalence between
presheaves of Kan complexes on the site fet|k such that X and Y have only
finitely many non-trivial presheaves of homotopy groups. Then the induced map

f∗ : lim−→
L/k

hom(EG×G Sp(L), X)→ lim−→
L/k

hom(EG×G Sp(L), Y )

is a weak equivalence.
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The colimits in the statement of Theorem 18 are indexed over finite Galois
extensions L/k in the algebraic closure k, with Galois groups G = G(L/k).
Similar indexing will be used for all statements that follow.

Corollary 19. Suppose that X is a presheaf of Kan complexes on fet|k which
has only finitely many non-trivial homotopy groups, and let j : X → Z be an
injective fibrant model. Then the map j induces a weak equivalence

j∗ : lim−→
L/k

hom(EG×G Sp(L), X)→ lim−→
L/k

hom(EG×G Sp(L), Z).

Corollary 20. Suppose that X is a presheaf of Kan complexes on fet|k which
has only finitely many non-trivial presheaves of homotopy groups, and suppose
that X satisfies finite descent. Suppose that j : X → Z is an injective fibrant
model. Then the map j : X(k)→ Z(k) in global sections is a weak equivalence.

Corollary 21. Suppose that X is a presheaf of Kan complexes on fet|k which
has only finitely many non-trivial presheaves of homotopy groups. Suppose that
j : X → Z is an injective fibrant model. Then the map j : X(k) → Z(k) is
weakly equivalent to the map

X(k)→ lim−→
L/k

hom(EG×G Sp(L), X).

Suppose now that X is a presheaf of Kan complexes on the finite étale site
fet|k of a field k. Let j : X → LX be a functorial choice of injective fibrant
model for X. Let PnX be the nth Postnikov section of X, with canonical maps
p : X → PnX.

An example to keep in mind for X is the mod ` K-theory presheaf (K/`)n,
which is the “space” at level n for the mod ` K-theory presheaf of spectra K/`,
where ` is a prime which is distinct from the characteristic of k.

As usual, we let L/k be a finite Galois extension in k, with Galois group G.
Letting these extensions vary gives a commutative diagram

lim−→L/k
hom(EG×G Sp(L),PnX)

j∗

'
// lim−→L/k

hom(EG×G Sp(L), LPnX)

PnX(k)

α

OO

j // LPnX(k)

' α

OO

X(k)

p

OO

j
// LX(k)

p′

OO

(15)
in simplicial sets, where the indicated colimits are indexed on the finite Galois
extensions L/k.
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The indicated weak equivalence α is a filtered colimit of the weak equiva-
lences

LPnX(k)
'−→ hom(EG×G Sp(L), LPnX)

(see Remark 17). The map j∗ is a weak equivalence by Corollary 19.
The diagram (15) can be interpreted as a commutative diagram of pro objects

in simplicial sets, which arises from a fibrant replacement PnX → LPnX of
the Postnikov tower in the category of pro-simplicial presheaves [11]. This
fibrant replacement is constructed by inductively finding local weak equivalences
j : PnX → LPnX and injective fibrations q : LPnX → LPn−1X such that the
diagrams

PnX
j //

��

LPnX

q

��
Pn−1X

j
// LPn−1X

commute.
The map p in (15) is a pro equivalence, by construction [11].

Lemma 22. Suppose that ` is a prime with ` 6= char(k). Suppose that there is
a uniform bound N on the Galois cohomological dimension of k with respect to
`-torsion sheaves. Suppose that each of the presheaves πkX are `m-torsion for
some m. Then the map

p′ : LX(k)→ LP∗X(k)

is a pro equivalence.

Remark 23. The uniform bound assumption implies that if L/k is any finite
separable extension and x ∈ X(L) is a vertex, then Hp

et(L, π̃k(X|L, x)) = 0 for
p > N .

Here, X|L is the restriction of the simplicial presheaf X to the finite étale
site of L. In effect, π̃k(X|L, x) is an `m-torsion sheaf, and the cohomological
dimension of L with respect to `m-torsion sheaves is bounded above by that of
k, by a Shapiro’s Lemma argument [15, Sec 3.3].

The K-theory presheaves (K/`)n appearing in the mod ` K-theory presheaf
of spectra have `2-torsion presheaves of homotopy groups are standard (and
motivating) examples.

Proof of Lemma 22. All presheaves PnX = PnX have the same presheaf of
vertices, namely X0, and there is a pullback diagram of simplicial presheaves

K(πnX,n) //

��

PnX

��
X0

// Pn−1X
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which defines the object K(πnX,n). In sections, the fibre of the map

K(πnX,n)(U)→ X0(U)

over the vertex x ∈ X0(U) is the space K(πn(X(U), x), n).
Form the diagram

K(πnX,n)
j

'
//

��

LK(πnX,n)

q

��
X0

j

' // X̃0

where the maps labelled by j are injective fibrant models and q is an injective
fibration.

Suppose that y ∈ LK(πnX,n)(k)0. There is a finite separable extension L/k
such that q(y) ∈ X̃0(L) is in the image of the map j : X0(L)→ X̃0(L), meaning
that q(y|L) = j(z) for some z ∈ X0(L).

Form the pullback diagram

q−1(q(y)) //

��

LK(πnX,n)

q

��
∗

q(y)
// X̃0

Then
πk(q−1(q(y))(k), y) = πk(LK(πnX,n)(k), y).

The simplicial presheaf q−1(q(y)) is injective fibrant, and has one non-trivial
sheaf of homotopy groups, say A, in degree n. The sheaf A is `m-torsion, since
its restriction to fet|L is the sheaf associated to the presheaf πn(X|L, z), which
is `m-torsion.

It follows that

πkLK(πnX,n)(k), y) = πk(q−1(q(y))(k), y) ∼=

{
Hn−k
et (k,A) if k ≤ n, and

0 otherwise.

In particular, the homotopy groups πkLK(πnX,n)(k), y) vanish for k < n−N .
It follows that the map

lim←−
m

LPmX(k)→ LPnX(k)

induces a weak equivalence

Pr(lim←−
m

LPmX(k))→ Pr(LPnX(k))
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for n sufficiently large, and this is true for each r.
A similar statement holds for all finite separable extensions L/k, by the same

argument: the map
lim←−
m

LPmX(L)→ LPnX(L)

induces a weak equivalence

Pr(lim←−
m

LPmX(L))→ Pr(LPnX(L))

for n sufficiently large, and this is true for each r.
There are several consequences:

1) The map X → lim←−n LPnX is a local weak equivalence, since the map

lim←−
m

LPmX → LPnX

induces a sectionwise weak equivalence

Pr(lim←−
m

LPmX)→ Pr(LPnX)

for n sufficiently large, on account of the uniform bound.

2) The map X → lim←−n LPnX is an injective fibrant model for X.

3) The map X → lim←−n LPnX is a pro equivalence, because the map

Y := lim←−
n

LPnX → LP∗X

is a pro-equivalence.

It follows that the induced function

lim−→ [PkLPnX,Z]→ lim−→ [PkY,Z]

is a bijection.

The existence of a global bound in Galois cohomological dimension of Lemma
22 is commonly met in practice, such as for the mod ` K-theory presheaves
(K/`)n, when defined over fields k that arise from finite dimensional objects in
number theory and algebraic geometry — see [18].

Thus, in the presence of the global bound on cohomological dimension as-
sumption of Lemma 22, we see that, with the exception of the maps j : X(k)→
LX(k) and

α : PnX(k)→ lim−→
L/k

hom(EG×G Sp(L),PnX),

the maps in the diagram (15) are pro equivalences.
The simplicial set map X(k) → G(X)(k) is a weak equivalence if and only

if it is a pro equivalence, by Lemma 12. We have the following consequence:
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Theorem 24. Suppose that X is a presheaf of Kan complexes on the finite étale
site fet|k of a field k such that the presheaves πkX are `n-torsion for some n
and some prime ` which is distinct from the characteristic of k. Let j : X → LX
be an injective fibrant model of X. Suppose that there is a uniform bound on the
Galois cohomological dimension of k with respect to `-torsion sheaves associated
to each of the presheaves πkX.

Then the induced map j : X(k)→ LX(k) in global sections is a weak equiv-
alence if and only if the map of towers

α : PnX(k)→ lim−→
L/k

hom(EG×G Sp(L),PnX)

is a pro equivalence in simplicial sets.

Remark 25. The statement of Theorem 24 is only an illustration. One can
refine the extension k/k into a sequence of Galois subextensions

k = L0 ⊂ L1 ⊂ · · · ⊂ LN = ksep

such that each of the Galois extensions Li+1/L1 has Galois cohomological di-
mension 1 with respect to `-torsion sheaves — see Section 7.7 of [10]. Then there
is a statement analogous to Theorem 24 for the finite Galois subextensions L/Li
of Li+1/Li.

Historically, the use of this decomposition was meant to break up the prob-
lem of proving the Lichtenbaum-Quillen conjecture into proving descent state-
ments in relative Galois cohomological dimension 1. This attack on the conjec-
ture was never successfully realized.
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Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M.
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