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Introduction

The purpose of this note is to present a modern proof of the well known
Barratt-Priddy-Quillen Theorem, which theorem asserts that the space QS0 =
Ω∞Σ∞S0 is weakly equivalent to the space⊔

Z
(BΣ∞)+.

Here, (BΣ∞)+ is the effect of applying Quillen’s plus construction to the clas-
sifying space of the infinite symmetric group Σ∞ and QS0 = Ω∞Σ∞S0 is the
space at level 0 of the stably fibrant model of the sphere spectrum.

The proof is combinatorial and natural. It is based on the construction of
an endo-functor Γ∗ on the category of pointed simplicial sets. This functor Γ∗

comes equipped with a natural transformation X → Γ∗(X) which induces a
stable equivalence for the standard Γ-space model for a suspension spectrum.
Applying this functor to the Γ-space corresponding to the sphere spectrum gives
a special Γ-space whose corresponding spectrum has space at level one which is
weakly equivalent to the simplicial monoid⊔

n≥0

BΣn

Then a standard group completion argument implies the Barratt-Priddy Theo-
rem.

The functor Γ∗ itself is constructed in this paper from a rather simple homo-
topy colimit which is easily manipulated with standard categorical techniques.
As such, this construction is the real point of departure from the papers of Bar-
ratt and Priddy [1],[2]: there is no Γ-space theory in those papers, but they did
use some very strongly related ideas.

The Barratt-Priddy-Quillen Theorem appears as Theorem 11 at the end of
this paper.

1 Proof of the theorem

Write Mon for the category of monomorphisms θ : m → n of finite sets. This
category includes the empty set ∅, which is initial.
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Suppose that X is a pointed simplicial set. Then X defines a functor

PX : Mon→ sSet

with m 7→ Xm, and which takes a monomorphism θ : m → n to the function
θ∗ : Xm → Xn defined by extending functions x : m→ X to functions θ∗(X) :
n→ X by sending elements of n−m to the base point ∗ ∈ X.

Write
Γ+(X) = holim−−−→ PX ,

meaning the unpointed homotopy colimit, and let Γ∗(X) be the pointed homo-
topy colimit. Then it’s a standard observation that there is a cofibre sequence

BMon→ Γ+(X)→ Γ∗(X).

The space BMon is contractible, so that the natural map

Γ+(X)→ Γ∗(X)

is a weak equivalence.
The space Γ∗(X) is supposed to be a model for Barratt’s space Γ+(X) [1],

and here’s a reality check:

Lemma 1. There is a weak equivalence⊔
n≥0

BΣn ' Γ+(S0).

Proof. Write S0 = {0, 1}, pointed by 0. Then Γ+(S0) is the nerve of the trans-
lation EPS0 category whose objects are all pairs (n, x) with x ∈ {0, 1}×n and
with morphisms

θ : (m, y)→ (n, x)

given by monomorphisms θ such that θ∗(y) = x.
Given (m, y), write ky for the subset of m on which the function y is non-

zero. Then there is a unique ordered monomorphism my : ky → m and a
corresponding morphism my : (ky, 1) → (m, y), where 1 is the function taking
all elements to 1 ∈ S0. One can show that two objects (m, y) and (n, x) are in
the same path component of EPS0 if and only if kx = ky, meaning that x and
y have the same number of non-zero entries.

Given θ : (m, y)→ (n, x) and ky 6= ∅, there is a commutative diagram

(1, k)
my //

σθ

��

(m, y)

θ

��
(1, k)

mx
// (n, x)

where k = ky = kx and σθ is a uniquely determined element of the symmet-
ric group Σk. It follows that the component of (m, y) in EPS0 is homotopy
equivalent to Σk.
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The component of (∅, 0) in EPS0 is a copy of Mon, which is contractible. It
is therefore equivalent to BΣ0 = ∗.

Write Monk for the full subcategory of Mon consisting of the sets n of
cardinality less than or equal to k, and write P (k)

X for the left Kan extension to
Mon of the restricted functor

Monk ⊂Mon PX−−→ sSet.

Let Γ+(X)(k) = holim−−−→ P
(k)
X .

Example 2. The space P (1)
X (n) =

∨
nX is the n-fold wedge of copies of X.

Mon1 is the category ∅ → 1, and the restriction of PX to Mon1 is the diagram
∗ → X, which is projective cofibrant. It follows that the Kan extension P

(1)
X is

also a projective cofibrant diagram, so that the map

holim−−−→ P
(1)
X → lim−→ P

(1)
X

is a weak equivalence. The fold maps
∨
nX → X define an isomorphism

lim−→ P
(1)
X
∼= X.

Example 3. More generally, the space P
(k)
X (n) is isomorphic to the subset

A
(k)
X (n) of X×n which consists of those n-tuples (x1, . . . , xn) ∈ Xn such that

xi 6= ∗ in at most k places.
In effect, the map

P
(k)
X (n) = lim−→

m→n,m≤k
Xm → Xn

factors through the inclusion A
(k)
X (n) ⊂ X×n. Also, for subsets A,B of n the

diagram
XA∩B //

��

XB

��
XA // Xn

is a pullback, where the functions are defined by extension by base point. It
follows that the function

P
(k)
X (n) = lim−→

m→n,m≤k
Xm → A

(k)
X (n)

is injective.

Theorem 4. 1) There is a pointed weak equivalence

EΣk ∧Σk X
∧k '−→ Γ+(X)(k)/Γ+(X)(k−1).
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2) The canonical maps EΣk ∧Σk X
∧k → Γ∗X induce a weak equivalence∨

k≥1

EΣk ∧Σk X
∧k '−→ Γ∗X.

Here, EΣk ∧Σk X
∧k is the pointed homotopy colimit for the Σk action on the

k-fold smash X∧k which interchanges smash factors.

Proof. NB: Part 2) needs proof, but see [5].

For k ≤ n, there is a surjective map⊔
A⊂n, |A|=k

X×k → P
(k)
X (n),

where the induced map off the direct summmand corresponding to the k-element
subset A ⊂ n is the map θA∗ : X×k → X×n which is induced by the unique
ordered function k → n which picks out the elements of A. If the n-tuple x is
in the image of θA∗ and θB∗ in the sense that x = θA∗(y) = θB∗(z) for distinct
k-element subsets A and B, then x ∈ P (k−1)

X , as are the elements y, z. It follows
that there is an induced pointed isomorphism∨

A⊂n, |A|=k

X∧k
∼=−→ P

(k)
X /P

(k−1)
X (n)

for n ≥ k, while
P

(k)
X /P

(k−1)
X (n) = ∗

for n ≤ k − 1.
The space Γ+(X)(k)/Γ+(X)(k−1) is the pointed homotopy colimit of the

functor
n 7→ P

(k)
X /P

(k−1)
X (n).

There is a category Mk whose objects are the set of order preserving in-
jections A : k ⊂ n, and whose morphisms are the commutative diagrams of
injections

k
A //

σ

��

m

θ

��
k

B
// n

Note that B = θ(A) and σ ∈ Σk. It follows from the analysis above that
Γ+(X)(k)/Γ+(X)(k−1) is the pointed homotopy colimit holim−−−→ ∗X

• of the functor

X• : Mk → sSet∗

taking values in pointed simplicial sets, which is defined by sending A : k ⊂ n
to X∧k, and which sends a morphism (θ, σ) to the induced isomorphism σ∗ :
X∧k → X∧k.

4



There is a functor f : Mk → Σk which sends (θ, σ) to σ, and the functor X•

is the composite

Mk
f−→ Σk

X∧k−−−→ sSet∗.

There is also a functor g : Σk →Mk which takes ∗ to the object k : k 1−→ k, and
takes τ ∈ Σk to the morphism

k
1 //

τ

��

k

τ

��
k

1
// k

Observe that fg = 1 and there is a natural transformation gf → 1. It follows
that the map (functor) f in the pullback diagram

holim−−−→Mk
X•

f∗ //

��

holim−−−→ΣkX
∧k

��
BMk

f
// BΣk

induces a weak equivalence f∗, since the group Σk acts invertibly on X∧k. It
follows that the induced map of pointed homotopy colimits

holim−−−→ ∗X
• → EΣk ∧Σk X

∧k

is a weak equivalence.

Remark 5. Generally, suppose that X : I → sSet is a small diagram of
simplicial sets which is a diagram of equivalences in the sense that all morphisms
α : i → j of the category I induce weak equivalences X(i) → X(j). Then all
pullback diagrams

Y ×BI holim−−−→ IX //

��

holim−−−→ IX

��
Y // BI

are homotopy cartesian. This is a slight variation of Quillen’s “Theorem B” —
see [4, IV.5.7].

The assignment K 7→ Γ∗(K) for finite pointed sets K defines a Γ-space, and
the natural pointed maps K → Γ∗(K) form a morphism of Γ-spaces, which
will be denoted by φ : Id → Γ∗(Id). Here, Id refers to the Γ-space defined by
the identity functor K 7→ K. Recall that the associated spectrum Id(S) is the
sphere spectrum S0.
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More generally, for a pointed simplicial set X, the spectrum Id∧X(S) as-
sociated to the Γ-space Id∧X is the suspension spectrum Σ∞X. The Γ∗ con-
struction can be applied to any Γ-space Y , and there is a corresponding natural
map of Γ-spaces

φY : Y → Γ∗(Y ).

Corollary 6. The Γ-space map φId∧X induces a stable equivalence

Σ∞X = Id∧X(S)→ Γ∗(Id∧X)(S)

of associated spectra.

Proof. In general, if Y is an k-connected pointed simplicial set, then the cofibre
of the map Y → Γ∗(Y ) is at least (2k + 1)-connected on account of Theorem
4, and it follows (by relative Hurewicz) that the map πjY → πjΓ∗(Y ) is an
isomorphism for j ≤ 2k. The map Sn ∧X → Γ∗(Sn ∧X) therefore induces an
isomorphism

πi(Sn ∧X)
∼=−→ πi(Γ∗(Sn ∧X))

for i ≤ 2(n− 1).

The space Γ+(X) has the structure of a simplicial monoid. In effect, given
morphisms θ : (n, x) → (m, y) and θ′ : (n′, x′) → (m′, y′), in the translation
category defining holim−−−→ PX , their sum is the map

θ ⊕ θ := θ ∨ θ′ : (m ∨m′, (x, x′))→ (n ∨ n′, (y, y′))

Here, for example, (x, x′) ∈ Xm × Xm′ , and there is a canonical bijection
m ∨ m′ ∼= m+m′ which identifies m with the first m elements of m+m′,
and identifies m′ with the last m′ elements, both identifications in order. This
bijection also forces an identification

Xm ×Xm′ = hom(m,X)× hom(m′, X) ∼= hom(m+m′, X) = Xm+m′ .

The identity for the monoid structure is the object (∅, ∗), and the monoid is
homotopy commutative since there are natural diagrams

(m ∨m′, (x, x′)) θ∨θ′ //

τ

��

(n ∨ n′, (y, y′))

τ ′

��
(m′ ∨m, (x′, x))

θ′∨θ
// (n′ ∨ n, (y′, y))

in the underlying translation category, where the maps τ and τ ′ are suitably
defined shuffles.

We shall use the standard models for finite pointed sets: in particular n+

denotes the finite ordinal number n = {0, 1, . . . , n}, pointed by 0. Observe
that the pointed set S0 of Lemma 1 is the pointed ordinal number 1+ in this
notation.
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Write ini for the pointed map function 1+ → n+ which picks out the number
i for 1 ≤ i ≤ n, and let ψ denote the composite

Γ+(1+)× · · · × Γ+(1+) in1×···×inn−−−−−−−−→ Γ+(n+)× · · · × Γ+(n+) ⊕−→ Γ+(n+).

Now here’s a generalization of Lemma 1:

Lemma 7. The map ψ is a weak equivalence.

Proof. Two elements (m,x) and (r, y) are in the same path component if and
only if the functions x : m → n+ and y : r → n+ have the same number ki of
images of each “colour” i for 1 ≤ i ≤ n. It follows, by the same argument as for
Lemma 1, that the path component of Γ+(n+) corresponding to the numbers
ki, 1 ≤ i ≤ n has the homotopy type of the product

BΣk1 × · · · ×BΣkn .

Lemma 1 implies that the path components of the space

Γ+(1+)× · · · × Γ+(1+)

have the same description, and the map ψ preserves them.

Corollary 8. There is a levelwise weak equivalence of simplicial spaces

BΓ+(1+) '−→ Γ+(S1).

Proof. The simplicial space Γ+(S1) is defined by n 7→ Γ+(S1
n), and there are

commutative diagrams

Γ+(1+)×n
ψ

'
//

θ∗

��

Γ+(S1
n)

θ∗

��
Γ+(1+)×m

ψ

' // Γ+(S1
n)

for each ordinal number map θ : m → n, and where the copy of θ∗ on the left
is the simplicial structure map for BΓ+(1+).

Corollary 9. The Γ-space Γ∗(Id) is special, meaning that the pinch maps form
a weak equivalence

Γ∗(n+)→
n∏
i=1

Γ∗(1+) (1)

for all n ≥ 1.

Proof. The pinch maps induce a map Γ+(n+)→
∏n
i=1 Γ+(1+) which is weakly

equivalent to the map in (1), and the composite
n∏
i=1

Γ+(1+)
ψ−→ Γ+(n+)→

n∏
i=1

Γ+(1+)

is homotopic to the identity.
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A standard group completion argument, arising from the action of the monoid⊔
n≥0BΣn on the space

⊔
Z BΣ∞ then implies the following:

Lemma 10. There is a weak equivalence⊔
Z

(BΣ∞)+
'−→ ΩB(

⊔
n≥0

BΣn).

Here, (BΣ∞)+ is the result of applying the plus construction to the space
BΣ∞; it can also be characterized as an H-space having the homology of BΣ∞.

The spectrum Y (S) associated to a special Γ-spaces Y is an Ω-spectrum
above level 1 in the sense that the maps Y (S)n → ΩY (S)n+1 are weak equiv-
alences for n ≥ 1 [3, Thm. 4.4]. It follows that the spectrum defined by the
spaces

ΩY (S)1, Y (S)1, Y (S)2, . . .

is an Ω-spectrum having the same stable homotopy type as Y (S).
In view of Corollary 6, Corollary 9 and Lemma 10, we therefore have the

following:

Theorem 11 (Barratt-Priddy-Quillen). There is a weak equivalence

QS0 '
⊔
Z

(BΣ∞)+.
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[5] Christian Schlichtkrull. The homotopy infinite symmetric product represents
stable homotopy. Algebr. Geom. Topol., 7:1963–1977, 2007.

8


