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Introduction

The purpose of this note is to present a modern proof of the well known
Barratt-Priddy-Quillen Theorem, which theorem asserts that the space QS° =
02> 80 is weakly equivalent to the space

| | (BSw)™

Z

Here, (BX»)" is the effect of applying Quillen’s plus construction to the clas-
sifying space of the infinite symmetric group Yo, and QS° = Q*°%>°S0 is the
space at level 0 of the stably fibrant model of the sphere spectrum.

The proof is combinatorial and natural. It is based on the construction of
an endo-functor I'* on the category of pointed simplicial sets. This functor I'*
comes equipped with a natural transformation X — T'*(X) which induces a
stable equivalence for the standard I'-space model for a suspension spectrum.
Applying this functor to the I'-space corresponding to the sphere spectrum gives
a special I'-space whose corresponding spectrum has space at level one which is
weakly equivalent to the simplicial monoid

|| B=.

n>0

Then a standard group completion argument implies the Barratt-Priddy Theo-
rem.

The functor I'* itself is constructed in this paper from a rather simple homo-
topy colimit which is easily manipulated with standard categorical techniques.
As such, this construction is the real point of departure from the papers of Bar-
ratt and Priddy [1],[2]: there is no I'-space theory in those papers, but they did
use some very strongly related ideas.

The Barratt-Priddy-Quillen Theorem appears as Theorem 11 at the end of
this paper.

1 Proof of the theorem

Write Mon for the category of monomorphisms 6 : m — n of finite sets. This
category includes the empty set (), which is initial.



Suppose that X is a pointed simplicial set. Then X defines a functor
Px : Mon — sSet

with m — X™, and which takes a monomorphism 6 : m — n to the function
0, : X™ — X" defined by extending functions = : m — X to functions 8*(X) :
n — X by sending elements of n — m to the base point * € X.
Write
I'*(X) = holim Py,

meaning the unpointed homotopy colimit, and let I'*(X) be the pointed homo-
topy colimit. Then it’s a standard observation that there is a cofibre sequence

BMon — I't (X) — I'*(X).
The space BMon is contractible, so that the natural map
X)) —r*(Xx)

is a weak equivalence.
The space I'*(X) is supposed to be a model for Barratt’s space I'T(X) [1],
and here’s a reality check:

Lemma 1. There is a weak equivalence

| | B, ~TH(sY).

n>0

Proof. Write S° = {0, 1}, pointed by 0. Then I'*(S°) is the nerve of the trans-
lation E'Pgo category whose objects are all pairs (n,z) with € {0,1}*™ and
with morphisms

0:(m,y) — (n,x)

given by monomorphisms 6 such that 6. (y) = «.

Given (m,y), write k, for the subset of m on which the function y is non-
zero. Then there is a unique ordered monomorphism m, : k, — m and a
corresponding morphism m,, : (k,,1) — (m,y), where 1 is the function taking
all elements to 1 € S°. One can show that two objects (m,y) and (n, ) are in
the same path component of FPgo if and only if k, = k,, meaning that z and
y have the same number of non-zero entries.

Given 6 : (m,y) — (n,z) and k, # 0, there is a commutative diagram

(1,k) —2> (m, y)

l le

(1,k) == (n,2)

where k = Ey = k, and oy is a uniquely determined element of the symmet-
ric group Xi. It follows that the component of (m,y) in EPso is homotopy
equivalent to Xj.



The component of (,0) in EPso is a copy of Mon, which is contractible. Tt
is therefore equivalent to BYg = . O

Write Mony, for the full subcategory of Mon consisting of the sets n of

cardinality less than or equal to k, and write P)((k) for the left Kan extension to
Mon of the restricted functor

Mon; C Mon 2% sSet.

Let T*(X)®) = holim P

Example 2. The space P)((l)(ﬂ) = V/,, X is the n-fold wedge of copies of X.
Mon; is the category () — 1, and the restriction of Px to Mon; is the diagram

* — X which is projective cofibrant. It follows that the Kan extension P)((1 ) is
also a projective cofibrant diagram, so that the map

holim P — lim P
is a weak equivalence. The fold maps \/, X — X define an isomorphism

lim P~ X,

Example 3. More generally, the space P)((k)(@) is isomorphic to the subset

Ag?) (n) of X*™ which consists of those n-tuples (z1,...,z,) € X™ such that
x; # x in at most k places.
In effect, the map

PP = lim X" X"

m—n,m<k

factors through the inclusion Ag?)(@) C X*". Also, for subsets A, B of n the
diagram
XAOB _— XB

Ll

is a pullback, where the functions are defined by extension by base point. It
follows that the function

PP = lm X" — AP ()

m—n,m<k
is injective.
Theorem 4. 1) There is a pointed weak equivalence

EXp As, XS TH(X)®) 14 (X)BD),



2) The canonical maps EXy As, X" — T*X induce a weak equivalence

\ EZiAs, XM STEX.
E>1

Here, EXj Ny, X" is the pointed homotopy colimit for the X, action on the
k-fold smash X"* which interchanges smash factors.

Proof. NB: Part 2) needs proof, but see [5].

For k < n, there is a surjective map

L] x = PPw),
ACn, |Al=k

where the induced map off the direct summmand corresponding to the k-element
subset A C n is the map 64, : X** — X*" which is induced by the unique
ordered function & — n which picks out the elements of A. If the n-tuple z is
in the image of 04, and 6p, in the sense that z = 64, (y) = 0p.(z) for distinct
k-element subsets A and B, then z € P)((k_l), as are the elements y, z. It follows
that there is an induced pointed isomorphism

Voo XS PO )
ACn, |Al=k
for n > k, while
k) k-

PY P () =+

forn<k-—1.
The space T'F(X)® /I+(X)*=1 is the pointed homotopy colimit of the

functor i -

n— PE /P ().

There is a category My whose objects are the set of order preserving in-
jections A : k C n, and whose morphisms are the commutative diagrams of

injections
*A> m
ig
—n
B

Note that B = §(A) and o € Xj. It follows from the analysis above that
I+ (X)®) /T+(X)* =1 is the pointed homotopy colimit holim , X*® of the functor

g

[ <—r I3

X°®: M, — sSet,

taking values in pointed simplicial sets, which is defined by sending A : k C n
to X"* and which sends a morphism (6,0) to the induced isomorphism o, :
X/\k N X/\k.



There is a functor f : My — %5 which sends (0, o) to o, and the functor X*
is the composite

Nk
Mk L Ek X—> sSet*.

There is also a functor g : ¥ — Mj which takes * to the object k : k 1, k, and
takes 7 € X to the morphism

Observe that fg = 1 and there is a natural transformation gf — 1. It follows
that the map (functor) f in the pullback diagram

holim pp, X® i> holim EkX/\k

| |

BMj ————> B

induces a weak equivalence f,, since the group ¥ acts invertibly on X%, It
follows that the induced map of pointed homotopy colimits

holim , X* — EX; Ag, X*
is a weak equivalence. O

Remark 5. Generally, suppose that X : I — sSet is a small diagram of
simplicial sets which is a diagram of equivalences in the sense that all morphisms
a : i — j of the category I induce weak equivalences X (i) — X(j). Then all
pullback diagrams

Y XBI holim IX — > holim [X

| i

Y ——BI

are homotopy cartesian. This is a slight variation of Quillen’s “Theorem B” —
see [4, IV.5.7].

The assignment K — I'*(K) for finite pointed sets K defines a I'-space, and
the natural pointed maps K — I'*(K) form a morphism of I'-spaces, which
will be denoted by ¢ : Id — I'*(Id). Here, Id refers to the I'-space defined by
the identity functor K — K. Recall that the associated spectrum Id(S) is the
sphere spectrum S°.



More generally, for a pointed simplicial set X, the spectrum Id AX(S) as-
sociated to the I'-space Id AX is the suspension spectrum X°°X. The I'* con-
struction can be applied to any I'-space Y, and there is a corresponding natural
map of I'-spaces

oy Y - T*(Y).

Corollary 6. The I'-space map ¢1q rx tnduces a stable equivalence
X =1dAX(S) = I*(Id AX)(S)
of associated spectra.

Proof. In general, if Y is an k-connected pointed simplicial set, then the cofibre
of the map Y — T*(Y) is at least (2k + 1)-connected on account of Theorem
4, and it follows (by relative Hurewicz) that the map ;Y — m;I"*(Y) is an
isomorphism for j < 2k. The map S™ A X — I'*(S™ A X) therefore induces an
isomorphism

mi(S™ A X) = (D (S™ A X))
for i <2(n—1). O

The space I'T(X) has the structure of a simplicial monoid. In effect, given
morphisms 6 : (n,z) — (m,y) and ¢ : (n/,2') — (m/,y’), in the translation
category defining holim Py, their sum is the map

00:=0Vv0 :(mvm, (v,2') — (nVvn,(y,y))

Here, for example, (z,2’) € X™ x Xm/, and there is a canonical bijection
mV m' = m+m’' which identifies m with the first m elements of m + m/,
and identifies m’ with the last m’ elements, both identifications in order. This

bijection also forces an identification
X™ x X™ =hom(m, X) x hom(m’, X) = hom(m + m/, X) = X"+

The identity for the monoid structure is the object (), ), and the monoid is
homotopy commutative since there are natural diagrams

(m V!, (2,2") 2 (v, (y,9))

| |

(m' vV m, (2, 2)) ——> (' V1, (y,y))
in the underlying translation category, where the maps 7 and 7’ are suitably
defined shuffles.

We shall use the standard models for finite pointed sets: in particular n
denotes the finite ordinal number n = {0,1,...,n}, pointed by 0. Observe
that the pointed set S° of Lemma 1 is the pointed ordinal number 1, in this
notation.



Write in; for the pointed map function 1, — n; which picks out the number
i for 1 <14 < n, and let ¥ denote the composite

1M X XNy
AL EARNEALALIN

IH(1g) x - x IH(1y) I't(ny) x - xTtmy) S THny).

Now here’s a generalization of Lemma 1:
Lemma 7. The map ¥ is a weak equivalence.

Proof. Two elements (m,x) and (r,y) are in the same path component if and
only if the functions z : m — ny and y : r — ny have the same number k; of
images of each “colour” i for 1 <14 < n. It follows, by the same argument as for
Lemma 1, that the path component of I'*(n,) corresponding to the numbers
k;, 1 <i < n has the homotopy type of the product

BYy, x - x BYy,,.
Lemma 1 implies that the path components of the space
IH (1) x - x T (1)
have the same description, and the map 1 preserves them. O
Corollary 8. There is a levelwise weak equivalence of simplicial spaces
BIt(1,) = TF(Sh).

Proof. The simplicial space I'T(S!) is defined by n + I't(S}), and there are
commutative diagrams

T+ (1) —> T (51)

g*i la*

P (14) ™ =T (5))

for each ordinal number map 6 : m — n, and where the copy of 8* on the left
is the simplicial structure map for BT (1). O

Corollary 9. The I'-space I'*(1d) is special, meaning that the pinch maps form

a weak equivalence
n

M) - [T 1)
i=1
for allm > 1.
Proof. The pinch maps induce a map I'" (ny) — [[;-, T (1) which is weakly
equivalent to the map in (1), and the composite

[[r ) % rmy) — [[rHay)

=1 =1

is homotopic to the identity. O



A standard group completion argument, arising from the action of the monoid
Ll,,>o BX: on the space | |, B¥« then implies the following:

Lemma 10. There is a weak equivalence

| |(BEw)+ = QB(| | BE).

Z n>0

Here, (BX )+ is the result of applying the plus construction to the space
BY..; it can also be characterized as an H-space having the homology of BY .

The spectrum Y'(S) associated to a special T-spaces Y is an Q-spectrum
above level 1 in the sense that the maps Y (S)" — QY (S)"*! are weak equiv-
alences for n > 1 [3, Thm. 4.4]. It follows that the spectrum defined by the
spaces

QY ()L Y(S)',Y(9)...

is an Q-spectrum having the same stable homotopy type as Y (.5).
In view of Corollary 6, Corollary 9 and Lemma 10, we therefore have the
following:

Theorem 11 (Barratt-Priddy-Quillen). There is a weak equivalence

QS° ~| | (BEw)™.

Z
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