The Barratt-Priddy-Quillen Theorem

J.F. Jardine

September 15, 2009

Introduction

The purpose of this note is to present a modern proof of the well known Barratt-Priddy-Quillen Theorem, which theorem asserts that the space $QS^0 = \Omega^{\infty}\Sigma^{\infty}S^0$ is weakly equivalent to the space

$$\bigsqcup_{\mathbb{Z}} (B\Sigma_{\infty})^+.$$

Here, $(B\Sigma_{\infty})^+$ is the effect of applying Quillen's plus construction to the classifying space of the infinite symmetric group Σ_{∞} and $QS^0 = \Omega^{\infty}\Sigma^{\infty}S^0$ is the space at level 0 of the stably fibrant model of the sphere spectrum.

The proof is combinatorial and natural. It is based on the construction of an endo-functor Γ^* on the category of pointed simplicial sets. This functor Γ^* comes equipped with a natural transformation $X \to \Gamma^*(X)$ which induces a stable equivalence for the standard Γ -space model for a suspension spectrum. Applying this functor to the Γ -space corresponding to the sphere spectrum gives a special Γ -space whose corresponding spectrum has space at level one which is weakly equivalent to the simplicial monoid

$$\bigsqcup_{n\geq 0} B\Sigma_n$$

Then a standard group completion argument implies the Barratt-Priddy Theorem.

The functor Γ^* itself is constructed in this paper from a rather simple homotopy colimit which is easily manipulated with standard categorical techniques. As such, this construction is the real point of departure from the papers of Barratt and Priddy [1],[2]: there is no Γ -space theory in those papers, but they did use some very strongly related ideas.

The Barratt-Priddy-Quillen Theorem appears as Theorem 11 at the end of this paper.

1 Proof of the theorem

Write **Mon** for the category of monomorphisms $\theta : \underline{m} \to \underline{n}$ of finite sets. This category includes the empty set \emptyset , which is initial.

Suppose that X is a pointed simplicial set. Then X defines a functor

$P_X: \mathbf{Mon} \to s\mathbf{Set}$

with $\underline{m} \mapsto X^m$, and which takes a monomorphism $\theta : \underline{m} \to \underline{n}$ to the function $\theta_* : X^m \to X^n$ defined by extending functions $x : \underline{m} \to X$ to functions $\theta^*(X) : \underline{n} \to X$ by sending elements of $\underline{n} - \underline{m}$ to the base point $* \in X$. Write

$$\Gamma^+(X) = \text{holim} P_X$$

meaning the unpointed homotopy colimit, and let $\Gamma^*(X)$ be the pointed homotopy colimit. Then it's a standard observation that there is a cofibre sequence

$$B\mathbf{Mon} \to \Gamma^+(X) \to \Gamma^*(X)$$

The space B**Mon** is contractible, so that the natural map

$$\Gamma^+(X) \to \Gamma^*(X)$$

is a weak equivalence.

The space $\Gamma^*(X)$ is supposed to be a model for Barratt's space $\Gamma^+(X)$ [1], and here's a reality check:

Lemma 1. There is a weak equivalence

$$\bigsqcup_{n>0} B\Sigma_n \simeq \Gamma^+(S^0).$$

Proof. Write $S^0 = \{0, 1\}$, pointed by 0. Then $\Gamma^+(S^0)$ is the nerve of the translation EP_{S^0} category whose objects are all pairs (\underline{n}, x) with $x \in \{0, 1\}^{\times n}$ and with morphisms

$$\theta: (\underline{m}, y) \to (\underline{n}, x)$$

given by monomorphisms θ such that $\theta_*(y) = x$.

Given (\underline{m}, y) , write \underline{k}_y for the subset of \underline{m} on which the function y is nonzero. Then there is a unique ordered monomorphism $m_y : \underline{k}_y \to \underline{m}$ and a corresponding morphism $m_y : (\underline{k}_y, 1) \to (\underline{m}, y)$, where 1 is the function taking all elements to $1 \in S^0$. One can show that two objects (\underline{m}, y) and (\underline{n}, x) are in the same path component of EP_{S^0} if and only if $\underline{k}_x = \underline{k}_y$, meaning that x and y have the same number of non-zero entries.

Given $\theta: (\underline{m}, y) \to (\underline{n}, x)$ and $\underline{k}_y \neq \emptyset$, there is a commutative diagram

where $\underline{k} = \underline{k}_y = \underline{k}_x$ and σ_{θ} is a uniquely determined element of the symmetric group Σ_k . It follows that the component of (\underline{m}, y) in EP_{S^0} is homotopy equivalent to Σ_k .

The component of $(\emptyset, 0)$ in EP_{S^0} is a copy of **Mon**, which is contractible. It is therefore equivalent to $B\Sigma_0 = *$.

Write \mathbf{Mon}_k for the full subcategory of \mathbf{Mon} consisting of the sets <u>n</u> of cardinality less than or equal to k, and write $P_X^{(k)}$ for the left Kan extension to **Mon** of the restricted functor

$$\mathbf{Mon}_k \subset \mathbf{Mon} \xrightarrow{P_X} s\mathbf{Set}.$$

Let $\Gamma^+(X)^{(k)} = \underline{\text{holim}} P_X^{(k)}$.

Example 2. The space $P_X^{(1)}(\underline{n}) = \bigvee_n X$ is the *n*-fold wedge of copies of X. **Mon**₁ is the category $\emptyset \to \underline{1}$, and the restriction of P_X to **Mon**₁ is the diagram $* \to X$, which is projective cofibrant. It follows that the Kan extension $P_X^{(1)}$ is also a projective cofibrant diagram, so that the map

$$\underline{\operatorname{holim}} \ P_X^{(1)} \to \underline{\operatorname{lim}} \ P_X^{(1)}$$

is a weak equivalence. The fold maps $\bigvee_n X \to X$ define an isomorphism $\lim_{X \to X} P_X^{(1)} \cong X.$

Example 3. More generally, the space $P_X^{(k)}(\underline{n})$ is isomorphic to the subset $A_X^{(k)}(\underline{n})$ of $X^{\times n}$ which consists of those *n*-tuples $(x_1, \ldots, x_n) \in X^n$ such that $x_i \neq *$ in at most k places.

In effect, the map

$$P_X^{(k)}(\underline{n}) = \varinjlim_{\underline{m} \to \underline{n}, \underline{m} \le k} X^m \to X^n$$

factors through the inclusion $A_X^{(k)}(\underline{n})\subset X^{\times n}.$ Also, for subsets A,B of \underline{n} the diagram

$$\begin{array}{ccc} X^{A \cap B} \longrightarrow X^B \\ & & \downarrow \\ & & \downarrow \\ & X^A \longrightarrow X^{\underline{n}} \end{array}$$

is a pullback, where the functions are defined by extension by base point. It follows that the function

$$P_X^{(k)}(\underline{n}) = \varinjlim_{\underline{m} \to \underline{n}, \underline{m} \le k} X^m \to A_X^{(k)}(\underline{n})$$

is injective.

Theorem 4. 1) There is a pointed weak equivalence

$$E\Sigma_k \wedge_{\Sigma_k} X^{\wedge k} \xrightarrow{\simeq} \Gamma^+(X)^{(k)} / \Gamma^+(X)^{(k-1)}.$$

2) The canonical maps $E\Sigma_k \wedge_{\Sigma_k} X^{\wedge k} \to \Gamma^* X$ induce a weak equivalence

$$\bigvee_{k\geq 1} E\Sigma_k \wedge_{\Sigma_k} X^{\wedge k} \xrightarrow{\simeq} \Gamma^* X.$$

Here, $E\Sigma_k \wedge_{\Sigma_k} X^{\wedge k}$ is the pointed homotopy colimit for the Σ_k action on the k-fold smash $X^{\wedge k}$ which interchanges smash factors.

Proof. **NB**: Part 2) needs proof, but see [5].

For $k \leq n$, there is a surjective map

A

$$\bigsqcup_{A \subset \underline{n}, |A|=k} X^{\times k} \to P_X^{(k)}(\underline{n}),$$

where the induced map off the direct summand corresponding to the k-element subset $A \subset \underline{n}$ is the map $\theta_{A*} : X^{\times k} \to X^{\times n}$ which is induced by the unique ordered function $\underline{k} \to \underline{n}$ which picks out the elements of A. If the n-tuple x is in the image of θ_{A*} and θ_{B*} in the sense that $x = \theta_{A*}(y) = \theta_{B*}(z)$ for distinct k-element subsets A and B, then $x \in P_X^{(k-1)}$, as are the elements y, z. It follows that there is an induced pointed isomorphism

$$\bigvee_{A \subset \underline{n}, |A|=k} X^{\wedge k} \xrightarrow{\cong} P_X^{(k)} / P_X^{(k-1)}(\underline{n})$$

for $n \geq k$, while

$$P_X^{(k)}/P_X^{(k-1)}(\underline{n}) = \ast$$

for $n \leq k - 1$.

The space $\Gamma^+(X)^{(k)}/\Gamma^+(X)^{(k-1)}$ is the pointed homotopy colimit of the functor

$$\underline{n} \mapsto P_X^{(k)} / P_X^{(k-1)}(\underline{n})$$

There is a category \mathbf{M}_k whose objects are the set of order preserving injections $A : \underline{k} \subset \underline{n}$, and whose morphisms are the commutative diagrams of injections

$$\begin{array}{c|c}
\underline{k} & \xrightarrow{A} & \underline{m} \\
\sigma & \downarrow & & \downarrow \\
\sigma & \downarrow & & \downarrow \\
\theta & \underline{k} & \xrightarrow{B} & \underline{n}
\end{array}$$

Note that $B = \theta(A)$ and $\sigma \in \Sigma_k$. It follows from the analysis above that $\Gamma^+(X)^{(k)}/\Gamma^+(X)^{(k-1)}$ is the pointed homotopy colimit <u>holim</u> $*X^{\bullet}$ of the functor

$$X^{\bullet}: \mathbf{M}_k \to s\mathbf{Set}_*$$

taking values in pointed simplicial sets, which is defined by sending $A : \underline{k} \subset \underline{n}$ to $X^{\wedge k}$, and which sends a morphism (θ, σ) to the induced isomorphism $\sigma_* : X^{\wedge k} \to X^{\wedge k}$.

There is a functor $f : \mathbf{M}_k \to \Sigma_k$ which sends (θ, σ) to σ , and the functor X^{\bullet} is the composite

$$\mathbf{M}_k \xrightarrow{f} \Sigma_k \xrightarrow{X^{\wedge k}} s\mathbf{Set}_*$$

There is also a functor $g: \Sigma_k \to \mathbf{M}_k$ which takes * to the object $\underline{k}: \underline{k} \xrightarrow{1} \underline{k}$, and takes $\tau \in \Sigma_k$ to the morphism

Observe that fg = 1 and there is a natural transformation $gf \to 1$. It follows that the map (functor) f in the pullback diagram

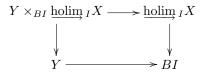
$$\underbrace{\operatorname{holim}_{\mathbf{M}_{k}} X^{\bullet} \xrightarrow{f_{*}} \operatorname{holim}_{\Sigma_{k}} X^{\wedge k}}_{B\mathbf{M}_{k} \xrightarrow{f} B\Sigma_{k}} B\Sigma_{k}$$

induces a weak equivalence f_* , since the group Σ_k acts invertibly on $X^{\wedge k}$. It follows that the induced map of pointed homotopy colimits

$$\operatorname{holim}_* X^\bullet \to E\Sigma_k \wedge_{\Sigma_k} X^{\wedge k}$$

is a weak equivalence.

Remark 5. Generally, suppose that $X : I \to s$ **Set** is a small diagram of simplicial sets which is a diagram of equivalences in the sense that all morphisms $\alpha : i \to j$ of the category I induce weak equivalences $X(i) \to X(j)$. Then all pullback diagrams



are homotopy cartesian. This is a slight variation of Quillen's "Theorem B" — see [4, IV.5.7].

The assignment $K \mapsto \Gamma^*(K)$ for finite pointed sets K defines a Γ -space, and the natural pointed maps $K \to \Gamma^*(K)$ form a morphism of Γ -spaces, which will be denoted by $\phi : \mathrm{Id} \to \Gamma^*(\mathrm{Id})$. Here, Id refers to the Γ -space defined by the identity functor $K \mapsto K$. Recall that the associated spectrum $\mathrm{Id}(S)$ is the sphere spectrum S^0 . More generally, for a pointed simplicial set X, the spectrum $\mathrm{Id} \wedge X(S)$ associated to the Γ -space $\mathrm{Id} \wedge X$ is the suspension spectrum $\Sigma^{\infty} X$. The Γ^* construction can be applied to any Γ -space Y, and there is a corresponding natural map of Γ -spaces

$$\phi_Y: Y \to \Gamma^*(Y).$$

Corollary 6. The $\Gamma\text{-space}$ map $\phi_{\mathrm{Id}\,\wedge X}$ induces a stable equivalence

$$\Sigma^{\infty}X = \mathrm{Id} \wedge X(S) \to \Gamma^*(\mathrm{Id} \wedge X)(S)$$

of associated spectra.

Proof. In general, if Y is an k-connected pointed simplicial set, then the cofibre of the map $Y \to \Gamma^*(Y)$ is at least (2k + 1)-connected on account of Theorem 4, and it follows (by relative Hurewicz) that the map $\pi_j Y \to \pi_j \Gamma^*(Y)$ is an isomorphism for $j \leq 2k$. The map $S^n \wedge X \to \Gamma^*(S^n \wedge X)$ therefore induces an isomorphism

$$\pi_i(S^n \wedge X) \xrightarrow{\cong} \pi_i(\Gamma^*(S^n \wedge X))$$

for $i \leq 2(n-1)$.

The space $\Gamma^+(X)$ has the structure of a simplicial monoid. In effect, given morphisms $\theta : (\underline{n}, x) \to (\underline{m}, y)$ and $\theta' : (\underline{n}', x') \to (\underline{m}', y')$, in the translation category defining <u>holim</u> P_X , their sum is the map

$$\theta \oplus \theta := \theta \vee \theta' : (\underline{m} \vee \underline{m'}, (x, x')) \to (\underline{n} \vee \underline{n'}, (y, y'))$$

Here, for example, $(x, x') \in X^m \times X^{m'}$, and there is a canonical bijection $\underline{m} \vee \underline{m'} \cong \underline{m+m'}$ which identifies \underline{m} with the first m elements of $\underline{m+m'}$, and identifies $\underline{m'}$ with the last m' elements, both identifications in order. This bijection also forces an identification

 $X^m \times X^{m'} = \hom(\underline{m}, X) \times \hom(\underline{m'}, X) \cong \hom(\underline{m+m'}, X) = X^{m+m'}.$

The identity for the monoid structure is the object $(\emptyset, *)$, and the monoid is homotopy commutative since there are natural diagrams

$$\begin{array}{c|c} (\underline{m} \lor \underline{m'}, (x, x')) \xrightarrow{\theta \lor \theta'} & (\underline{n} \lor \underline{n'}, (y, y')) \\ & \tau \\ & & \downarrow \\ (\underline{m'} \lor \underline{m}, (x', x)) \xrightarrow{\theta' \lor \theta} & (\underline{n'} \lor \underline{n}, (y', y)) \end{array}$$

in the underlying translation category, where the maps τ and τ' are suitably defined shuffles.

We shall use the standard models for finite pointed sets: in particular \mathbf{n}_+ denotes the finite ordinal number $\mathbf{n} = \{0, 1, \ldots, n\}$, pointed by 0. Observe that the pointed set S^0 of Lemma 1 is the pointed ordinal number $\mathbf{1}_+$ in this notation.

Write in_i for the pointed map function $\mathbf{1}_+ \to \mathbf{n}_+$ which picks out the number i for $1 \leq i \leq n$, and let ψ denote the composite

$$\Gamma^+(\mathbf{1}_+) \times \cdots \times \Gamma^+(\mathbf{1}_+) \xrightarrow{in_1 \times \cdots \times in_n} \Gamma^+(\mathbf{n}_+) \times \cdots \times \Gamma^+(\mathbf{n}_+) \xrightarrow{\oplus} \Gamma^+(\mathbf{n}_+).$$

Now here's a generalization of Lemma 1:

Lemma 7. The map ψ is a weak equivalence.

Proof. Two elements (\underline{m}, x) and (\underline{r}, y) are in the same path component if and only if the functions $x : \underline{m} \to \mathbf{n}_+$ and $y : \underline{r} \to \mathbf{n}_+$ have the same number k_i of images of each "colour" i for $1 \le i \le n$. It follows, by the same argument as for Lemma 1, that the path component of $\Gamma^+(\mathbf{n}_+)$ corresponding to the numbers $k_i, 1 \le i \le n$ has the homotopy type of the product

$$B\Sigma_{k_1} \times \cdots \times B\Sigma_{k_n}$$

Lemma 1 implies that the path components of the space

$$\Gamma^+(\mathbf{1}_+) \times \cdots \times \Gamma^+(\mathbf{1}_+)$$

have the same description, and the map ψ preserves them.

Corollary 8. There is a levelwise weak equivalence of simplicial spaces

$$B\Gamma^+(\mathbf{1}_+) \xrightarrow{\simeq} \Gamma^+(S^1).$$

Proof. The simplicial space $\Gamma^+(S^1)$ is defined by $\mathbf{n} \mapsto \Gamma^+(S_n^1)$, and there are commutative diagrams

$$\begin{array}{c|c} \Gamma^{+}(\mathbf{1}_{+})^{\times n} \xrightarrow{\psi} \Gamma^{+}(S_{n}^{1}) \\ & & \\ \theta^{*} \\ & & \\ \Gamma^{+}(\mathbf{1}_{+})^{\times m} \xrightarrow{\simeq} \Gamma^{+}(S_{n}^{1}) \end{array}$$

for each ordinal number map $\theta : \mathbf{m} \to \mathbf{n}$, and where the copy of θ^* on the left is the simplicial structure map for $B\Gamma^+(\mathbf{1}_+)$.

Corollary 9. The Γ -space $\Gamma^*(\mathrm{Id})$ is special, meaning that the pinch maps form a weak equivalence

$$\Gamma^*(\mathbf{n}_+) \to \prod_{i=1}^n \Gamma^*(\mathbf{1}_+) \tag{1}$$

for all $n \geq 1$.

Proof. The pinch maps induce a map $\Gamma^+(\mathbf{n}_+) \to \prod_{i=1}^n \Gamma^+(\mathbf{1}_+)$ which is weakly equivalent to the map in (1), and the composite

$$\prod_{i=1}^{n} \Gamma^{+}(\mathbf{1}_{+}) \xrightarrow{\psi} \Gamma^{+}(\mathbf{n}_{+}) \to \prod_{i=1}^{n} \Gamma^{+}(\mathbf{1}_{+})$$

is homotopic to the identity.

A standard group completion argument, arising from the action of the monoid $\bigsqcup_{n>0} B\Sigma_n$ on the space $\bigsqcup_{\mathbb{Z}} B\Sigma_{\infty}$ then implies the following:

Lemma 10. There is a weak equivalence

$$\bigsqcup_{\mathbb{Z}} (B\Sigma_{\infty})_{+} \xrightarrow{\simeq} \Omega B(\bigsqcup_{n \ge 0} B\Sigma_{n})$$

Here, $(B\Sigma_{\infty})_+$ is the result of applying the plus construction to the space $B\Sigma_{\infty}$; it can also be characterized as an *H*-space having the homology of $B\Sigma_{\infty}$.

The spectrum Y(S) associated to a special Γ -spaces Y is an Ω -spectrum above level 1 in the sense that the maps $Y(S)^n \to \Omega Y(S)^{n+1}$ are weak equivalences for $n \ge 1$ [3, Thm. 4.4]. It follows that the spectrum defined by the spaces

$$\Omega Y(S)^1, Y(S)^1, Y(S)^2, \dots$$

is an Ω -spectrum having the same stable homotopy type as Y(S).

In view of Corollary 6, Corollary 9 and Lemma 10, we therefore have the following:

Theorem 11 (Barratt-Priddy-Quillen). There is a weak equivalence

$$QS^0 \simeq \bigsqcup_{\mathbb{Z}} (B\Sigma_\infty)^+.$$

References

- M. G. Barratt. A free group functor for stable homotopy. In Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970), pages 31–35. Amer. Math. Soc., Providence, R., 1971.
- [2] Michael Barratt and Stewart Priddy. On the homology of non-connected monoids and their associated groups. Comment. Math. Helv., 47:1–14, 1972.
- [3] A. K. Bousfield and E. M. Friedlander. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. In *Geometric applications of homotopy theory* (Proc. Conf., Evanston, Ill., 1977), II, volume 658 of Lecture Notes in Math., pages 80–130. Springer, Berlin, 1978.
- [4] P. G. Goerss and J. F. Jardine. Simplicial Homotopy Theory, volume 174 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1999.
- [5] Christian Schlichtkrull. The homotopy infinite symmetric product represents stable homotopy. Algebr. Geom. Topol., 7:1963–1977, 2007.