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Introduction

This paper is an outgrowth of the notes for a lecture given at the Mathematics
Department of Queen’s University in December of 1988. I would like to take this
opportunity to thank the members of that department for their hospitality during
my visit. I would also like to thank Bruno Kahn for reading early versions of this
manuscript and making several helpful remarks.

The basic idea of the lecture was to summarize what was known (at least to me)
at the time about characteristic classes in the mod 2 Galois cohomology of fields
K of characteristic not equal to 2 which arise either from symmetric bilinear forms
or representations of Galois groups in their orthogonal groups. Some new results
have appeared during the writing of this paper; they are discussed below.

The theory, at least through the lens of the current discussion, has a long, though
somewhat desultory pedigree. The most prominent classical cohomological invari-
ants are the Delzant Stiefel-Whitney classes [1] of a symmetric bilinear form. More
recently, Fröhlich [2] introduced the spinor class Sp2(ρ) associated to an orthogonal
representation ρ : G → On(K) of a Galois group G of a finite Galois extension of
K. Sp2(ρ) is defined to be the image in the Galois cohomology group H2

et(K,Z/2)
under cup product of the element in H1(G,H1

et(K,Z/2)) defined by the composite

G
ρ
−→ On(K)

δ
−→ H1

et(K,Z/2),

where δ is the classical spinor norm (see also the Appendix of this paper). But it
has also been clear for a long time that a representation ρ has characteristic classes
associated to it which essentially come from the cohomology of the topological space
BO, and therefore also have some right to be called its Stiefel-Whitney classes.

There has only recently been what one would call a burst of activity in this
area; it was essentially motivated by a letter from Serre to Martinet (1982, see also
[21]) in which he gave a formula for the “Hasse-Witt invariant” associated to the
trace form of a finite separable field extension of K. It turns out, by results of

1This research was supported by NSERC.
Typeset with LAMS-TEX.

1



Fröhlich [2], that this Hasse-Witt invariant is the second Delzant Stiefel-Whitney
class of a “twisted” form (ρ, β) which is canonically associated to some orthogonal
representation of a Galois group ρ : G → Oβ(K). Furthermore, the Hasse-Witt
invariant does not coincide with what one would think of as the Stiefel-Whitney
class of the representation: the difference is essentially given by the spinor class.

Some authors (myself included) now refer to the Delzant Stiefel-Whitney classes
as Hasse-Witt classes. This part of the theory culminates with a formula relating
the second Hasse-Witt class of the twisted form associated to a representation of
a Galois group in the automorphism group of an arbitrary form with the Stiefel-
Whitney classes of the representation, the Hasse-Witt classes of the underlying
form, and the spinor class of the representation. Various people have worked on
this result; I call it the Fröhlich-Kahn-Snaith formula [2], [10], [22], and give a
different proof below.

My own involvement in this area started with the point of view that characteristic
classes should be defined by homotopy theory in some sense. Perhaps the original
motivation was naive, but there is a deep connection between this theory and
traditional algebraic topological methods via the homotopy theory of simplicial
sheaves. The isomorphism classes of non-degenerate symmetric bilinear forms of
rank n are classified by the non-abelian cohomology object H1

et(K,On), computed
on the big étale site (Sch|K)et ofK, where On is now the sheaf of groups represented
by the corresponding K-group-scheme. In turn, H1

et(K,On) may be identified with
the set of morphisms [∗, BOn] in the homotopy category of simplicial sheaves on
(Sch|K)et, where BOn is the classifying simplicial object of the sheaf of groups On
and ∗ is the terminal simplicial sheaf. The étale, or Galois, cohomology of the field
K is representable in this theory in the sense that one can identify Hr

et(K,Z/2)
with the set of homotopy classes [∗, K(Z/2, r)] from ∗ to a constant Eilenberg-
Mac Lane object. Thus, elements z of the cohomology group Hr

et(BOn,Z/2) =
[BOn, K(Z/2, r)] give rise to characteristic classes associated to forms β of rank n:
one simply evaluates β∗(z) in Hr

et(K,Z/2). The central result from this point of
view is that the ring H∗et(BOn,Z/2) is a polynomial ring over the mod 2 Galois
cohomology ring of the field K, with generators HWi, i = 1, ..., n. Furthermore,
β∗(HWi) is the ith Hasse-Witt, or Delzant Stiefel-Whitney, class HWi(β) of the
form β. These results are proven in [7]; the calculation of H∗et(BOn,Z/2) involves
a comparison of Galois cohomological descent spectral sequences.

My real purpose in writing the notes for the Queen’s lecture was to give a con-
nected account of the existing theory from the simplicial point of view. The first
section of this paper essentially consists of the original lecture notes, but one will
find in it a new approach to the second Hasse-Witt class HW2(β) of a form β which
characterizes it as an explicit homotopy obstruction [wπ2 (β)] to lifting a cocycle with
values in the orthogonal group to the group Pinn along the canonical sheaf epimor-
phism π : Pinn → On in the classical central extension Z/2 → Pinn → On. This
presumes, of course, that one has a central extension of sheaves on the big étale site
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to play with, so the material in Fröhlich’s appendix [2] is not enough, even though
it is a useful guide. This problem is dealt with in the Appendix of this paper; I
construct the central extension of sheaves of groups

Z/2→ Pinβ
πβ
−→ Oβ

associated to the orthogonal group-scheme of any non-degenerate symmetric bilin-
ear form β over K.

The existence of the central extension for arbitrary forms β means that one has an
obstruction class [w

πβ
2 (ω)] defined on Oβ-cocycles by analogy with the obstruction-

theoretic definition of HW2. This obstruction class is used to prove the Fröhlich-
Kahn-Snaith formula; this is Theorem 2.4 of this paper. The central point of that
proof is the formula of Proposition 2.2 for the obstruction associated to a direct
sum of cocycles.

But it is also possible to show that the simplicial sheaf BOβ on (Sch|K)et is
weakly equivalent to BOn by comparing both to some intermediate object. It fol-
lows in particular that H∗et(BOβ,Z/2) is a polynomial ring in generators HWβ

i ,
i = 1, ..., n over the mod 2 Galois cohomology of the field K. If β is a diagonal
form (and this can always be presumed), the constant group Γ∗Z/2×n is canonically
included inBOβ , andHWi maps to the ith elementary symmetric polynomial in cer-
tain linear translates of the generators of the cohomology ringH∗et(Γ

∗BZ/2×n,Z/2).
This result is Theorem 3.1 of the third section.

The derivation of the weak equivalence between BOβ and BOn is the interesting
part of Theorem 3.1 in that it was something of a surprise, since the two objects
obviously have different sheaves of fundamental groups, namely Oβ and On respec-
tively. The reason that one gets away with this is that this weak equivalence has
the form

BOβ
'
←− X

'
−→ BOn,

where X is a simplicial sheaf with an empty set of global sections. If there’s no
global choice of base point in X, then no comparison of sheaves of fundamental
groups is possible if these sheaves are to be pointed by a global section. In fact,
the object X is non-empty only over a Galois extension L over which β trivializes.

Theorem 3.1 gives “characteristic” classes HWβ
i (ω) = ω∗(HWβ

i ) for any cocy-

cle ω representing an element of [∗, BOβ]. Furthermore, one finds that HWβ
i (ω)

coincides with the ordinary class HWi(ω, β) arising from the twisted form (ω, β)
associated to ω. Along the way to proving the Fröhlich-Kahn-Snaith result, one
derives (Theorem 2.5) a formula giving HW2(ω, β) in terms of the obstruction class

[w
πβ
2 (ω)], plus some terms which are non-zero in general, so that HWβ

2 (ω) can differ
from [w

πβ
2 (ω)]; the relationship between the two is given by the formula (3.7). This

formula (3.7) has a pleasant form: I think of it as the “real” Fröhlich-Kahn-Snaith
formula.
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I hesitate slightly in declaring that the HWβ
i (ω) are characteristic classes only

because HWβ
i (ω) = HWi(β) if ω is trivial, so that non-trivial classes can arise from

trivial forms. Some consequences of this phenomenon are discussed at the end of
the third section of this paper.

An explanation of the higher Hasse-Witt classes HWi(ρ, β) of the twisted form
(ρ, β) has been a primary goal of this theory of characteristic classes, since it became

known that the spinor class Spβ2 (ρ) intervened in degree 2 in the Fröhlich-Kahn-
Snaith formula. It is possible to use the action of the Steenrod algebra on all of
the cohomology groups in sight in conjuction with a Wu formula to bootstrap the
formula for HW2(ρ, β) to a formula for HW3(ρ, β) (and hence for HWβ

3 (ρ)); this
was done in [9] and it appears as Theorem 2.6 of this paper. This technique fails in
all degrees which are higher powers of the prime 2. The fundamental open problem
is really (and has been thought of as such for a while) to decide whether or not

there are non-trivial higher spinor classes which are unrelated to Spβ2 (ρ). One may
as well start with the degree 4 case, since it’s still open.

Let me close this section by remarking that it is already possible to go beyond the
material presented here (this will be the subject of a future paper). The calculation
of the étale cohomology of BOn given in Theorem 1.4 below can be generalized to
arbitrary base schemes X defined over Z[1/2]. More explicitly, if On,X is the corre-
sponding group-scheme defined over X, then H∗et(BOn,X ,Z/2), as an algebra over
H∗et(X,Z/2), is a polynomial ring in classes HWi, i = 1, ..., n, where deg(HWi) = i.
The proof is the same sort of comparison of descent spectral sequences as was used
to prove Theorem 1.4 in [8]. This gives a theory of Hasse-Witt classes for non-
degenerate symmetric bilinear forms of rank n on all such X, since isomorphism
classes of these forms may be identified with morphisms [∗, BOn,X ] in the homo-
topy category of simplicial sheaves on the big étale site for X (but see also [12]).
Alternatively, Kahn has pointed out that if Y is a scheme which is defined over a
field K of characteristic prime to 2, then one achieves a theory of Hasse-Witt classes
for forms on Y directly from Theorem 1.4 by defining the classes HWi to be the im-
ages of the corresponding classes from H∗et(BOn,Z/2) under the obvious canonical
map. This amounts to the same theory, since the classes HWi in H∗et(BOn,X ,Z/2)
are stable under base change. Finally, there is another connection with classical
geometry in the sense that standard techniques can be used to show that if X is a
smooth variety over C, and E is a non-degenerate symmetric bilinear form of rank
n over X, then E gives rise to a quadratic form E(C) over the analytic space X(C)
whose classical Stiefel-Whitney classes coincide with the Hasse-Witt classes of E
under the isomorphism H∗et(X,Z/2) ∼= H∗(X(C),Z/2).
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1. Basic theory.

Let K be a field such that char(K) 6= 2, and let V = Kn be an n-dimensional
K-vector space. Let β : V ×V → K be an non-degenerate symmetric bilinear form
(of rank n), with matrix B relative to some choice of basis for V . B is symmetric
and invertible. It can also be diagonalized. In effect, there is an element v of V
such that v2 = β(v, v) 6= 0; otherwise for any two elements v and w of V one finds
0 = (v + w)(v + w) = 2vw, and so vw = 0, contradicting the non-degeneracy of β.
Now V = 〈v〉 ⊕ 〈v〉⊥; there is a short exact sequence of vector space maps

0 → 〈v〉⊥ → V → K → 0,

(where the map V → K is defined by w 7→ β(w, v)), and so for dimensional reasons,
the map 〈v〉⊥⊕〈v〉 → V is an isomorphism. Furthermore, for example, if an element
w of 〈v〉⊥ annihilates all of 〈v〉⊥ under the restriction of β, it annihilates all of V , so
that the restriction of β to each summand is non-degenerate. It follows that there
is a matrix A ∈ Gln(K) such that B has the form

B = At

 a1 0
. . .

0 an

A,
where ai ∈ K, i = 1, ..., n. We shall say that

A : B →

 a1 0
. . .

0 an


is an isomorphism (or just a map) of forms.

The classes [ai] ∈ K∗/(K∗)2 are obstructions to finding an isomorphism of forms

B
A
−→

 1 0
. . .

0 1

 ,
or alternatively, to writing B = AtA for some A ∈ Gln(K). These vanish over some
finite Galois extension L/K with G = Gal(L/K).

Choose such an L and an A ∈ Gln(L) such that B = AtA, and consider the
resulting automorphisms g(A) ·A−1

1n
g(A)
←−−− B

A
−→ 1n
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(note that g(A)tg(A) = g(B) = B = AtA) of the trivial form 1n on Ln. In
other words, g(A) · A−1 is a member of the orthogonal group On(L) consisting of
matrices C ∈ Gln(L) such that CtC = In. The function fβ : G → On(L) defined
by fβ(g) = g(A) ·A−1 satisfies{

fβ(e) = 1 and

fβ(g · h) = gh(A) ·A−1 = gh(A) · g(A)−1 · g(A) ·A−1 = g(fβ(h)) · fβ(g).

fβ : G→ On(L) is a (contravariant) cocycle defined on G which takes values in the
group On(L). Let Z1(G,On(L)) be the set of all such cocycles.

The cocycles f , f ′ : G → On(L) are said to be cohomologous if there is an
orthogonal matrix E ∈ On(L) such that g(E) · f(g) = f ′(g) · E for all g in G.
For example, if B = DtB′D over K and B′ = (A′)tA′ over L, then there is a
commutative diagram

1n

u
g(A′DA−1) = g(A′)Dg(A)−1

Bu g(A) wA

u
D

1n

u
A′DA−1

1n Bu
g(A′)

w
A′

1n

of morphisms of forms over L, so that the cocycles g(A) ·A−1 and g(A′) · (A′)−1 are
cohomologous. Define (just like anybody would) H1(G,On(L)) = Z1(G,On(L))/∼,
where ∼ denotes the cohomology relation.

The upshot of what we have done so far is that there is a well-defined function:{isomorphism classes of symmetric
non-degenerate bilinear forms
over K, trivial over L

}
ϕ
−→ H1(G,On(L)).

Proposition 1.1. The function ϕ is a bijection.

Proof (cf. [19] or [20]): Any cocycle c : G → On(L) determines a cocycle with
coefficients in Gln(L), by composition with the obvious inclusion. This composed
cocycle must be homotopically trivial, by a souped-up version of “Hilbert’s Theorem
90”: H1(G,Gln(L)) is trivial. Thus, c has the form c(g) = g(A) · A−1 for some
A ∈ Gln(L). But g(A)tg(A) = Atc(g)tc(g)A = AtA for all g ∈ G, and so B :=
AtA ∈ Gln(K) represents a preimage of the class [c] ∈ H1(G,On(L)), and ϕ is
surjective. The injectivity of ϕ is the observation that a collection of commutative
diagrams of the form

1n

u
g(D)

B′u g(A
′) wA′ 1n

u
D

1n Bu
g(A)

w
A

1n

6



given by a homotopy of cocycles over L determines a K-linear morphism of forms,
namely A−1DA′.

Corollary 1.2.

(1) There is a bijection{
isomorphism classes of
non-degenerate symmetric bilinear forms
of rank n over K

}
↔ H1

Gal(ΩK , On),

where ΩK is the absolute Galois group of K.
(2) There is a bijection{

isomorphism classes of
non-degenerate symmetric bilinear forms
of rank n over K

}
↔ [∗, BOn],

where the thing on the right denotes morphisms from the terminal (sim-
plicial) object ∗ to the classifying simplicial object BOn in the category of
simplicial sheaves on the big étale site (Sch|K)et [5], [7].

The group-scheme On represents a sheaf of groups on this site (by faithfully flat
descent), and BOn is the simplicial sheaf whose n-simplices consist of the sheaf
On × · · · × On (n-fold product), with faces and degeneracies defined in the usual
way:

d0(gn, ..., g1) = (gn, ..., g2)

di(gn, ..., g1) = (gn, ...,
i

gi+1gi, ..., g1) for 1 ≤ i ≤ n− 1

dn(gn, ..., g1) = (gn−1, ..., g1)

si(gn, ..., g1) = (gn, ..., gi+1, e, gi, ..., g1) for 0 ≤ i ≤ n.

Note that I’ve notationally suppressed the dependence on K; it’s very important,
however, to remember that everything in sight is defined over this field.

“Proof”: (1) is just the definition of the non-abelian Galois H1 invariant asso-
ciated to On. The best way to see (2) is to observe that H1(G,On(L)) may be
identified via abstract nonsense with a set of simplicial homotopy classes of maps
π(EG×G Sp(L), BO(n)). EG×G Sp(L) is just fancy language for the Čech hyper-
cover associated to the étale covering Sp(L)→ Sp(K), namely

Sp(L) w Sp(L)× Sp(L)u
u

ww Sp(L)× Sp(L)× Sp(L) . . .
u
u
u
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The Borel construction notation is justified by the fact that L ⊗K L ∼=
∏
g∈G L,

and so the Čech hypercover is the simplicial gadget associated to the cosimplicial
ring

L ww L⊗K Lu
w
ww L⊗K L⊗K L . . . .u u∏

g∈G

L
∏

(g2,g1)

L

It follows that this hypercover is the nerve of the translation category given by the
action of G on Sp(L). Finally, one has to know that lim

−→
π(EG×G Sp(L), BOn) is

one of the forms of [∗, BOn] (whatever it is), but that’s a bit technical.

Remark 1.3. Note that we now think of G as the group of automorphisms of
Sp(L) over Sp(K), which group is contravariantly isomorphic to the original Galois
group. This accounts for the contravariance in the original definition of G-cocyle:
one wants the covariant definition in the simplicial setting.

There is a corresponding identification H1(C, A) ∼= [∗, BA] of A-torsors with
homotopy classes of maps for any sheaf of groups A on any Grothendieck site C [8].

There are various characteristic classes that one can extract from a non-degen-
erate symmetric bilinear form β by these methods, since we have managed to rep-
resent the isomorphism class [β] as a homotopical object. The basic reason for this
is that there are isomorphisms

Hi
Gal(Ωk, A) ∼= Hi

et(K,A) ∼= [∗, K(A, i)]

for any sheaf of groups A on the étale site of K. People are generally used to the
fact that Galois cohomology coincides with étale cohomology for fields (the first
isomorphism), but the identification with homotopy classes of maps is relatively
new. K(A, i) is the simplicial sheaf associated to a sheaf of abelian groups A on
(Sch|K)et by naturally extending the Dold-Puppe theory to a functorial setting.
In some sense, it’s a very familiar topological object: it is a simplicial sheaf with
one non-trivial sheaf of (globally pointed — see §3) homotopy groups, namely A,
in degree i. Now [BOn, K(A, i)] is a perfectly good definition for Hi

et(BOn, A)
(there are others, giving the same group), and so any form [β] : ∗ → BOn induces
a map β∗ : Hi(BOn,Z/2) → Hi(K,Z/2), for example. The game, just as in the
classical toplogical theory of characteristic classes, is therefore to find a canonical
list of classes in H∗(BOn,Z/2), whose pullbacks along [β] will be thought of as
characteristic classes of β in the mod 2 Galois cohomology of K. Here’s one basic
source for these classes:
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Theorem 1.4. Let K be a field of characteristic not equal to 2, and let A denote
the mod 2 Galois cohomology ring H∗et(K,Z/2) of K. Then there is an isomorphism
of graded algebras of the form

H∗et(BOn,Z/2) ∼= A[HW1, ..., HWn],

where the polynomial generator HWi has degree i.

The proof of this theorem [8] is a comparison of étale chomological descent spec-
tral sequences arising from the inclusion of the diagonal subgroup in On. This
inclusion induces an inclusion map of simplicial sheaves i : Γ∗BZ/2×n ↪→ BOn and
determines a monomorphism i∗ : H∗et(BOn,Z/2) ↪→ H∗et(Γ

∗BZ/2×n,Z/2). Here,
Γ∗BZ/2×n is the constant simplicial sheaf on BZ/2×n. Its cohomology is easy to
describe: H∗et(Γ

∗BZ/2×n,Z/2) ∼= A[x1, ...xn], deg(xi) = 1. xi is the homotopy
class of the simplicial presheaf map Γ∗BZ/2×n → Γ∗BZ/2 which is induced by
the ith projection Z/2×n → Z/2. It follows from the proof of the theorem that
i∗(HWi) = σi(x1, ..., xn), the ith elementary symmetric polynomial in the x′is.

Recall that, in the setup above, we diagonalized the matrix B associated to the
form β to get a matrix  a1 0

. . .

0 an

 .
By examining cocycles, one can show that there is a commutative diagram of the
form

Γ∗BZ/2×n

u
i

∗
hh
hhj[a1]× · · · × [an]

w
[β]

BOn

in the homotopy category of simplicial sheaves on (Sch|K)et. In particular, xi pulls
back to [ai] in H1

et(K,Z/2), and so β∗(HWi) = σi([a1], ..., [an]). In other words,
β∗(HWi) is the ith Hasse-Witt class of β, as defined by Delzant [1]. I call the HW ′is
the universal Hasse-Witt classes.

The classes HWi are completely determined by the fact that they pull back to
symmetric polynomials. This allows us to represent them geometrically in low
degrees. In particular, HW1 pulls back to the polynomial x1 + ...+ xn, as does the
class BOn → BZ/2 induced by the determinant map On → Z/2. Thus, the class
HW1 is represented by the determinant map.
HW2 is more interesting, because we are forced to depart slightly from intuition

to see it. First of all, observe that any central extension of sheaves of groups

e→ Z/2→ H ′
π
−→ H → e
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and any class [β] ∈ [∗, BH] together determine a well-defined obstruction class
[wπ2 (β)] ∈ H2

et(K,Z/2). In effect, choose a cocycle β : EG ×G Sp(L) → BH
representing [β], and now choose a refinement EG1 ×G1 Sp(L1) → EG ×G Sp(L)

such that a lifting of the form β̂ exists, making the diagram

⊔
G1

Sp(L1) wβ̂

u

H ′

u

π

⊔
G

Sp(L) w
β

H

commute. β̂ can be identified with a function β̂ : G1 → H ′(L1) such that πβ̂(g1) =
β(g1) in H(L1). Then the obstruction to lifting the category EG1 ×G1 Sp(L1) to
the category H ′ is given by the class of the 2-cocycle

(g2, g1) 7→ β̂(g2g1)β̂(g1)
−1((g1)

∗(β̂(g2)))
−1 ∈ Z/2.

This is the obstruction cocycle wπ2 (β); its associated cohomology class [wπ2 (β)] is

an invariant of [∗, BH] which is independent of the lift β̂ in the usual way. There
are a few things to observe:

(1) If the central extension has the form

e→ Γ∗Z/2→ Γ∗H ′ → Γ∗H → e

(constant sheaves) for some ordinary short exact sequence of groups, then
the obstruction cocycle has the form

EG×G Sp(L)
β
−→ BΓ∗H = Γ∗BH

Γ∗w2

−−−→ Γ∗K(Z/2, 2),

where w2 : BH → K(Z/2, 2) is the canonical map associated to the principal
BZ/2 fibration BH ′ → BH by the Barratt-Guggenheim-Moore theory of
twisted cartesian products (see [13]) of simplicial sets. In some sense, the
point of the construction above is that we are attempting to dodge the fact
that this theory does not work for principal fibrations of simplicial sheaves.

(2) If there is a pullback diagram of group homomorphisms of the form

H ′1

u
π1

w H ′

u
π

H1 w
f

H
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and β : EG×G Sp(L)→ BH1 is a cocycle, then [wπ2 (fβ)] = [wπ1
2 (β)].

(3) There is a pullback diagram of sheaves

Γ∗E w

u

Pinn

u
π

Γ∗Z/2×n y w BOn
where π is a central Z/2-extension of On, and such that

e→ Z/2→ E → Z/2×n → e

represents σ2(x1, ..., xn). This is “classical” theory, but see the Appendix.

It follows that HW2(β) = [wπ2 (β)] for any cocycle β : EG×G Sp(L)→ BOn. In
other words, HW2(β) can be calculated as an obstruction to lifting, for any form
β.

Now let’s suppose that G = Gal(L/K), and that ρ : G→ On(K) is an orthogonal
representation of G. Then ρ canonically determines a map ρ : Γ∗BG → BOn,
essentially by an adjointness argument. There are two ways to go with ρ :

(A) Base change to the algebraic closure K of K to get a representation G →
On(K) ⊂ On(K) and hence a map of simplicial sheaves ρ : Γ∗BG → BOn
over K. This map induces a map

H∗et(BOn,K ,Z/2)→ H∗et(Γ
∗
K
BG,Z/2) ∼= H∗(BG,Z/2)

can
−−→ H∗et(K,Z/2),

where Γ∗
K

denotes the constant sheaf functor which takes values in sheaves on

(Sch|K)et, and the map can is the obvious map from the discrete cohomology
H∗(BG,Z/2) of the group G to the Galois cohomology of K. The image
of the generator HWi under this map is called the ith Stiefel-Whitney class
SWi(ρ) of ρ.

(B) There is a canonical map γ : EG ×G Sp(L) → Γ∗BG of simplicial sheaves
over K, defined on the level of n-simplices by⊔

(gn,...,g1)

Sp(L)→
⊔

(gn,...,g1)

∗.

Alternatively, it’s the map of sheaves of translation categories overG induced
by the G-equivariant map Sp(L)→ ∗. The composition

EG×G Sp(L)
γ
−→ Γ∗BG

ρ
−→ BOn

is a cocycle with values in On, and hence represents a form, which we’re just
going to call ρ. This form has Hasse-Witt classes HWi(ρ).
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Remark 1.5. It’s worth noting at this juncture thatH∗et(Γ
∗BG,Z/2) is isomorphic

to a tensor product of the ordinary mod 2 cohomology ring H∗(BG,Z/2) with the
mod 2 Galois cohomology ring A of K, essentially since G is a finite group (see [8]).
It is possible, therefore, to think of ρ∗(HWi) as a sum

ρ∗(HWi) =
i∑

j=0

HWi,j(ρ)

of classes in Hi(Γ∗BG,Z/2): HWi,j(ρ) is the summand of ρ∗(HWi) living in bide-
gree (j, i− j) in A⊗Z/2 H

∗(BG,Z/2).
A better way to look at this is to observe that, quite generally, for arbitrary

simplicial sets X, there is an isomorphism of the form

Hi(Γ∗X,Z/2) ∼=
i⊕

j=0

hom(Hi−j(X,Z/2), Hj
et(K,Z/2)).

This is seen by a standard universal coefficients argument, applied to the bicomplex
hom(Z/2(X), I∗(K)) which computes H∗(Γ∗X,Z/2) (I∗(K) is global sections of
an injective resolution Z/2 → I∗ of the sheaf Z/2 by 2-torsion injectives). This
isomorphism is dual to a collection of pairings

Hi(Γ∗X,Z/2)⊗Hi−j(X,Z/2)→ Hj
et(K,Z/2),

which are defined by observing that a homology class of degree i− j in H∗(X,Z/2)
can be identified with a chain homotopy class of maps Z/2[i− j]→ Z/2(X), which
in turn induces a chain homotopy class of maps of total complexes associated to
hom(Z/2(X), I∗(K))→ hom(Z/2[i− j], I∗(K)).

Thus, if H is arbitrary discrete group, then there is a direct sum decomposition

Hi(Γ∗BH,Z/2) ∼=
i⊕

j=0

hom(Hi−j(BH,Z/2), Hj
et(K,Z/2)),

(see also [4, p.273]). Note that H∗(Γ∗BH,Z/2) coincides with Grothendieck’s
mixed cohomology theory associated to the trivial action of H on Sp(K) [3], [4].
This formula is the foundation of a theory of mixed, or equivariant, characteristic
classes. In particular, if ρ : H → On(K) is an orthogonal representation of H,
then the correponding map of simplicial sheaves ρ∗ : Γ∗BH → BOn and the class
HWi ∈ Hi

et(BOn,Z/2) together induce a system of classes

HWi,j(ρ) : Hi−j(BH,Z/2)→ Hj
et(K,Z/2)

12



which coincide with the classes given above in the case that H is a finite Galois
group. Also, Kahn has observed that, by the same technique applied to the infinite
orthogonal group, the classes HWi ∈ Hi

et(BO,Z/2) and the canonical map ε :
Γ∗BO(K)→ BO associated to the identity representation O(K)→ O(K) give rise
to classes

HWi,j(ε) : Hi−j(BO(K),Z/2)→ Hj
et(K,Z/2).

These classes may then be composed with a Hurewicz homomorphism

1Li−j(K,Z/2)→ Hi−j(BO(K),Z/2)

defined on the mod 2 Karoubi 1L-theory of K to give analogues

1wi,j : 1Li−j(K,Z/2)→ Hj
et(K,Z/2)

of the Soulé Chern classes (see [24] — the Soulé Chern classes are constructed by
the same method).

In the context of (B) above, the canonical map Hn(BG,Z/2)→ Hn
et(K,Z/2) is

equal to the composition

[BG,K(Z/2, n)]
Γ∗

−→ [Γ∗BG,Γ∗K(Z/2, n)]
γ∗

−→ [EG×G Sp(L),Γ∗K(Z/2, n)]
∼= [∗,Γ∗K(Z/2, n)]

= Hn
et(K,Z/2).

It follows that SW1(ρ) is represented in H1(K,Z/2) by the composite

EG×G Sp(L)
γ
−→ Γ∗BG

ρ
−→ BOn

det
−−→ BZ/2,

and hence coincides with HW1(ρ).
The image of HW2 under the composition

H∗et(BOn,K ,Z/2)→ H∗et(Γ
∗BG,Z/2) ∼= H∗(BG,Z/2)

is the obstruction to lifting ρ : G → On(K) to Pinn(K). In effect, for m suffi-
ciently large, i∗ : H2(BOm(K),Z/2)→ H2(BZ/2×m,Z/2) is a monomorphism, by
Vogtmann’s stability results [25] and the fact that the mod 2 étale and discrete co-
homology of BOK coincide [11], [6]. The obstruction to lifting Om(K) to Pinm(K)
restricts to σ2(x1, ..., xm) in H2(BZ/2×m,Z/2), and so this obstruction must be
the image of HW2 under the map

H2
et(BOm,K,Z/2)

ε∗

−→ H2(Γ∗BOm(K),Z/2) ∼= H2(BOm(K),Z/2).

13



But then, by drawing the appropriate commutative diagram, one finds that HW2

hits the obstruction to lifting On(K) to Pinn(K) for all n. The claim follows.
The obstruction to lifting

G
ρ
−→ On(K) ⊂ On(K)

can be calculated by finding a finite Galois extension N/L such that G→ On(K) ⊂
On(N) lifts elementwise to ρ̂ : G→ Pinn(N), and then by defining the obstruction
cocycle w2(ρ) by w2(ρ)(g2, g1) = ρ̂(g2g1)ρ̂(g1)

−1ρ̂(g2)
−1.

Now let’s calculate the obstruction cocycle for lifting the form

EG×G Sp(L)
γ
−→ Γ∗BG

ρ
−→ BOn

(defined over K, of course). We are entitled to use the lifting ρ̂ of ρ given in the
previous paragraph, so that, explicitly

wπ2 (ργ)(g2, g1) = ρ̂(g2g1)ρ̂(g1)
−1((g1)

∗(ρ̂(g2)))
−1

= ρ̂(g2g1)ρ̂(g1)
−1ρ̂(g2)

−1ρ̂(g2)((g1)
∗(ρ̂(g2)))

−1

The cocycle (g2, g1) 7→ ρ̂(g2)((g1)
∗(ρ̂(g2)))

−1 is just the classical spinor class Sp2(ρ)
of ρ in a more modern form (see the Appendix), so we have given a conceptual proof
of the following special case of a theorem of Fröhlich, Kahn and Snaith [2], [10],
[22]:

Theorem 1.6. Suppose that char(K) 6= 2 and that L/K is a finite Galois extension
with Galois group G. Suppose that ρ : G→ On(K) is an orthogonal representation
of G. Then there is a formula HW2(ρ) = SW2(ρ) + Sp2(ρ), valid in H2

et(K,Z/2).

The full statement and proof of the Fröhlich-Kahn-Snaith formula appears in the
next section.

Remark 1.7. Theorem 1.6 implies that SW2(ρ) is not a cocycle homotopy in-
variant. Otherwise ρ could be replaced in the formula above by a representation
ρ′ : H → Z/2×n. But Sp2(ρ

′) = 0, since the pullback of π : Pinn → On to Z/2×n
is surjective in global sections: all reflections in anisotropic vectors of norm 1 lift
to Pinn(K). This would mean that Sp2(ρ) = 0 for all representations ρ.

A non-trivial Sp2(ρ) over the rational numbers Q is given by taking ρ to be any
representation G → Z/2 which classifies the element [7] ∈ Q∗/(Q∗)2, and then
by including Z/2 into On(Q) by mapping the non-trivial element of Z/2 to the
element σw ∈ On(Q) defined by reflection in the hyperplane orthogonal to the
vector w = (2, 1, 0, ..., 0). But then the image of σw in Q∗/(Q∗)2 under the spinor
norm δ : On(Q) → Q∗/(Q∗)2 is δ(σw) = [22 + 12] = [5], so that Sp(ρ) can be
identified with the cup product [7] · [5] ∈ H2

et(K,Z/2). By the Merkurjev-Suslin
theorem, to show that [7] · [5] 6= 0 in H2

et(Q,Z/2), it is enough to show that the
symbol {7, 5} is not a 2-divisible element of K2(Q). To see this, we compute the
tame symbol (5, 7)5 = 1/7 (mod 5) in F∗5 ∼= Z/4Z and observe that we get an
element of order 4 (see [17, p.101]).

14



Going further requires knowledge of the fact that the Steenrod algebra acts on
all the cohomology groups in sight, and respects all base change morphisms [9].
We also need to know that the usual list of properties for the Steenrod squares is
satisfied. This implies, for example, that the universal classes HWi satisfy the Wu
formulae, so that in particular Sq1HW2 = HW1HW2 +HW3. It follows that the
Wu formulae are satisfied by both the Stiefel-Whitney and the Hasse-Witt classes
of the representation ρ.

Now apply Sq1 to both sides of the equationHW2(ρ) = SW2(ρ)+Sp(ρ). Another
description of the spinor class (see the Appendix) is given by feeding the composite
homomorphism

G
ρ
−→ On(K)

δ
−→ K∗(K∗)2

through the composition

hom(G,H1
et(K,Z/2))

∼= H1(BG,Z/2)⊗H1(K,Z/2)→ H1(K,Z/2)⊗H1(K,Z/2)
∪
−→ H2(K,Z/2).

Here, δ is the boundary map appearing in the 6-term sequence associated to the
short exact sequence of sheaves

e→ Z/2→ Pinn → On → e.

It follows that Sp(ρ) is decomposable (alternatively, one could invoke the Merkur-
jev-Suslin theorem [15], [14] which identifies the 2-torsion in the Brauer group of
K to show that all of H2(K,Z/2) is decomposeable), so that Sq1(Sp(ρ)) = 0. In
effect, if x and y are two 1-dimensional Galois cohomology classes, then

Sq1(xy) = x2y + xy2 = εxy + xεy = 0,

where ε is the class [−1] ∈ K∗/(K∗)2, by a cup-square formula x2 = εx for 1-
dimensional classes x in H∗et(K,Z/2). Thus,

HW3 = HW1HW2 + SW1SW2 + SW3

= SW1(SW2 + Sp) + SW1SW2 + SW3

= SW3 + SW1Sp,

and so
HW3(ρ) = SW3(ρ) + SW1(ρ)Sp(ρ).

This is as far as we can get by this method, however, since there is no appropriate
Wu formula in degree 4.
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2. Fröhlich’s twisted form.

Let β be a non-degenerate symmetric bilinear form over K, which we shall also
assume without loss of generality to be defined by a diagonal matrix

B =

 a1 0
. . .

0 an

 .
Let Oβ(K) denote its group of automorphisms over K: explicitly, Oβ(K) may be
identified with the set of invertible n × n matrices A such that AtBA = B. As
such, Oβ(K) is seen to be the group of K-rational points of a K-group-scheme Oβ,
and hence the group of global sections of a sheaf of groups Oβ represented on the
big étale site (Sch|K)et by this group-scheme.

Suppose that G = Gal(L/K), and that ρ : G→ Oβ(K) is a representation of the
group G in Oβ(K). Choose the Galois extension L of K sufficiently large such that
β is trivial over L in the sense that B = CtC for some invertible n× n matrix over
L (ie. C is an isometry from β to the trivial form over L). For what comes later,
we shall also assume that L is sufficiently large that the image of the composite

G
ρ
−→ Oβ(K) ⊂ Oβ(L)

is in the image of the homomorphism πβ : Pinβ(L)→ Oβ(L) (see Proposition A.2).
The composite G→ Oβ(K) ⊂ Oβ(L) is the G-cocycle in Oβ which is canonically

associated to ρ. It is easy to see that the function g 7→ g(C)ρ(g)C−1 defines a
G-cocycle (ρ, β) with values in On(L). The cocycle (ρ, β) : EG×G Sp(L) → BOn
determines an isomorphism class of symmetric bilinear forms over K, which I call
Fröhlich’s twisted form. The Fröhlich-Kahn-Snaith formula (Theorem 2.4 below) is
an explicit formula for HW2(ρ, β), given in terms of The Stiefel-Whitney classes of
ρ, the Hasse-Witt classes of β, and the spinor norm of ρ coming from the central
extension

e→ Z/2→ Pinβ
πβ
−→ Oβ → e.

The basic aim of this section is to explain and prove this result.
Conjugating with the matrix C determines a group isomorphism C∗ : Oβ(L) ∼=

On(L). This conjugation isomorphism extends to an isomorphism of central exten-
sions

Z/2
y
u

Z/2
y
u

Pinβ(L) w∼=
u

Pinn(L)

u
Oβ(L) w∼=

C∗
On(L)
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induced by the trivialization, and so one can define SW2(ρ) as the obstruction to
lifting the composite

BG
ρ∗
−→ BOβ(K) ↪→ BOβ(L)

to BPinβ(L).
More generally, the Stiefel-Whitney classes SWi(ρ) are defined by analogy with

the construction given above for β trivial. The composite

G
ρ
−→ Oβ(K) ⊂ Oβ(L) ∼= On(L) ⊂ On(K)

induces a map Γ∗BG→ BOn of simplicial sheaves over K, and hence a composite

H∗et(BOn,K ,Z/2)→ H∗et(Γ
∗
K
BG,Z/2) ∼= H∗(BG,Z/2)

can
−−→ H∗K ,Z/2).

The image of HWi under this composite is SWi(ρ). It is easy to see that SW1(ρ) is
the image in H1

et(K,Z/2) under the canonical map of the element in H1(BG,Z/2)
which is determined by the composite

G
ρ
−→ Oβ(K)→ Z/2

of ρ with the determinant homomorphism detβ . The point is that the determinant
homomorphism commutes with the trivialization isomorphism Oβ(L) ∼= On(L).

The determinant homomorphism Oβ(K) → Z/2 is the evaluation at global sec-
tions of a morphism detβ : Oβ → Γ∗Z/2 of sheaves of groups. This morphism, in
turn, canonically determines a class in H1

et(BOβ,Z/2) which I shall also denote by
detβ . Recall that the class detn determined by detn : On → Γ∗Z/2 coincides with
the universal Hasse-Witt class HW1.

The spinor class Spβ2 (ρ) is defined to be the image of the homomorphism

G→ Oβ(K)
δ
−→ H1

et(K,Z/2)

in H2
et(K,Z/2). Then, calculating with explicit cocycles as in the proof of Theorem

1.6, we find a relation
[w
πβ
2 (ρ)] = SW2(ρ) + Spβ2 (ρ),

where [w
πβ
2 (ρ)] is the obstruction to lifting the cocycle

EG×G Sp(L)
γ
−→ Γ∗BG

ρ
−→ BOβ

to BPinβ along πβ : BPinβ → BOβ .

We shall now compute [w
πβ
2 (ρ)] in some important special cases.
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Suppose that β = 〈a〉 is the rank one form defined by an element a of K∗, and
that ρ : G→ O〈a〉(K) = Z/2 is a representation of the Galois group G for a Galois
extension L/K in which a has a square root. Then Pin〈a〉(L) ∼= Z/2× Z/2 is a 2-

torsion group, and so SW2(ρ) = 0. Thus, the obstruction class [w
π〈a〉
2 (ρ)] coincides

with the spinor class Sp
〈a〉
2 (ρ) corresponding to ρ and the central extension

e→ Z/2→ Pin〈a〉
π〈a〉
−−→ Z/2→ e.

Sp
〈a〉
2 (ρ) is the class in H2

et(K,Z/2) determined by the composite

G
ρ
−→ Z/2

[a]
−→ K∗/(K∗)2

(see the Appendix), which is the cup-product [ρ] · [a]. One therefore has the formula

(2.1) [w
π〈a〉
2 (ρ)] = [ρ] · [a]

for a representation ρ : G→ O〈a〉(K).

I shall call a map of simplicial sheaves of the form EG ×G Sp(L) → BOβ a
β-cocycle. A basic point in much of what follows is:

Lemma 2.1. Every β-cocycle EG×G Sp(L)→ BOβ is a composite of the form

EH ×H Sp(N)→ B∗Z/2×n
i
−→ BOβ

up to refinement and homotopy.

Proof: Let ω : EG×G Sp(L)→ BOβ be a β-cocycle, and presume by refining L
if necessary that β can be trivialized over L via the matrix

C =


√
a1 0

. . .

0
√
an

 .
Then the assignment g 7→ g(C)ω(g)C−1 defines a cocycle (ω, β) : EG×G Sp(L)→
BOn, which in turn represents a form over K. This form can be diagonalized
over K, so that (up to possible refinement of L) there is an element D of On(L)
such that the cocycle defined by g 7→ g(D)g(C)ω(g)C−1D−1 factors through the
inclusion Z/2×n ⊂ On(L). But then g(C)−1g(D)g(C)ω(g)C−1D−1C ∈ Z/2×n for
all g ∈ G, and so ω is homotopic to a Z/2×n-cocycle, as claimed.
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Suppose that γ1 : EH ×H Sp(N)→ BOβ1 and γ2 : EH ×H Sp(N)→ BOβ2 are
cocyles. Then the (β1 ⊕ β2)-cocyle γ1 ⊕ γ2 is defined to be the composite

EH ×H Sp(N) w∆ EH ×H Sp(N)× EH ×H Sp(N) wγ1 × γ2
BOβ1 ×BOβ2

u ⊕
BOβ1⊕β2 ,

where ∆ is the diagonal map and ⊕ is the map defined by direct sum on the matrix
level.

Proposition 2.2. There is a formula

[w
πβ1⊕β2
2 (γ1 ⊕ γ2)] = [w

πβ1
2 (γ1)] + γ∗1(detβ1)γ

∗
2(detβ2) + [w

πβ2
2 (γ2)],

valid in H2
et(K,Z/2), where detβi is the class in H1

et(BOβi ,Z/2) which is induced
by the determinant homomorphism Oβi → Γ∗Z/2 for i = 1, 2.

Proof: Presume, as always, that β1 = 〈a1〉⊕· · ·⊕〈an〉 and β2 = 〈b1〉⊕· · ·⊕〈bm〉 are
diagonal forms relative to specific orthogonal bases {v1, . . . , vn} and {w1, . . . , wm}
respectively. All of the classes in the formula are homotopy invariant, so one can
assume that γ1 factors through the diagonal subgroup Z/2×n of Oβ1 and that γ2

factors through the diagonal subgroup Z/2×m of Oβ2 . Suppose also that the field
extension N is sufficiently large so that N contains all of the square roots

√
ai and√

bj . Write vi = vi/
√
ai and wj = wj/

√
bj as elements of Pinβ1⊕β2(L). Write

π = πβ1⊕β2 , and πi = πβi for i = 1, 2. Then π(vi) is reflection in the hyperplane
orthogonal to vi, and π(wj) is reflection in the hyperplane orthogonal to wj .

Now write γ1(g) = (γ1
1(g), . . . , γn1 (g)) ∈ Z/2×n and γ2(g) = (γ1

2(g), . . . , γm2 (g) ∈
Z/2×m for each g ∈ H. Finally, think of each γji (g) as being either 0 or 1, and
write

γ̂ji (g) =

 v
γ
j
1(g)
j if i = 1,

w
γ
j
2(g)
j if i+ 2.

Then the obstruction cocyle wπ2 (γ1 ⊕ γ2) is given by

wπ2 (γ1 ⊕ γ2)(g2, g1) =γ̂1
1(g2g1) · . . . · γ̂

n
1 (g2g1)γ̂

1
2(g2g1) · . . . · γ̂

m
2 (g2g1)

· (γ̂1
1(g1) · . . . · γ̂

n
1 (g1)γ̂

1
2(g1) · . . . · γ̂

m
2 (g1))

−1

· g1(γ̂
1
1(g2) · . . . · γ̂

n
1 (g2)γ̂

1
2(g2) · . . . · γ̂

m
2 (g2))

−1

Observe that

γ̂j1(g1)
−1 · g1(γ̂

i
2(g2))

−1 = (−1)γ
j
1(g1)γi2(g2)g1(γ̂

i
2(g2))

−1 · γ̂j1(g1)
−1
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where the product γj1(g1)γ
i
2(g2) is taken in the field F2 of two elements. It follows

that

wπ2 (γ1 ⊕ γ2)(g2, g1) = wπ1
2 (γ1)(g2, g1) · w

π2
2 (γ2)(g2, g1) · (−1)

∑
γ
j
1(g1)γi2(g2)

in Pinβ1⊕β2(L), where the sum is indexed over all i and j. Note that the 2-cocycle

(g2, g1) 7→ (−1)
∑

γj1(g1)γi2(g2) ∈ {−1,+1}

represents the product

γ∗1(detβ1)γ
∗
2(detβ2) = (

∑
j

γj1) · (
∑
i

γi2).

In view of formula (2.1), Proposition 2.2 leads to the following:

Corollary 2.3. Suppose that ρ = (ρ1, . . . , ρn) : G → Z/2×n ⊂ Oβ(K) is a
representation of G = Gal(L/K), where β = 〈a1〉⊕· · ·⊕〈an〉, and let ρ also denote
the associated β-cocycle

EG×G Sp(L)
γ
−→ Γ∗BG

ρ
−→ BOβ.

Then there is a relation

[w
πβ
2 (ρ)] = σ2([ρ1], . . . , [ρn]) +

n∑
i=1

[ρi] · [ai].

Note that the sum
∑n

i=1[ρi]·[ai] is the spinor class associated to the central extension

e→ Z/2→ Xβ

π∗

−→ Z/2×n → e

which is induced over Z/2×n by pulling back πβ : Pinβ → Oβ along the canonical
inclusion Z/2×n ⊂ Oβ.

Now recall that HW2(ρ, β) coincides with the obstruction [wπ2 (ρ, β)] to lifting the
cocycle (ρ, β) to BPinn along the canonical map π : BPinn → BOn. Recall that
(ρ, β) is given on the cocycle level by g 7→ g(C)ρ(g)C−1. (ρ, β) can be stabilized to
a (β ⊕ 1n)-cocycle e⊕ (ρ, β), which can be represented by the block matrix[

e 0
0 g(C)ρ(g)C−1

]
.

Note that the obstruction [w
πβ
2 (e)] and the determinant class e∗(detβ) are trivial,

because e is a trivial form, so that [wπ2 (ρ, β)] = [w
πβ⊕1n
2 (e⊕ (ρ, β))] by Proposition
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2.2. Recall that C is an isomorphism of forms β → 1n defined over L, with inverse
C−1 : 1n → β; it follows that the block matrix[

0 C−1

C 0

]
represents an element of Oβ⊕1n(L). Then, by cocycle conjugating by this matrix,
we find the relation[

0 g(C)−1

g(C) 0

] [
e 0
0 g(C)ρ(g)C−1

] [
0 C−1

C 0

]
=

[
ρ(g) 0
0 g(C)C−1

]
and so

[w
πβ⊕1n
2 (e⊕ (ρ, β))] = [w

πβ⊕1n
2 (ρ⊕ β)] = [w

πβ
2 (ρ)] + ρ∗(detβ)β

∗(detn) + [wπ2 (β)]

where β denotes the cocycle g 7→ g(C)C−1. We have seen above that [w
πβ
2 (ρ)] =

SW2(ρ) +Spβ2 (ρ) and that ρ∗(detβ) = SW1(ρ). The results of the previous section
imply that β∗(detn) = HW1(β) and [wπ2 (β)] = HW2(β). The left hand side of the
formula is HW2(ρ, β), so we have proved:

Theorem 2.4 (Fröhlich-Kahn-Snaith). Suppose that ρ : G→ Oβ(K) is a rep-
resentation of G = Gal(L/K) in the orthogonal group Oβ(K) of the non-degenerate
symmetric bilinear form β, and let (ρ, β) denote its associated twisted form. Then
there is relation

HW2(ρ, β) = SW2(ρ) + SW1(ρ)HW1(β) +HW2(β) + Spβ2 (ρ),

valid in H2
et(K,Z/2).

Recall that any β-cocycle ω : EG ×G Sp(L) → BOβ has a well-defined cocycle
conjugate (ω, β) : EG×GSp(L)→ BOn, given by g 7→ g(C)ω(g)C−1. Furthermore,
there is nothing special about the representation ρ used in the proof of Theorem 2.4,

other than the substitutions [w
πβ
2 (ρ)] = SW2(ρ) + Spβ2 (ρ) and ρ∗(detβ) = SW1(ρ).

The techniques of the proof of Theorem 2.4 therefore carry over without change to
give:

Theorem 2.5. Suppose that ω : EG ×G Sp(L) → BOβ is a β-cocycle which is
defined on a Galois extension L/K which is big enough that the cocycle conjugate
form (ω, β) is defined. Then there is a formula

HW2(ω, β) = [w
πβ
2 (ω)] + ω∗(detβ)HW1(β) +HW2(β).

I have refrained notationally from indicating any relationship between ω∗(detβ)
and Hasse-Witt classes for reasons that will become apparent in the next section.
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Observe that the cocycle ω in the statement of Theorem 2.5 can be assumed, by
Lemma 2.1, to be a composite of the form

EG×G Sp(L)
(ω1,...,ωn)
−−−−−−→ BΓ∗Z/2×n ⊂ BOβ ,

up to homotopy and refinement, where the notation means that the composition
of (ω1, . . . , ωn) with the morphism BΓ∗Z/2×n → BΓ∗Z/2 induced by the ith pro-
jection homomorphism pri : Z/2×n → Z/2 is ωi. For ω of this form, its cocycle
conjugate (ω, β) has the form

EG×G Sp(L)
(ζ1,...,ζn)
−−−−−−→ BΓ∗Z/2×n ⊂ BOn,

where each ζi is defined by ζi(g) = g(
√
ai)ωi(g)(

√
ai)
−1. It follows that

HW2(ω, β) = σ2([ω1] + [a1], . . . , [ωn] + [an])

in H2(K,Z/2). Insofar as this can be done for any β-form ω, Theorem 2.5 can
be seen, via Proposition 2.2, as a consequence of the following formal identities of
symmetric polynomials:

σ2(x1 + y1, x2 + y2, . . . , xn + yn) = σ2(x1, . . . , xn, y1, . . . , yn)−
n∑
i=1

xiyi

= σ2(x1, . . . , xn)−
n∑
i=1

xiyi + σ1(x1, . . . , xn)σ1(y1, . . . , yn) + σ2(y1, . . . , yn).

As in the previous section, one can apply the Wu formula Sq1w2 = w3 + w2w1

to both sides of the equation in Theorem 2.4, keeping in mind that Sq1 is iden-
tically 0 on H2

et(K,Z/2) since every class in H2(K,Z/2) is decomposeable by
the Merkurjev-Suslin theorem [15]. This means in particular that HW3(ρ, β) =
HW2(ρ, β) ·HW1(ρ, β). Expanding this relation and rearranging terms gives

HW3(ρ, β) = SW3(ρ) + SW2(ρ)HW1(β) + SW1(ρ)HW2(β) +HW3(β)

+ (SW1(ρ) +HW1(β))Spβ2 (ρ) + SW1(ρ)
2HW1(β) + SW1(ρ)HW1(β)2.

But

SW1(ρ)
2HW1(β) + SW1(ρ)HW1(β)2 = εSW1(ρ)HW1(β) + SW1(ρ)εHW1(β) = 0,

where ε = [−1] in H1
et(K,Z/2). We have therefore proved:

Theorem 2.6. Suppose that ρ : G → Oβ(K) is a representation of the Galois
group G as in Theorem 2.4. Then there is a relation

HW3(ρ, β) = SW3(ρ) + SW2(ρ)HW1(β) + SW1(ρ)HW2(β) +HW3(β)

+ (SW1(ρ) +HW1(β))Spβ2 (ρ),

valid in H3
et(K,Z/2).

This last formula was derived by a slightly different method in [9].
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3. The cohomology of BOβ.

Once again, assume that β is the non-degenerate symmetric bilinear form defined
over K by the diagonal matrix  a1 0

. . .

0 an


with ai ∈ K∗, and recall that the automorphism group Oβ of β has a subgroup
Z/2×n included as diagonal matrices. The main result of this section is:

Theorem 3.1. Suppose that K is a field such that char(K) 6= 2, and let β be a
non-degenerate symmetric bilinear form of rank n over K as above. Let A denote
the Galois cohomology ring H∗et(K,Z/2) of K. Then there is ring isomorphism

H∗et(BOβ,Z/2) ∼= A[HW β
1 , . . . , HW

β
n ],

deg(HWβ
i ) = i for i = 1, . . . , n. The canonical imbedding i : Γ∗Z/2×n → Oβ

induces a map i∗ : H∗et(BOβ,Z/2)→ H∗et(Γ
∗BZ/2×n,Z/2) ∼= A[x1, . . . , xn] (where

deg(xi) = 1), which is a monomorphism of rings such that

i∗(HWβ
i ) = σi(x1 + [a1], . . . , xn + [an]).

Proof: Let L be a Galois extension of K with Galois group G such that β trivi-
alizes over L, with trivializing matrix

C =


√
a1 0

. . .

0
√
an


as in the last section. Note that the projection pr : EG×G Sp(L)× BOβ → BOβ
is a weak equivalence of simplicial sheaves over K. The basic idea of proof is to
construct a map γ : EG×G Sp(L)×BOβ → BOn of simplicial sheaves over K, and
then show that this map is a weak equivalence.

Recall that EG×G Sp(L) is the nerve of the sheaf of translation categories given
by the action ofG on the sheaf Sp(L). Thus, any such simplicial map γ is induced by
some functor, and can be identified with a functor EG×G Sp(L)→ hom(Oβ, On),
where hom(Oβ, On) is the sheaf of categories whose sheaf of objects is the sheaf of
global homomorphisms from the sheaf of groups Oβ to the sheaf of groups On, and
whose morphisms consist of the global sheaf of natural transformations. A functor
γ : EG×G Sp(L)→ hom(Oβ, On) therefore consists of:

(1) a homomorphism γ0 : Oβ|L → On|L defined over L (the object morphism),
and
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(2) a collection γg : Oβ|L×1→ On|L, g ∈ G, of homotopies (global conjugations)
γg : γ0 → g∗γ0, which homotopies satisfy

(a) the cocycle condition:

γ0 wγg1

u
γg2g1

g∗1γ0

u
g∗1γg2

(g2g1)
∗γ0 g∗1g

∗
2γ0

commutes for all g1, g2 ∈ G, and

(b) the homotopy γe is the identity.

Set γ0 to be the (globally defined) conjugation map X 7→ CXC−1, so that g∗γ0 is
conjugation by g(C) where g is the image of g : Sp(L) → Sp(L) in the ordinary
Galois group under the standard contravariant isomorphism. Now define the ho-
motopy γg to be conjugation by the global section g(C)C−1 of On(L). One verifies
easily that conditions (a) and (b) are satisfied, so that we have constructed a map
of simplicial K-sheaves γ : EG×G Sp(L)×BOβ → BOn.

I claim that this map is a weak equivalence. The two sheaves clearly have the
same sheaf of path components, namely the terminal sheaf ∗, and every base point
of EG ×G Sp(L) × BOβ must be defined over L, so it suffices to show that the
restriction of γ to L defines a weak equivalence of simplicial sheaves over L. But
EG×GSp(L)|L may be identified with the constant object Γ∗(EG×GG), where the
isomorphism Γ∗(EG×G G)→ EG×G Sp(L)|L is determined by the G-equivariant
map G→ Sp(L)(L) which takes g to g. It follows that γ|L may be identified with
the functor Γ∗(EG×G G)→ hom(Oβ , On)|L which is defined on objects g ∈ G by

γ|L(g) = g∗γ0

and defined on morphisms (g2, g1) by

γ|L(g2, g1) = the morphism g∗1γ0

g∗1γg2
−−−→ g∗1g

∗
2γ0 = (g2g1)

∗γ0.

Then the conjugation maps γg : γ0 → g∗γ0 define a natural transformation and
hence a homotopy of maps of simplicial sheaves over L from the composite

Γ∗(EG×G G)×BOβ
pr
−→ BOβ

γ0

−→
∼=

BOn

to γ|L. This composite is a weak equivalence of simplicial sheaves over L, so γ|L is
a weak equivalence, as claimed.
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Define HWβ
i to be the image in Hi

et(BOβ,Z/2) under the resulting isomorphisms

H∗et(BOβ,Z/2)
pr∗

←−−
∼=

H∗et(EG×G Sp(L)×BOβ,Z/2)
γ∗

−→
∼=

H∗et(BOn,Z/2).

Then H∗et(BOβ,Z/2) ∼= A[HW β
1 , . . . , HW

β
n ], with deg(HWβ

i ) = i for i = 1, . . . , n,
as claimed.

To finish the proof of the theorem, observe that γ restricts to a map γ : EG×G
Sp(L) × Γ∗BZ/2×n → Γ∗BZ/2×n. In turn, γ is a product of maps of the form
γi : EG ×G Sp(L) × Γ∗BZ/2 → Γ∗BZ/2, each of which is a cocycle of the form
γi(x, g) = x+ g(

√
ai)(
√
ai)
−1, when defined with respect to the additive structure

of the group Z/2. Alternatively, each γi is the γ associated to the form 〈ai〉. It
follows in particular that the map γ : EG×G Sp(L)× Γ∗BZ/2×n− → Γ∗BZ/2×n
is a weak equivalence. Observe that there is a commutative diagram of the form

(3.2)

Γ∗BZ/2×n

u

EG×G Sp(L)× Γ∗BZ/2×nu pr

u

wγ
Γ∗BZ/2×n

u
BOβ EG×G Sp(L)×BOβu pr wγ BOn

where the vertical maps are induced by the canonical inclusions and the horizontal
maps are weak equivalences. There is also a commutative diagram of the form

(3.3)

Γ∗BZ/2×n

u
xi

EG×G Sp(L)× Γ∗BZ/2×nu pr

u

wγ
Γ∗BZ/2×n

u
xi

Γ∗BZ/2 EG×G Sp(L)× Γ∗BZ/2u pr wγi
Γ∗BZ/2

in which each of the vertical maps are induced by the projection Z/2×n → Z/2
onto the ith factor. Recall that the ith projection induces the ith generator xi
in H1

et(Γ
∗BZ/2×n,Z/2), where H∗et(Γ

∗BZ/2×n,Z/2) ∼= A[x1, . . . , xn] and A =
H∗et(K,Z/2). It follows from the commutativity of (3.3) and the description of
γi given above that xi 7→ xi + [ai] in H1(Γ∗BZ/2×n,Z/2) under the composite

(3.4)

H1
et(Γ

∗BZ/2×n,Z/2) \\\\\\\\]u∼= γ∗

H1
et(EG×G Sp(L)× Γ∗BZ/2×n,Z/2) H1

et(Γ
∗BZ/2×n,Z/2)u

∼=
pr∗
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for i = 1, . . . , n. It follows that σi(x1, . . . , xn) 7→ σi(x1 + [a1], . . . , xn + [an]) under

the composite (3.4) and so HWβ
i 7→ σi(x1 +[a1], . . . , xn+[an]) under i∗ as claimed,

by the commutativity of (3.2).

Remark 3.2. It is a somewhat delicate point that the morphism γ of the proof of
Theorem 3.1 is a weak equivalence of simplicial sheaves. On first blush, one might
expect that EG×G Sp(L)×BOβ and BOn have different sheaves of fundamental
groups, namely Oβ and On respectively. But these sheaves of fundamental groups
must be defined with respect to base points somewhere, and for the vertex set of
the simplicial set of U -sections (EG×GSp(L)×BOβ)(U) to be non-empty, U must
be an L-scheme, and so Oβ(U) and On(U) coincide.

We’ve seen the classes HWβ
i (ω) before: it is a trivial consequence of Theorem 3.1

that HWβ
i (ω) = HWi(ω, β). Thus, for whatever reason (ultimately a symmetric

polynomial relation), one finds a direct sum formula

(3.5) HWβ1⊕β2

i (ω1⊕ω2) = HWβ1

i (ω1)+HW
β1

i−1(ω1)HW
β2

1 (ω2)+· · ·+HW
β2

i (ω2),

as one would expect.
The catch with the HWβ

i (ω) is that they are a bit counter-intuitive. If ω is

trivial, then it is easy to see that HWβ
i (ω) = HWi(β), which can be non-zero in

general. It then follows from the direct sum formula, for example, that

(3.6) HWβ1⊕β2

i (ω ⊕ e) = HWβ1

i (ω) +HWβ1

i−1(ω)HW1(β2) + · · ·+HWi(β2).

Secondly, HWβ
2 (ω) does not coincide with the obvious obstruction to lift. But

Theorem 2.5 implies a formula

HW β
2 (ω) = [w

πβ
2 (ω)] + ω∗(detβ)HW1(β) +HW2(β),

and ω∗(detβ) = HWβ
1 (ω) +HW1(β), so we have

(3.7) HWβ
2 (ω) = [w

πβ
2 (ω)] + (HWβ

1 (ω) +HW1(β))HW1(β) +HW2(β).
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4. Appendix.

4.1. Pinn(K) as a group.

The following description of Pinn(K) is based on the appendices of the Fröhlich
paper [2].
Cl(n) is the Clifford K-algebra corresponding to the trivial form 1n. It is the

tensor algebra on Kn, modulo the relation v2 = 〈v, v〉, where 〈v, v〉 = vtv. Let
e1, . . . , en denote the standard basis for Kn. Then Cl(n) has a K-basis consisting
of the products ei1ei2 · . . . ·eik , with 1 ≤ i1 < · · · < ik ≤ n. As a matter of notation,
observe that the transformation v 7→ −v extends to an involution I on Cl(n); Note
that I(x) = ±x for each homogeneous x ∈ Cl(n).

The Clifford group C∗(n) is the group of homogeneous invertible elements of
Cl(n) consisting of those elements x such that xvx−1 ∈ V := Kn for all v ∈ V . If
a vector w of V is anisotropic in the sense that 〈w,w〉 6= 0, then w is an element
of C∗(n), for w−1 = w/〈w,w〉, and one can show that v 7→ −wvw−1 is reflection in
the hyperplane orthogonal to w, just by examining the effect of this transformation
on the subspace 〈w〉 and its orthogonal complement. In particular, w is in C∗(n).
Note that, for x ∈ C∗(n), the transformation v 7→ xvx−1 is orthogonal, since
xvx−1xvx−1 = v2 for all v ∈ V , so that 〈xvx−1, xvx−1〉 = 〈v, v〉. Now I(x) = ±x,
so that the map x 7→ (v 7→ I(x)vx−1) defines a group homomorphism r : C∗(n)→
On(K) such that r(v) is the reflection in the hyperplane orthogonal to v for each
anisotropic v ∈ V.

One checks that no non-zero homogeneous element x of odd degree in Cl(n)
anticommutes with all v ∈ V in the sense that vxv−1 = −x. In effect,

ejei1 · · · eirej =

{
(−1)rei1 . . . eir if j /∈ {i1, . . . , ir}

(−1)r−1ei1 . . . eir if j ∈ {i1, . . . , ir}.

Thus, conjugation by ej preserves all monomial summands in all degrees, and for
r odd and α ∈ K, ejαei1 · . . . · eirej = −αei1 · · · eir if and only if j /∈ {i1, . . . , ir}.
The claim follows.

Similarly, no non-zero homogeneous element of strictly positive even degree com-
mutes with all v ∈ V . It follows that there is a short exact sequence of the form

e→ K∗ → C∗(n)
r
−→ On(K)→ e,

where the inclusion ofK∗ inC∗(n) is induced by the inclusion of the one dimensional
summand corresponding to the identity element of C∗(n).

There is an “involutory antiautomorphism” x 7→ xt on Cl(n), given on basis
elements by (ei1 · . . . · eik)

t = eik · . . . · ei1 (this antiautomorphism is induced by
a tensor algebra antiautomorphism v1 ⊗ · · · ⊗ vn 7→ vn ⊗ · · · ⊗ v1). One finds
that vt = v for each vector v. Thus, for x ∈ C∗(n) and v ∈ V , xvx−1 ∈ V ,
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and so xvx−1 = (xvx−1)t = (x−1)tvxt, whence xtxv(xtx)−1 = v. It follows that
xtx ∈ K for all x ∈ C∗(n), and the map x 7→ xtx defines a group homomorphism
N : C∗(n)→ K∗.

Note that the restriction of N to K∗ takes values in (K∗)2. Also, define Pinn(K)
to be the kernel of N . Thus, there is a diagram of the form

(A.8)

e w Z/2 w
y
u

Pinn(K) w
y
u

On(K) w
y
u

e

e w K∗ w
usq

C∗(n) wr

uN

On(K) w
u δ

e

e w (K∗)2 w K∗ w K∗/(K∗)2 w e

Here, Pinn(K)� On(K) ↪→ On(K) is an epi-monic factorization of the restriction
of r to Pinn(K), and sq is the squaring map. We shall see that the induced map
δ is the classical spinor norm.

4.2. Pinn as a sheaf.

The Clifford algebra Cl(n) is a finite dimensional K-vector space, say of dimen-
sionN . It therefore determines a sheaf ofK-algebras on the big étale site (Sch|K)et,
which sheaf we shall also denote by Cl(n). In effect, the product on Cln may be
used to define a ring structure on the scheme (or sheaf) AN , and so on. The Clif-
ford algebra product Cl(n) × Cl(n) → Cl(n) determines a map of vector spaces
(and hence of affine schemes) m∗ : Cl(n)→ EndK(Cl(n)) ∼= MN , where MN is the
affine scheme of N ×N matrices over K. It is easy to see that there is a pullback
diagram of sheaves

Cl(n)∗ wm∗

y

u

GlNy

u
Cl(n) wm∗

MN

where Cl(n)∗ is the group of units in Cl(n). It follows that Cl(n)∗ is an open
subscheme of AN , and hence has the structure of an affine algebraic group-scheme
over K.

Let GlN,V denote the parabolic subgroup of GlN which consists of those matrices
(or linear automorphisms of Cl(n)) that preserve V , where V is the subspace of
Cl(n) given above. GlN,V is a closed subgroup-scheme of GlN , and so a closed
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subgroup-scheme C
∗
(n) of Cl(n)∗ is defined by the requirement that the following

diagram is a pullback:

C
∗
(n) w
y

u

GlN,Vy

u
Cl(n)∗ w GlN

where the map Cl(n)∗ → GlN is defined by x 7→ (v 7→ xvx−1). In particular, C
∗
(n)

is affine. The induced composition

C
∗
(n)→ GlN,V → Gl(V ) = Gln

factors through the inclusion of On in Gln; the point is that 〈xvx−1, xvx−1〉 =
xvx−1xvx−1 = v2 = 〈v, v〉 in each algebra of sections, just as above.

Let Cp(n) denote the presheaf of subgroups of C
∗
(n) which is given by the ho-

mogeneous elements. Cp(n) is a finite disjoint union of sheaves represented by

closed affine subschemes of C
∗
(n). It follows that its associated sheaf, which we

shall denote by C∗(n), is represented by an affine subgroup-scheme of C
∗
(n) (al-

beit a disconnected one), which we shall also denote by C∗(n). Let r : Cp(n) →
On be the homomorphism of presheaves of groups which is given in sections by
x 7→ (v 7→ I(x)vx−1). Then one shows just as before, by examining centralizers
(and “anticentralizers”) of elements of V (R) in each section that the sequence of
presheaves

e→ Gm
i
−→ Cp(n)

r
−→ On

is exact, where Gm is identified via the homomorphism i with the subgroup of
invertible elements of degree 0 in Cl(n). The sequence of associated sheaves

e→ Gm
i
−→ C∗(n)

r
−→ On

must therefore also be exact. Notice that Cp(n)(L) = C∗(n)(L) for all fields L/K.
An argument involving centralizers of V also shows that the norm map x 7→ xtx

induces a presheaf of group homomorphism Cp(n) → Gm, and hence a morphism
of group-schemes N : C∗(n)→ Gm. Observe that the composite

Gm
i
−→ C∗(n)

N
−→ Gm

is the squaring map.
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Pinn is the subgroup-scheme of C∗(n) which is defined by the requirement that
the sequence

e→ Pinn → C∗(n)
N
−→ Bm

should be exact in the category of sheaves of groups. Then one immediately finds
that there is an exact sequence of sheaves of groups over K of the form

e→ Z/2→ Pinn
π
−→ On,

where π : Pinn → On is defined to be the composition

Pinn → C∗(n)
r
−→ On.

π is also a map of group-schemes over K, with group-scheme kernel given by the
constant group Z/2. It follows in particular that π is unramified (see [16, p.21], for
example). But now let K be the algebraic closure of K. Then π base changes to
the corresponding construction over K, and, on K-rational points, π : Pinn(K)→
On(K) is surjective. Thus, the affine group-scheme homomorphism Pinn,K → On,K
is faithfully flat, so that the K-group-scheme map π : Pinn → On is faithfully flat
as well. π is therefore a covering étale map, and is hence an epimorphism in the
category of sheaves on the big étale site (Sch|K)et. We have proved

Proposition A.1. There is a short exact sequence

e→ Z/2→ Pinn
π
−→ On → e

of sheaves of groups on (Sch|K)et whose global sections gives the exact sequence

e→ Z/2→ Pinn(K)→ On(K)

which arises from the diagram (A.8).

4.3. The sheaf of groups Pinβ.

Let β : V × V → K be an arbitrary non-degenerate symmetric bilinear form of
rank n over K, and choose an orthogonal basis {e1, . . . , en} for β. The Clifford
algebra Cl(β) is, as before, the tensor algebra on V = Kn, modulo the relation
v2 = β(v, v) for v ∈ V . It is still true that v ·w = −w · v in Cl(β) for v and w in V
with v orthogonal to w, so that Cl(β) has a K-vector-space basis consisting of the
identity element and monomials of the form ei1 · . . . · eir with 1 ≤ i1 < · · · < ir ≤ n.
In particular, Cl(β) is a finite dimensional K-vector space, say of dimension N ,
so that the product determines a sheaf of rings structure on the affine space AN
over K. As before, the multiplication on Cl(β) determines a morphism of schemes
and sheaves Cl(β) → MN over K, so that the group of units Cl(β)∗ has the
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structure of an affine algebraic group-scheme overK. One can also form the Clifford
group-scheme C∗(β) as the subgroup-scheme of homogeneous elements of Cl(β)∗

which conjugate V into itself, and then one finds the group-scheme homomorphism
r : C∗(β)→ Oβ just as before, where Oβ is the group-scheme of automorphisms of
β.

Suppose that x ∈ C∗(β)(K) has even degree and commutes with all elements of
V . Choose a finite Galois extension L/K such that β(ei, ei) = α2

i for some αi ∈ L,
for all i = 1, . . . , n. Then the base extension xL of x in C∗(β)(L) has even degree
and commutes with all elements of V (L). In particular, xL commutes with each of
the α−1

i ei. On the other hand,

(α−1
j ej)ei1 · . . . · eir (α

−1
j ej) =

{
(−1)rei1 · . . . · eir if j /∈ {i1, . . . , ir}

(−1)r−1ei1 · . . . · eir if j ∈ {i1, . . . , ir}

so that x had better not involve ej in any of its non-trivial monomial summands.
But this is true for all j, so no such x can exist in positive degrees. Similarly,
no element of C∗(β)(K) of odd degree can anti-commute with all elements of
V . This argument works more generally, since the projection X ×Sp(K) Sp(L) →
X is covering for any X in (Sch|K)et, so that C∗(β)(X) maps injectively into
C∗(β)(X ×Sp(K) Sp(L)). We have in particular a short exact sequence of sheaves
of the form

e→ Gm → C∗(β)
r
−→ Oβ.

The norm homomorphism N : C∗(β) → Gm is defined by a similar argument.
The group-scheme Pinβ is defined by the requirement that the following sequence
should be exact:

e→ Pinβ → C∗(β)
N
−→ Gm → e.

Let π : Pinβ → Oβ be defined to be the composite homomorphism

Pinβ → C∗(β)
N
−→ Oβ .

Then the group-scheme kernel of π may be identified with the constant group Z/2,
just as before, so that π is unramified. Furthermore, since β trivializes over the
algebraic closure K, π base changes to the map Pinn,K → On,K up to isomorphism,

so that π is faithfully flat. We have shown:

Proposition A.2. Each non-degenerate symmetric bilinear form β over K deter-
mines a short exact sequence of sheaves

e→ Z/2→ Pinβ
πβ
−→ Oβ → 0.

Note that the induced map of sections r : C∗(β)(K) → Oβ(K) is surjective. In
effect, π is a sheaf epimorphism so r is, and H1

et(K,Gm) = 0 (Hilbert Theorem 90);
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use the six term exact sequence associated to the short exact sequence of sheaves
of groups

e→ Gm → C∗(β)
r
−→ Oβ → e.

One therefore recreates the Fröhlich diagram that defines the spinor norm

δ : Oβ(K)→ K∗/(K∗)2.

Note also that these groups and maps are invariant up to isomorphism of the
choice of orthogonal basis of β.

4.4. The spinor class.

Suppose that
e→ A→ P → O→ e

is a central extension of sheaves of groups on (Sch|K)et with constant kernel
A = Γ∗A, and suppose that ρ : G → O(K) is a representation of G, where
G = Gal(L/K) for some finite Galois extension L of K. Choose an extension
N/K with Galois group H such that L can be identified with a subfield of N , and
such that the composite group homomorphism

G
ρ
−→ O(K) ⊂ O(N)

lifts to a function ρ̂ : G → P (N). Then, by definition of the boundary map
δ : O(K)→ H1

et(K,A), the composite map

G
ρ
−→ O(K)

δ
−→ H1

et(K,A)

is given by g 7→ [h 7→ ρ̂(g)h(ρ̂(g))−1], where the thing in the square brackets is the
element of H1

et(K,A) which is represented by the cocyle h 7→ ρ̂(g)h(ρ̂(g))−1 defined
on H which takes values in A.

Consider the function ρ∗(g, h) = ρ̂(g)h(ρ̂(g))−1, defined on G × H and taking
values in A. Then ρ∗ is a homomorphism in both variables. In effect,

ρ̂(g)h2h1(ρ̂(g))
−1 = ρ̂(g)h2(ρ̂(g))

−1h2(ρ̂(g))h2h1(ρ̂(g))
−1

= ρ̂(g)h2(ρ̂(g))
−1ρ̂(g)h1(ρ̂(g))

−1

since h2 fixes ρ̂(g)h1(ρ̂(g))
−1 ∈ A. Also, ρ̂(g2g1) = ρ̂(g2)ρ̂(g1)c(g2, g1) for some

element c(g2, g1) ∈ A, so that

ρ̂(g2g1)h(ρ̂(g2g1))
−1 = ρ̂(g2)ρ̂(g1)c(g2, g1)h(ρ̂(g2)ρ̂(g1)c(g2, g1))

−1

= ρ̂(g2)ρ̂(g1)c(g2, g1)h(c(g2, g1))
−1h(ρ̂(g1))

−1h(ρ̂(g2))
−1.
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But c(g2, g1)h(c(g2, g1))
−1 = e since h fixes c(g2, g1) ∈ A, and ρ̂(g1)h(ρ̂(g1)

−1 ∈ A,
which is the centre of P , so that

ρ̂(g2g1)h(ρ̂(g2g1))
−1 = ρ̂(g1)h(ρ̂(g1))

−1ρ̂(g2)h(ρ̂(g2))
−1,

and the claim is proved.
It follows that there is a homomorphism ρ̃ : G → homGr(H,A) = H1(BH,A)

defined by g 7→ [h 7→ ρ̂(g)h(ρ̂(g))−1], and that this homomorphism represents the
map δρ : G→ H1

et(K,A) in the sense that the diagram

G wρ̃
4
4
446δρ

H1(BH,A)

u
can

H1
et(K,A)

commutes.
Now specialize to the case where A is a Z/2-vector space, and recall that G is a

finite group. For arbitrary Z/2-vector spaces B one finds a canonical isomorphism

homGr(G,B) ∼= homGr(G,Z/2)⊗Z/2 B.

Consider the canonical surjection

π : G→ Gab ⊗ Z/2 ∼= Z/2⊕ · · · ⊕ Z/2

(k copies, say), and choose gi ∈ G such that

π(gi) = ei = (0, . . . ,
i
1, . . . , 0)

in (Z/2)k. Let pri denote the projection (Z/2)k → Z/2 onto the ith factor. Then
the homomorphism f : G → B maps to the sum

∑
priπ ⊗ f(gi) in the tensor

product homGr(G,Z/2)⊗Z/2B. In particular, the map δ in homGr(G,H
1(BH,A))

maps to
∑
priπ ⊗ [h 7→ ρ̂(gi)h(ρ̂(gi))

−1] in

homGr(G,Z/2)⊗Z/2 H
1(BH,A) = H1(BG,Z/2)⊗Z/2 H

1(BH,Z/2).

Let γ : H → G denote the homomorphism of Galois groups which is induced by
the inclusion L ⊂ N , and consider the maps

hom(G,H1(BH,A)) ∼= hom(G,Z/2)⊗H1(BH,A)

= H1(BG,Z/2)⊗H1(BH,A)
γ∗⊗1
−−−→ H1(BH,Z/2)⊗H1(BH,A)

∪
−→ H2(BH,A)
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(all tensor products over Z/2). By the above, the image of ρ̃ in the tensor product
H1(BH,Z/2)⊗H1(BH,Z/2) is the sum

∑
priπγ⊗[h 7→ ρ̂(gi)h(ρ̂(gi))

−1]. It follows
from the definition of cup product that the image of this element in H2(BH,A) is
represented by the 2-cocycle (h2, h1) 7→ ρ̂(γh2)h1(ρ̂(γh2))

−1.
The corresponding image of ρ̃ in H2

et(K,A) is a generalized spinor class. The
classical spinor norm

θ : On(K)→ H1
et(K,Z/2) ∼= K∗/(K∗)2

is the map which is uniquely determined by sending each reflection τv in the hyper-
plane orthogonal to an anisotropic vector v (since On(K) is generated by such) to
the element in H1

et(K,Z/2) which is represented by 〈v, v〉 (see [18], for example).
Specifically, one chooses a Galois extension N/K with H = Gal(N/K) such that

〈v, v〉 has a square root
√
〈v, v〉 in N . Then θ(τv) is the element in H1

et(K,Z/2)

which is represented by the H-cocyle h 7→
√
〈v, v〉 · h(

√
〈v, v〉)−1.

The spinor norm coincides with the boundary map δ : On(K) → H1
et(K,Z/2)

associated to the central extension Z/2 ⊂ Pinn → On of sheaves of groups on
(Sch|K)et. It suffices to check this on reflections τv. But τv is the image of the
element represented by v in the Clifford group, under the map r : C∗(n)(K) →

On(K), and so τv is in the image of
√
〈v, v〉

−1
v ∈ Pinn(N) in On(N). Then√

〈v, v〉
−1
v · h(

√
〈v, v〉

−1
v)−1 = h(

√
〈v, v〉)

√
〈v, v〉

−1

in Pinn(K) since h fixes v, and so the image of τv under δ coincides with θ(τv).
Suppose that G = Gal(L/K) once again. The spinor class Sp2(ρ) of a repre-

sentation ρ : G → On(K) is defined to be the image in H2
et(K,Z/2) of the group

homomorphism δρ : G→ H1
et(K,Z/2) under the composition

hom(G,H1
et(K,Z/2)) ∼= hom(G,Z/2)⊗H1

et(K,Z/2) =

H1(BG,Z/2)⊗H1
et(K,Z/2)

can⊗1
−−−−→ H1

et(K,Z/2)⊗H1
et(K,Z/2)

∪
−→ H2

et(K,Z/2).

From what we have shown above, Sp2(ρ) is the canonical image of a 2-cocycle of
the form (h2, h1) 7→ ρ̂(γh2)h1(ρ̂(γh2))

−1 defined on some Galois group H.

There is a corresponding definition of the spinor class Spβ2 (ρ) for a representation

ρ : G → Oβ(K). Spβ2 (ρ) is the element of H2
et(K,Z/2) which is associated to the

composition

G
ρ
−→ Oβ(K)

δ
−→ H1

et(K,Z/2),

where δ is the boundary map coming from the short exact sequence of sheaves

e→ Z/2 ⊂ Pinβ → Oβ → e.
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[11]. M. Karoubi, Relations between algebraic K-theory and hermitian K-theory, J. Pure Applied

Algebra 34 (1984), 259–263.
[12]. O. Laborde, Classes de Stiefel-Whitney en cohomologie étale, Mém. Soc. Math. France 48

(1976), 47–51.
[13]. J.P. May, Simplicial Objects in Algebraic Topology, Van Nostrand, Princeton, 1967.
[14]. A.S. Merkurjev, K2 of fields and the Brauer group, Contemp. Math. 55(II) (1986), 529–546.
[15]. A.S. Merkurjev and A.A. Suslin, K-cohomology of Severi-Brauer varieties and the norm

residue homomorphism, Math. of the USSR-Izvestiya 21 (1983), 307–340.
[16]. J.S. Milne, Etale Cohomology, Princeton University Press, Princeton, 1980.
[17]. J. Milnor, Introduction to Algebraic K-theory, Princeton University Press, Princeton, 1971.
[18]. O.T. O’Meara, Introduction to Quadratic Forms, Springer-Verlag, Berlin, Göttingen, Hei-

delberg, 1963.
[19]. J-P. Serre, Cohomologie Galoisienne, Springer Lecture Notes in Math. 5 (1973).
[20]. J-P. Serre, Local Fields, Springer-Verlag, New York, 1979.
[21]. J-P. Serre, L’invariant de Witt de la forme Tr(x2), Comm. Math. Helv. 59 (1984), 651–676.
[22]. V.P. Snaith, Stiefel-Whitney classes of bilinear forms — a formula of Serre, Can. Bull.

Math. 28(2) (1985), 218–222.
[23]. V.P. Snaith, Topological Methods in Galois Representation Theory, Wiley, New York, 1989.
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