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Introduction

A finite cubical complex K is a subobject K ⊆ �n of a standard n-cell in the
category of cubical sets.

The object �n is represented by the poset P(n) of subsets of the set n =
{1, 2, . . . , n}. This poset is an object of the box category � that defines cubical
sets (see, for example, [2]). The complex K is defined by a list of non-degenerate
cells σ : �k ⊆ �n. These cells can be identified with poset inclusions [A,B] ⊆
P(n) of intervals, where

[A,B] = {F | A ⊆ F ⊆ B}

where A ⊆ B are subsets of n.
As such, K is a list of intervals [A,B] ⊆ P(n) which is closed under taking

subintervals.

Finite cubical complexes are the higher dimensional automata of geometric
concurrency theory. In that setting, the vertices of a cubical complex K model
the states of a concurrent system, and its k-cells represent (where possible) the
simultaneous action of k processors. The cells of the ambient n-cell which are
not in K represent constraints on the system.

The main object of study associated to K in this form of concurrency theory
is its collections of execution paths. These paths are the morphisms of the path
category P (K).

The path category functor is now well known — it is also called the funda-
mental category and denoted by τ1(K) in the higher categories literature [5].

The emphasis in concurrency theory is different, and is completely concerned
with giving exact specifications of path categories P (K) in the geometric setting
described above. Techniques leading to explicit, algorithmic calculations of path
categories form the subject of this paper.

The triangulation |K| of the finite cubical complex K is a finite simplicial
complex that is defined by “putting in the missing edges”. More explicitly,

|�n| = (∆1)×n = BP(n),
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is the nerve of the poset P(n), and |K| is constructed by gluing together such
objects along the incidence relations for the cells of K.

The path category functor X 7→ P (X) for simplicial sets X is most suc-
cinctly defined to be the left adjoint of the nerve functor. The path category
construction for cubical sets is a specialization of this functor, and we can write

P (K) := P (|K|)

for cubical complexes K.
In practice, the objects of P (K) are the vertices of K, and the morphisms

are equivalence classes of paths in 1-cells, modulo commutativity conditions that
are defined by 2-cells.

Similarly, the path category P (L) of a finite simplicial complex L has the
vertices of L as objects, and has morphisms given by equivalence classes of paths
in 1-simplices, modulo commutativity conditions that are defined by 2-simplices.

There is an algorithm for computing P (L) for finite simplicial complexes
L ⊆ ∆n that arises from a 2-category P2(L) that is defined by the simplices of
L, and for which P (L) is the path component category of P2(L) in the sense
that there is a bijection

P (L)(x, y) ∼= π0(P2(L)(x, y))

for all vertices x, y. The 2-category P2(L) is defined in [3].
The algorithm can be summarized as follows:

1) Restrict to the 2-skeleton sk2(L) of L.

2) Find all paths (strings of non-degenerate 1-simplices)

ω : v0
σ1−→ v1

σ2−→ . . .
σk−→ vk

in L.

3) Find all morphisms in the category P2(L)(v, w) for all vertices v < w in
L (ordering in ∆n).

4) Find the sets of path components for all categories P2(L)(v, w).

This algorithm is the path category algorithm. It has been coded in C and
Haskell by M. Misamore — Misamore’s code is published on github.com and
hackage.haskell.org. The original test of concept was written by G. Denham in
Macaulay 2.

Except for the first step, which is due to a basic result for path categories
[3] that also appears in Lemma 2 below, the algorithm is brute force. It works
well for toy examples, but it is easy to generate simple examples which output
very large lists of morphism sets.
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Example 1. The “necklace” L ⊆ ∆40 be the subcomplex

1

��

3

��

39

  
0

@@

// 2

@@

// 4 . . . 38

>>

// 40

(1)

This is 20 copies of the complex ∂∆2 glued together. It is visually obvious that
there are 220 morphisms in P (L)(0, 40), and the text file list of morphisms of
P (L) consumes 2 GB of disk space.

In general, the size of the path category P (L) can grow exponentially with
L.

Extreme examples aside, various complexity reduction methods have been
developed for the path category algorithm, and the purpose of this note is to
give an account of these techniques.

The mathematical results of this paper are quite simple. Most of the state-
ments amount to constructions of subcomplexes K ⊆ L such that the induced
functor P (K)→ P (L) between path categories is fully faithful.

Explicitly, this means that if v, w are vertices of K, then the induced function
P (K)(v, w) → P (L)(v, w) of morphism sets is a bijection. In this case, the
morphism set P (L)(v, w) can be computed in the smaller context given by K,
which can be much simpler computationally.

Most of the time, K is a “full” subcomplex of L. Fullness is a general
criterion for the induced functor P (K) → P (L) to be fully faithful. The con-
cept (appearing in Section 1 of this paper) is used repeatedly, for the method
of deletions of sources and sinks from a simplicial complex in Section 2, and
for deriving Mismore’s method of removing corners from a cubical complex in
Section 3.

Section 4, on refinement of cubical complexes, is the opposite in some sense.
The idea is that one can use the data that constructs a finite cubical complex
K to construct a more complicated object Kα in a way that produces a fully
faithful functor P (K) → P (Kα). One expects that this idea will be useful for
studies of successive approximations of cubical structures.

The last section, Section 5, gives a first, coarse method for parallelizing the
path category algorithm for calculating P (K) for a cubical complex K. All
vertices of K have a size, or cardinality, that they inherit from the ambient cell
�n. The resulting size functor can be used to isolate disjoint full subcomplexes,
say A and B, for which P (A) and P (B) can be computed independently. All
paths u→ v of K which start in A and end in B cross a “frontier subcomplex”
whose cells define a coequalizer picture (see (4)) that allows one to compute
P (K)(u, v) from the path categories P (A) and P (B).

The size functor is also used in Section 4, and it is very likely to have contin-
uing utility. One can think of this functor as a ticking clock, but the relationship
between that “clock” and the higher dimensional automaton concept can be a
bit fraught.
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1 Basic results

The first step of the path category algorithm involves a direct appeal to the
following result:

Lemma 2. The inclusion sk2(X) ⊆ X of the 2-skeleton of a simplicial set X
induces an isomorphism of categories

P (sk2(X))
∼=−→ P (X).

This result follows from the fact that the nerve BC of a small category C is
a 2-coskeleton [1, Lem. 3.5], which means that there is a bijection

hom(X,BC) ∼= hom(sk2(X), BC).

Lemma 2 is a substantial complexity reduction step, in that it means that one
can ignore much of the data for a finite simplicial complex L before computing
P (L).

We now discuss a concept and result that has appeared in connection with
work on homotopy types of categories [4, Lem. 4].

Suppose that L0 ⊆ L is a subcomplex of a finite simplicial complex L. We
say that L0 is a full subcomplex of L if the following conditions hold:

1) L0 is path-closed in L, in the sense that, if there is a path

v = v0 → v1 → · · · → vn = v′

in L between vertices v, v′ of L0, then all vi ∈ L0,

2) if all the vertices of a simplex σ ∈ L are in L0 then the simplex σ is in L0.

Lemma 3. Suppose that L0 is a full subcomplex of L. Then the functor
P (L0)→ P (L) is fully faithful.

Recall that a functor F : C → D is fully faithful if all induced functions

f : C(x, y)→ D(f(x), f(y))

of morphism sets are bijections.
The proof of Lemma 3 follows from the fact that the path category P (L)

is constructed by taking the category freely associated to the graph given by
the 1-skeleton sk1(L), modulo relations defined by 2-simplices of L [3]. The
conditions imply that every path in L between vertices v, w of L0 consists of
simplices which are in L0, and that all 2-simplices which define relations of paths
in L between v, w ∈ L0 are also in L0.

Example 4. The inclusions d0 : ∂∆2 ⊆ Λ3
0 and d3 : ∂∆2 ⊆ Λ3

3 induced by the
respective cofaces ∆2 ⊆ ∆3 both define full subcomplexes.

In the first case, an argument on orientation says that no path in Λ0
0 that

starts and ends in the set of vertices {1, 2, 3} can pass through the vertex 0.
The second case is similar.
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Example 5. Suppose that i ≤ j in n and suppose that L ⊆ ∆n. L[i, j] is the
subcomplex of L such that σ ∈ L[i, j] if and only if all vertices of σ are in the
interval [i, j] of vertices v such that i ≤ v ≤ j. Then L[i, j] is a full subcomplex
of L.

Example 6. Suppose that v ≤ w are vertices of L ⊆ ∆n. Let L(v, w) be the
subcomplex of L consisting of simplices whose vertices appear on a path from
v to w. Then L(v, w) is a full subcomplex of L, and of L[v, w].

2 Sources and sinks

A vertex v is a source of L if there are no non-degenerate 1-simplices u→ v in
L. The vertex z is a sink of L if there are no non-degenerate 1-simplices z → w
in L.

Every finite simplicial complex L ⊂ ∆n has at least one source and one sink.
These are the smallest and largest vertices of L, respectively, in the totally
ordered set of vertices of the ambient simplex ∆n.

Observe that 0 is a source of Λ3
0 and 3 is a sink of Λ3

3. The following result
formalizes the assertions made in Example 4 above:

Lemma 7. Suppose that S is a subset of the vertices of L ⊆ ∆n which consists of
sources and sinks. Let L(−S) be the subcomplex of L which consists of simplices
which do not have a vertex in S. Then L(−S) is a full subcomplex of L.

Proof. Suppose that v < v′ are vertices of L(−S) and suppose that the string
of 1-simplices

v = v0 → v1 → · · · → vn = v′

is a path of L from v to w consisting of non-degenerate 1-simplices. Then no
intermediate object vi, 1 ≤ i ≤ n− 1 can be a source or a sink. It follows that
all vi ∈ L(−S).

A simplex σ of L is in L(−S) if and only if none of its vertices are in S, by
definition.

Example 8. Suppose that L is the complex

v3

v0 v2

==

v4

aa

v1

aa ==

The set S = {v1, v3} consists of sources and sinks, and L(−S) is discrete on the
vertices v0, v2, v4. The isolated point v2 is a source and a sink for L(−S). Let
S′ = {v2}. Then

P (L)(v0, v4) = P (L(−S))(v0, v4) = P (L(−S)(−S′))(v0, v4) = ∅.
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Thus, removing sources and sinks can create new ones. The process of
removing sources and sinks relative to a pair of vertices v, w of L must stop,
since L is finite.

Lemma 9. Suppose that v < w in L and that S consists of sources and sinks
of L which are distinct from v and w. Then

L(−S)(v, w) = L(v, w).

Proof. Suppose that

σ : v = v0 → v1 → · · · → vn = w

is a path from v to w in L. Then each intermediate vertex vi is neither a source
or a sink, and is therefore not in S, so that vi ∈ L(−S). The subcomplex L(−S)
is full so that the path σ is in L(−S).

Thus, every vertex of L(v, w) is a vertex of L(−S)(v, w), so that the two
complexes have the same set of vertices. These are full subcomplexes of L
having the same sets of vertices, so that the inclusion

L(−S)(v, w) ⊆ L(v, w)

is an identity.

Lemma 10. Suppose that v ≤ w in L, where v is a source and w is a sink.
Suppose given complexes

Ln ⊆ Ln−1 ⊆ · · · ⊆ L0 = L

where v, w ∈ Li+1 = Li(−Si) and Si is some set of sources and sinks in Li.
Suppose that Ln has a unique source v and a unique sink w. Then Ln = L(v, w).

Proof. The connected component of v in Ln has a sink, which must be w. All
other components would have sources and sinks, and must therefore be empty.
It follows that Ln is connected.

If Ln has a vertex x other than v, w then there are non-degenerate 1-simplices

a1 → x→ b1.

If a1 is a source then a1 = v. Otherwise, there is a 1-simplex a2 → a1. This
procedure must stop, to produce a path

v = ar → · · · → a2 → a1 → x.

Similarly, there is a path

x→ b1 → b2 → · · · → bs = w.

If Ln has no vertices other than v, w, then Ln consists of the 1-simplex
v → w.

It follows that every vertex of Ln is on a path from v to w, so that Ln(v, w) =
Ln. Then Lemma 9 implies that Ln(v, w) = L(v, w), so that Ln = L(v, w).
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Suppose that v ≤ w in L, and start with L0 = L[v, w]. Let S0 be the set of
all sources and sinks of L0, except for the elements v, w, and set L1 = L0(−S0).
Repeat this procedure inductively to produce a descending chain of complexes

Ln ⊆ Ln−1 ⊆ · · · ⊆ L0 = L[v, w],

with Sn = ∅. Then
Ln = L[v, w](v, w) = L(v, w),

by Lemma 10.
In other words, starting with the full subcomplex L[v, w] we can succes-

sively delete sources and sinks to produce L(v, w), which is the minimal full
subcomplex of L that computes P (L)(v, w).

3 Corners

Suppose that i : K ⊆ �n is a finite cubical complex. The inclusion i induces a
functor

i∗ : P (K)→ P (�n) = P(n).

There is a poset map t : P(n) → N that is defined by cardinality, in the sense
that

F 7→ t(F ) = |F |

for all subsets F of n. The composite functor

P (K)
i∗−→ P(n)

t−→ N

will also be denoted by t.
One thinks of the functor t as a sort of time parameter for K. This functor

also behaves like a total degree.

Suppose that x is a vertex of the finite cubical complex K. Say that x is a
corner if it belongs to only one maximal cell of K.

The following result was proved by M. Misamore in [6]. The proof that is
given here is quite different.

Lemma 11. Suppose that x is a corner of K, and let Kx be the subcomplex of
cells which do not have x as a vertex. Then the functor

P (Kx)→ P (K)

is fully faithful.

Proof. Suppose that σ is the unique top cell containing x.
If x is either maximal or minimal in σ, then x is either a sink or a source,

respectively, by the uniqueness of σ. In that case, the functor P (Kx) → P (K)
is fully faithful, by Lemma 7.
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Suppose that x is neither maximal nor minimal in σ, and suppose that P is
a non-degenerate path in K which passes through x, as in

P : u = u0 → · · · → un = v,

where u, v ∈ Kx, and ui = x. Then i 6= 0, n, and there is a unique i such
that ui = x. In effect, since P is non-degenerate, it induces a system of proper
inequalities

|u| = |u0| < |u1| < · · · < |x| < · · · < |un| = |v|,

in which the number |x| can only appear once.
Then ui−1 and ui+1 are in Kx, and both 1-simplices ui−1 → x and x→ ui+1

are in σ since σ is the unique maximal cell that contains x.
Write σ = [A,B].
As subsets of B ⊆ n, x = ui−1 ∪ {a} and ui+1 = x ∪ {b}, where a and b are

distinct. The resulting 2-cell

ui−1 //

�� %%

x

��
ui−1 ∪ {b} // ui+1

(2)

in σ (hence in K) defines a morphism ui−1 → ui in P (Kx). Define ψ(P ) to be
the composite of the morphisms

u = u0 → · · · → ui−1 → ui+1 → · · · → un = v

in P (Kx)(u, v).
The 2-cell of the picture (2) is uniquely determined by the path P , as is its

image ψ(P ).
If Q : u → v is a non-degenerate path which does not pass through x,

let ψ(Q) be the image of Q in P (Kx)(u, v). We have therefore determined a
function

ψ : {paths u→ v} → P (Kx)(u, v).

If there is a 2-cell between paths u → v in K, then the corresponding images
under ψ coincide. We therefore have an induced function

ψ∗ : P (K)(u, v)→ P (Kx)(u, v).

The composite

P (Kx)(u, v)→ P (K)(u, v)
ψ∗−−→ P (Kx)(u, v)

is the identity by construction. The construction of ψ(P ) for paths P passing
through x shows that the function

P (Kx)(u, v)→ P (K)(u, v)

is surjective, and is therefore a bijection.
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Suppose that x ⊆ n. Then x is an object of the poset P(n) and is a vertex
of the simplicial set BP(n).

Let �nx be the cubical subcomplex of �n consisting of cells which do not
have x as a vertex.

Let Dx be the subcomplex of BP(n) consisting of those simplices which do
not have x as a vertex. Dx is the nerve BP(n)x of the full subcategory of P(n)
with objects not equal to x. In particular, the functor P (Dx)→ P (�n) is fully
faithful.

The isomorphism |�n| ∼= BP(n) restricts to a monomorphism of simplicial
complexes

γ : |�nx | → Dx.

Observe that if x is neither the minimal element ∅ nor maximal element n
of P(n), then ∅ ⊆ n is a 1-simplex of Dx which cannot be in the image of the
map γ.

If x is either the maximal or minimal element of P(n), then the map γ is an
isomorphism. In effect, if x = n, then a simplex F0 ⊆ · · · ⊆ Fk is in Dx if and
only if Fk 6= n, and in this case it is in the image of the cell |[∅, Fk]|. The case
x = ∅ is argued similarly.

Corollary 12. The functor P (�nx) → P (�n) is fully faithful, and the induced
functor

γ∗ : P (|�nx |)→ P (Dx)

is an isomorphism of path categories.

Proof. The functor
i∗ : P (�nx)→ P (�n)

is fully faithful by Lemma 11.
The functor γ∗ is bijective on vertices, and is also fully faithful by the pre-

vious paragraph. It is therefore an isomorphism of categories as claimed.

Example 13. The Swiss flag (2-cells indicated by double arrows, centre region
is empty)

• //

�#
• // • //

�#
•

• //

OO

∗

OO

∗

OO

// •

OO

• //

OO

�#
∗ ∗ //

�#
•

OO

• //

OO

• //

OO

• //

OO

•

OO

has six corners, one sink, and one source, aside from the initial and terminal
vertices. Remove the four “inner” corners to show that there are two morphisms
from the initial vertex to the terminal vertex in the corresponding path category.
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4 Refinement

Suppose that α : P(m)→ P(n) is a poset monomorphism that preserves meets
and joins.

Every interval [A,B] in P(m) determines an interval [α(A), α(B)] in P(n),
and α restricts to a poset monomorphism α : [A,B] → [α(A), α(B)]. The
assignment

[A,B] 7→ [α(A), α(B)]

preserves inclusion relations between intervals, and preserves meets and joins of
intervals.

The cubical subcomplex of �n that is generated by the intervals [α(A), α(B)]
associated to the intervals [A,B] of K is denoted by Kα, and there is a simplicial
set map α∗ : |K| → |Kα| that makes the diagram

|K|

��

α∗ // |Kα|

��
BP(m)

α
// BP(n)

commute. The simplicial set map α∗ is induced by the restricted poset mor-
phisms α : [A,B] → [α(A), α(B)]. These poset morphisms are not face inclu-
sions in general.

Suppose that K ⊆ �m and L ⊆ �n are higher dimensional automata. We
say that L is a refinement of K if there is a poset monomorphism α : P(m)→
P(n) that preserves meets and joins, and an inclusion i : Kα ⊆ L of cubical
subcomplexes of �n. In this case, there is a commutative diagram of simplicial
set maps

|K|

��

α∗ // |Kα|

��

i∗ // |L|

||
BP(m)

α
// BP(n)

Lemma 14. Suppose that α : P(m) → P(n) is a poset monomorphism which
preserves meets and joins, and suppose that K ⊆ �r is a cubical subcomplex.

Then the induced functor α∗ : P (K)→ P (Kα) is fully faithful.

Proof. Suppose that F is a vertex of Kα. Then F ⊆ [α(A), α(B)] for some
interval [A,B] of K, so there is a vertex B of K such that F ⊆ α(B). There is
a minimal such B, call it BF , since α preserves meets.

If F = α(C) for some C, then BF = C, since α is a monomorphism. In
effect, α(C) ≤ α(BF ) ≤ α(C), so BF = C in this case.

Suppose that
ω : α(A)→ F1 → · · · → Fk → α(B)
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is a path in Kα. Then each Fi → Fi+1 is in an interval [α(Ci), α(Di)], so that
the diagram of inclusions

Fi //

�� %%

Fi+1

��
α(BFi) // α(BFi+1

)

is in that same interval. The inclusion α(BFi) → α(BFi+1
) is the image of an

inclusion BFi → BFi+1
by the minimality of BFi . It follows that the diagram

α(A) //

$$
1

��

F1

##

//

��

. . . //

##

Fk //

�� $$

α(B)

1

��
α(A) // α(BF1

) // . . . // α(BFk) // α(B)

(3)

defines a homotopy in |Kα| from the path ω to the path along the bottom,
which path is in the image of the function P (K)(A,B)→ P (Kα)(α(A), α(B)),
because all displayed simplices are in |Kα|.

Suppose given a commutative diagram

α(A) // . . . // Fi //

��

Fi+1
// . . . // α(B)

F

==

where ω is the path along the top, and the displayed triangle of inclusions defines
a 2-simplex σ of |Kα|. This 2-simplex is in some interval [α(C), α(D)], and the
corresponding diagram

α(BFi)
//

$$

α(BFi+1
)

α(BF )

99

is also in the interval [α(C), α(D)], by minimality. This simplex is the image of
a 2-simplex of |K|.

We have therefore defined a function

s : P (Kα(α(A), α(B))→ P (K)(A,B)

such that the composite s · α∗ is the identity on P (K)(A,B). The construction
of the function s and the existence of the homotopies (3) together imply that
the function

α∗ : P (K)(A,B)→ P (Kα)(α(A), α(B))

is surjective. It follows that the function α∗ is a bijection, as required.
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5 Frontier subcomplex

Suppose that i : K ⊆ �n is a finite cubical complex. Recall from Section 3
that the assignment F 7→ |F | =: t(F ) that is defined by cardinality determines
a poset morphism P(n)→ N, and hence a composite functor

t : P (K)
i∗−→ P(n)

t−→ N.

Observe that if v → w is a non-degenerate 1-simplex of |K|, then there is a
strict containment relation v ⊂ w as subsets of n, so that t(v) < t(w). A more
precise version of this statement applies to all 1-cells v → w of K: t(w) = t(v)+1
for such a 1-cell.

The functor t defines full subcomplexes of the complex K and its triangu-
lation |K|. In particular, if r < s in N, let K(r, s) be the subcomplex of cells
whose vertices F satisfy r ≤ t(F ) ≤ s, and let |K|(r, s) be the subcomplex of
|K| whose simplices have vertices F with t(f) in the same range.

Then we have the following:

Lemma 15. 1) |K|(r, s) is a full subcomplex of |K|.

2) The canonical map
|K(r, s)| → |K|(r, s)

is an isomorphism of simplicial complexes.

Proof. For statement 1), suppose that v, w are vertices of |K|(r, x) and that

v = v0 → v1 → · · · → vn = w

is a non-degenerate path from v to w in |K|. Then

r ≤ t(v) = t(v0) < t(v1) < · · · < t(vn) = t(w) ≤ s,

so that all vertices vi are in |K|(r, s). The higher simplex condition for fullness
of |K|(r, s) is automatic from the definition.

The canonical inclusion of statement 2) arises from the observation that
K(r, s) is a union of cells of K, and the induced inclusion |K(r, s)| ⊆ |K| factors
through |K|(r, s).

To prove statement 2), it is enough to show that the inclusion

|K(r, s)| → |K|(r, s)

is surjective on non-degenerate simplices. If σ is a simplex of |K|(r, s), it is in
the image of the map |�k| → |K| which is induced by a non-degenerate cell of
K. The simplex σ has the form

F0 ≤ F1 ≤ · · · ≤ Fp

with
r ≤ |F0| ≤ |F1| ≤ · · · ≤ |Fp| ≤ s,

and it follows that the interval [F0, Fp] defines a cell of K(r, s). The simplex σ
is therefore in |K(r, s)|.
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Suppose that K ⊆ �n is a finite cubical complex such that sk2(K) = K,
and pick M such that 0 < M < n. Let A = K(0,M) and B = K(M + 1, n).
Then |A| and |B| are full subcomplexes of |K| by Lemma 15.

Every path
v0 → v1 → · · · → vk

in K has a number r (which could be −1 or k) such that vi ∈ A for i ≤ r and
vi ∈ B for i ≥ r + 1. The frontier subcomplex L is generated by 1-cells and
2-cells which have vertices in A and B.

Suppose that u ∈ A and v ∈ B. Suppose that the 1-cell σ : x→ y has x ∈ A
and y ∈ B. Then composition with σ defines a map

σ∗ : P (A)(u, x)× P (B)(y, v)→ P (K)(u, v).

Suppose that ω : ∆1 ×∆1 → K is defined by 2-simplices ω0 and ω1 such that
d1ω0 = d1ω1 and d2(ω0) ∈ A and d0(ω1) ∈ B. One of the 2-simplices ω0 or ω1

could be degenerate.
Consider the picture:

σ(0, 0)
α0 //

A

�� ��

σ(1, 0)

B

��

q0

""
u

p0
<<

p1 ""

v

σ(0, 1)
α1

// σ(1, 1)

q1

<<

There are induced maps

ω0 : P (A)(u, σ(0, 0))× P (B)(σ(1, 1), v)→ P (A)(u, σ(0, 0))× P (B)(σ(1, 0), v)

and

ω0 : P (A)(u, σ(0, 0))× P (B)(σ(1, 1), v)→ P (A)(u, σ(0, 1))× P (B)(σ(1, 1), v)

These maps define the displayed parallel pair of arrows in the diagram⊔
ω as above

P (A)(u, σ(0, 0))× P (B)(σ(1, 1), v) ⇒
⊔

x
σ−→y ∈ L

P (A)(u, x)× P (B)(y, v)

→ P (K)(u, v).
(4)

Lemma 16. The diagram (4) is a coequalizer.

The proof of Lemma 16 is essentially by inspection.
In practical terms, Lemma 16 says that one can compute P (K) by first

computing P (A) and P (B) (in parallel), and then by stitching these calculations
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together with the coequalizer (4). This coequalizer defines P (K)(u, v) as a set
of equivalence classes on a set that we’ve computed, namely⊔

x
σ−→y ∈ L

P (A)(u, x)× P (B)(y, v),

for an equivalence relation that is defined by the parallel pair of functions in the
coequalizer picture (4).
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