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Introduction

The purpose of this paper is to develop analogs of the E2 model structures of
Dwyer, Kan and Stover for categories related to pointed bisimplicial presheaves
and simplicial presheaves of spectra. The development is by analogy with and
builds on the work of Dwyer, Kan and Stover [1], [2], along with later work of
Goerss and Hopkins [3].

The technical challenge met in the present paper is that not all objects in
the categories under consideration are fibrant. This is overcome with the intro-
duction of a bounded cofibration approximation technique which builds on an
approach to constructing localizations that appears in [4]. The results proven
here are completely combinatorial and apply, in particular, to pointed bisimpli-
cial presheaves, as well as simplicial spectra, simplicial symmetric spectra and
their motivic analogs.

The first section of this paper gives a list of general results which hold for
simplicial objects in a proper closed simplicial model category M. The basic
notions of A-fibration and A-equivalence are given there, where A is a small
diagram consisting of homotopy cogroup objects Ai of M. Generally a map
g : X → Y of simplicial objects of M is defined to be an A-equivalence if and
only if the induced map of simplicial groups

g∗ : [Ai ∧ Sj , X]→ [Ai ∧ Sj , Y ] (1)

is a weak equivalence for suspensions Ai ∧ Sj of all homotopy cogroup objects
Ai in the diagram A.

These definitions were introduced by Goerss and Hopkins [3]. In the special
case where M is the category of pointed spaces and the diagram A is the
list of spheres, the A-equivalences and the A-fibrations are respectively the
E2-equivalences and E2-fibrations of Dwyer, Kan and Stover [1]. In general,
following [3], the diagram A is not required to be closed under suspension.

The A-structure is constructed within the Reedy model structure for the
category sM of simplicial objects in M; in particular a map g : X → Y is said
to be an A-fibration if g is a Reedy fibration and all simplicial group maps g∗
displayed above are fibrations of simplicial groups.
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The A-equivalences and A-fibrations define the model structures which ap-
pear in this paper, but the demonstration of the full list of closed model axioms
requires extra structure in the underlying category M. It is a general result
(Lemma 6) that a Reedy fibration g : X → Y is an A-fibration if and only if it
has the right lifting property with respect to the maps

Λnk ⊗ (Ai ∧ Sj)→ ∆n ⊗ (Ai ∧ Sj)

of simplicial objects which arise from tensoring externally with the standard
anodyne inclusions Λnk ⊂ ∆n, provided that Y is Reedy fibrant. Going further
(ie. removing the condition that Y is Reedy fibrant) requires a technique for
varying the Ai up to weak equivalence in a controlled way, so that A-fibrations
can still be described by a right lifting property with respect to some set of
maps. In all of the examples studied in this paper there is an ambient notion
of cardinality, and the control arises from the imposition of cardinality bounds
within weak equivalence classes. This is the bounded cofibration approximation
technique referred to above, and appears here as Lemma 14 for pointed simplicial
presheaves in Section 2, Lemma 20 for presheaves of spectra in Section 3, and
Lemma 29 for T -spectra (representing the motivic stable category) in Section
4. All of these results follow from the bounded cofibration condition, which
is a feature of localization theory for simplicial presheaves, and is part of the
structure of all of the respective underlying model categories [4], [11], [12].

The main results of this paper assert the existence of A-model structures
incorporating the A-fibrations and A-equivalences as defined above for simpli-
cial objects in ordinary and f -local categories of pointed simplicial presheaves
(Theorem 16), presheaves of spectra (Theorem 22), and the motivic stable cat-
egory (Theorem 32). It is shown that the A-model structures for presheaves of
spectra and T -spectra induce A-structures on the corresponding categories of
symmetric spectrum objects (Theorem 24, Theorem 34), such that the under-
lying Quillen equivalences relating symmetric spectrum and spectrum objects
induce Quillen equivalences on the respective A-model structures (Theorem 25,
Theorem 35).

Theorem 16 specializes to an A-model structure for pointed bisimplicial sets,
and to an A-model structure for simplicial objects in the unstable motivic cat-
egory. Theorem 22, Theorem 24 and Theorem 25, respectively, specialize to
A-model structures for simplicial spectra and simplicial symmetric spectra, and
give a Quillen equivalence relating them.

The moral seems to be that any proper closed simplicial model category
which can be represented in the category of sets and satisfies a bounded cofibra-
tion condition admits E2-style model structures on its corresponding category
of simplicial objects.
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1 Generalities

Throughout this sectionM will denote a proper closed simplicial model category
having an object ∗ which is both initial and terminal. The basic examples of such
categories M for the purposes of this paper will include the category S∗(C) of
pointed simplicial presheaves and the category Spt(C) of presheaves of spectra
on a small Grothendieck site C. These examples specialize, respectively, to
pointed simplicial sets and spectra within the Bousfield-Friedlander model for
the stable category.

A homotopy cogroup object inM is a cofibrant object A with augmentation
ε : A → ∗ such that the set of morphisms [A,X] in the homotopy category
Ho(M) naturally has the structure of a group, with identity e represented by
the composite

A
ε−→ ∗ → X.

Every presheaf of spectra is a homotopy cogroup object for the category of
presheaves of spectra. In general, if A is a homotopy cogroup object for the
category of pointed simplicial sets (eg. A = Sn), then the pointed simplicial
presheaf LUA given by applying the left adjoint LU to the U -sections functor
is a homotopy cogroup object for pointed simplicial presheaves.

Since A is a cogroup object, and in particular has augmentation ε : A → ∗,
there is an isomorphism of simplicial groups

π1hom(A,X) ∼= [A ∧ S1, X]

if X is a fibrant object of M. Here, A ∧ S1 is defined by the pushout square

A⊗ ∂∆1
ε∗ //

��

∗

��
A⊗∆1 // A ∧ S1

where the map labelled ε∗ is the composite

A⊗ ∂∆1 ∼= A ∨A (ε,ε)−−−→ ∗.

Then A ∧ S1 is a cogroup object with augmentation induced by the composite

A⊗∆1 → A⊗∆0 ∼= A
ε−→ ∗.

Continuing inductively, we see that there is an isomorphism

πjhom(A,X) ∼= [A ∧ S1 ∧ · · · ∧ S1, X],

where there are j copies of S1 appearing as smash factors, and

A ∧ Sj = A ∧ S1 ∧ · · · ∧ S1

is a cogroup object.
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Lemma 1. Suppose given a pullback diagram

Z ×Y X
prR //

prL

��

X

p

��
Z // Y

in which p is a fibration, and let A be a homotopy cogroup object inM. Suppose
that i : F → X is the inclusion of the fibre of p over the map ∗ → Y , and
suppose that the homomorphism i∗ : [A,F ]→ [A,X] is a monomorphism. Then
the canonical homomorphism

pr∗ : [A,Z ×Y X]→ [A,Z]×[A,Y ] [A,X]

is an isomorphism.

Proof. We can assume that Z, X and Y are fibrant since M is proper. The
map pr∗ is surjective by the homotopy extension property. Suppose that [α] is
in the kernel of pr∗. Then prL∗[α] = e so that [α] lifts to an element [β] ∈ [A,F ].
But prR∗[α] = e so that i∗[β] = prR∗[α] = e, and so [β] = e. It follows that
[α] = e.

Recall [5, VII.2] that the category sM of simplicial objects inM has a Reedy
model structure. In particular, a Reedy weak equivalence is a map f : X → Y
such that all maps Xn → Yn are weak equivalences of M, the map p : Z → W
is a Reedy fibration if all induced maps

Zn →Wn ×MnW MnZ

are fibrations of M for n ≥ 0, and Reedy cofibrations are defined by a left
lifting property. If Zp = Zp,∗, then the matching space MnZ is the simplicial
set specified by

MnZ = coskn−1 Zn.

for n ≥ 0 and M−1Z = ∗. In other words, MnZ is a piece of a coskeleton
constructed in horizontal degrees. If f is a Reedy fibration, then all maps
f : Xn → Yn, n ≥ 0, are fibrations of M.

In general, a map i : U → V of simplicial objects inM is a Reedy cofibration
if and only if all maps

LnV ∪LnU Un+1 → Vn+1

are cofibrations ofM. Here, LnU = skn Un. If i : U → V is a Reedy cofibration
of sM, then all maps i : Un → Vn, n ≥ 0, are cofibrations of M.

Recall that if K is a finite simplicial set and X is a simplicial object in M
then MKX is the object of M defined by

MKX = lim←−
∆n→K

Xn.
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It is a standard observation that there are natural isomorphisms M∆nX ∼= Xn

and M∂∆nX = MnX for all X ∈ sM.
Under the stated assumption that the underlying model category M is

proper, a revised statement of Lemma 1.8 in [3] can read as follows:

Lemma 2. Consider a diagram in sM

X
iX //

q

��

X ′

q′

��
Y

iY
// Y ′

where q and q′ are Reedy fibrations and iX and iY are Reedy weak equivalences.
Then for any cofibrant A ∈M and any K ⊂ ∂∆n the induced map

Yn ×MKY MKX → Y ′n ×MKY ′ MKX
′

is a weak equivalence of M.

Proof. If K = ∅ the map is Yn → Y ′n, which is a weak equivalence by the
assumption that iY is a Reedy weak equivalence. Suppose that L is obtained
by attaching a non-degnerate k-simplex and we know that the result is true
for all complexes K of dimension at most k and having fewer non-degenerate
k-simplices. Then the inductive assumption implies that a comparison of the
fibre square

Yn ×MLY MLX //

��

Xk

d

��
Yn ×MKY MKX // Yk ×MkY MkX

with the corresponding square for q′ induces a weak equivalence

Yn ×MLY MLX → Y ′n ×MLY ′ MLX
′,

since the respective maps d are fibrations and M is proper.

Suppose given integers s0, . . . , sr such that 0 ≤ s0 < · · · < sr ≤ n, and let
∆n〈s0, . . . , sr〉 be the subcomplex of ∆n which is generated by the simplices
dsj ιn. Then [5, p.218] there are pushout diagrams

∆n−1〈s0, . . . , sr−1〉
dsr−1
∗ //

��

∆n〈s0, . . . , sr−1〉

��
∆n−1

dsr
// ∆n〈s0, . . . , sr〉

(2)
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The map dsr−1
∗ is induced by applying the coface dsr−1 to all generating sim-

plices of ∆n−1〈s0, . . . , sr−1〉.
Write

Mn
〈s0,...sr〉X = M∆n〈s0,...,sr〉X

for an object X of sM.

Lemma 3. Suppose that X is a Reedy fibrant object of sM, and that that r < n.
Suppose that A is a homotopy cogroup object of M.

1) There are isomorphisms

πjhom(A,Mn
〈s0,...,sr〉X) ∼= Mn

〈s0,...,sr〉πjhom(A,X), j ≥ 0.

2) Suppose that there is a pushout diagram of finite simplicial sets

∆n〈s0, . . . , sr〉 //

��

K

��
∆n // L

Then the group homomorphism

πjhom(A,MLX)

��
πjhom(A,MKX)×πjhom(A,Mn

〈s0,...,sr〉
X) πjhom(A,X)

is an isomorphism for j ≥ 0.

Remark 4. The assumption that r < n in the statement of Lemma 3 means
that there is at least one face missing from ∆n〈s0, . . . , sr〉 ⊂ ∂∆n. One can show
inductively (using the pushouts (2)), under this assumption, that the inclusion

∆n〈s0, . . . , sr〉 ⊂ ∆n

is a trivial cofibration.

Proof of Lemma 3. Inductively (in r), the canonical map

πjhom(A,Mn−1
〈s0,...,sr−1〉X)→Mn−1

〈s0,...sr−1〉πjhom(A,X)

is an isomorphism. Also, πjhom(A,X) is a simplicial group and r− 1 < n− 1,
so the restriction map

πjhom(A,Xn−1)→Mn−1
〈s0,...,sr−1〉πjhom(A,X)

is surjective for all p ≥ 0. Thus, if F is the fibre of the map Xn−1 →
Mn−1
〈s0,...,sr−1〉X, the homomorphism

πjhom(A,F )→ πjhom(A,Xn−1)
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is a monomorphism for j ≥ 0. It therefore follows from Lemma 1 that the
homomorphism

πjhom(A,Mn
〈s0,...,sr〉X)→Mn

〈s0,...sr〉πjhom(A,X)

is an isomorphism for j ≥ 0, giving statement 1).
The second statement is a consequence of the first, along with Lemma 1. In

effect, there is a pullback square

MLX //

��

Xn

��
MKX // Mn

〈s0,...,sr〉X

Statement 1) implies that the group homomorphisms

πjhom(A,Xn)→ πjhom(A,Mn
〈s0,...,sr〉X)

are surjective in all degrees, so that all morphisms

πjhom(A,F )→ πjhom(A,Xn)

are monomorphisms.

Lemma 3 also implies Lemma 1.11 of [3], which effectively says (under the
assumptions that A is a homotopy cogroup object and X is Reedy fibrant) that
the homomorphism

πjhom(A,MKX)→MKπjhom(A,X)

is an isomorphism if K is a finite simplicial set which is constructed by a finite
string of anodyne extensions. We shall mostly be interested in the following
special case:

Corollary 5. Suppose that A is a homotopy cogroup object of M and that X
is a Reedy fibrant object of sM. Then the canonical group homomorphism

πjhom(A,Mk
nX)→Mk

nπjhom(A,X)

is an isomorphism for j ≥ 0.

A fibrant replacement f ′ for a map f : X → Y in a closed model category
is a commutative diagram

X //

f

��

X ′

f ′

��
Y // Y ′

in which the horizontal maps are weak equivalences, and X ′ and Y ′ are fibrant.
We shall repeatedly use fibrant replacements within Reedy model structures,
and refer to them as Reedy fibrant replacements.
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Suppose that I is a small category, and that A : I →M is a functor taking
values in cogroup objects of M with i 7→ A(i) = Ai.

Say that a map f : X → Y of sM is an A-fibration if f is a Reedy fibration,
and there is some Reedy fibrant replacement f ′ such that the induced map

πjhom(Ai, X ′)→ πjhom(Ai, Y ′) (3)

is a fibration of simplicial groups for all i ∈ I and all j ≥ 0. It’s an exercise
to show that there is some Reedy fibrant replacement f ′ such that the above
map is a fibration of simplicial groups if and only if the corresponding map
is a fibration of simplicial groups for any Reedy fibrant replacement f ′. The
map f is said to be an A-equivalence if there is a Reedy fibrant replacement f ′

such that the induced map (3) is a weak equivalence of simplicial groups. An
A-cofibration is a map of sM which has the left lifting property with respect
to all maps which are simultaneously A-fibrations and A-equivalences.

It’s an observation that every Reedy weak equivalence is an A-equivalence.
In particular, every trivial Reedy cofibration is a trivial A-cofibration.

One can also see that a Reedy fibration f : X → Y is an A-fibration (re-
spectively A-equivalence) if and only if the simplicial group maps

[Ai ∧ Sj , X]→ [Ai ∧ Sj , Y ]

are fibrations (respectively weak equivalences) for all objects i of I and all j ≥ 0.
It follows in particular that every trivial Reedy fibration is an A-trivial fibration.

Lemma 6. Suppose that f : X → Y is a Reedy fibration and that Y is Reedy
fibrant. Then

1) f is an A-fibration if and only if it has the right lifting property with respect
to all maps

Λnk ⊗ (Ai ∧ Sj)→ ∆n ⊗ (Ai ∧ Sj)

2) f is an A-fibration and an A-equivalence if and only if it has the right
lifting property with respect to all maps

∂∆n ⊗ (Ai ∧ Sj)→ ∆n ⊗ (Ai ∧ Sj)

Proof. The Reedy fibration f : X → Y is an A-fibration if and only if all group
homomorphisms

[Ai ∧ Sj , Xn]→ [Ai ∧ Sj , Yn]×Mk
n [Ai∧Sj ,Y ] M

k
n [Ai ∧ Sj , X]

are surjective.
The map f has the right lifting property with respect to all maps

Λnk ⊗ (Ai ∧ Sj)→ ∆n ⊗ (Ai ∧ Sj)

if and only if the maps

[Ai ∧ Sj , Xn]→ [Ai ∧ Sj , Yn ×Mk
nY

Mk
nX]
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are surjective. In effect, f has the stated lifting property if and only if the
fibrations

hom(Ai ∧ Sj , Xn)→ hom(Ai ∧ Sj , Yn ×Mk
nY

Mk
nX)

are surjective maps of Kan complexes. The map Xn → Yn ×Mk
nY

Mk
nX is a

fibration by Lemma 1.7 of [3], and X is Reedy fibrant so that all objects MKX
and in particular the objects Mk

nX are fibrant — again by Lemma 1.7 of [3].
Thus to show that f is an A-fibration if and only if it has the advertised

lifting property, it suffices to show that the canonical group homomorphisms

[Ai ∧ Sj , Yn ×Mk
nY

Mk
nX]→ [Ai ∧ Sj , Yn]×Mk

n [Ai∧Sj ,Y ] M
k
n [Ai ∧ Sj , X]

are isomorphisms. This follows from the comparison of long exact sequences
arising from the comparison of fibrations

Yn ×Mk
nY

Mk
nX //

��

Mk
nX

��
Yn // Mk

nY

and the isomorphisms

πjhom(Ai,Mk
nY ) ∼= Mk

nπjhom(Ai, Y )

of Corollary 5 and Lemma 1.
The proof of part 2) is similar, and ultimately depends on showing that the

comparison homomorphisms

[Ai ∧ Sj , Yn ×MnY MnX]→ [Ai ∧ Sj , Yn]×Mn[Ai∧Sj ,Y ] Mn[Ai ∧ Sj , X] (4)

are isomorphisms under the assumption that either f is an A-fibration and an
A-equivalence, or that f satisfies the lifting property. Observe that if n = 0
there is nothing to prove.

One can check directly that there are pullback squares

Yn+1 ×Mn+1Y Mn+1X //

��

Xn

��
Yn+1 ×M0

n+1Y
M0
n+1X // Yn ×MnY MnX

(5)

for n ≥ 0, where the bottom horizontal map is defined by

(y, (x1, . . . , xn+1)) 7→ (d0y, (d0x1, . . . , d0xn+1)).

If all homomorphisms [Ai∧Sj , Yn]→ [Ai∧Sj , Yn×MnY MnX] are surjective
(ie. if f satisfies the lifting property), then one uses the pullback squares (5),
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part 1) and Lemma 1 to show inductively that the maps (4) are isomorphisms.
It follows that all homomorphisms

[Ai ∧ Sj , Xn]→ [Ai ∧ Sj , Yn]×Mn[Ai∧Sj ,Y ] Mn[Ai ∧ Sj , X]

are surjective, so that f is an A-fibration and an A-equivalence.
Conversely, assume that all homomorphisms

[Ai ∧ Sj , Xn]→ [Ai ∧ Sj , Yn]×Mn[Ai∧Sj ,Y ] Mn[Ai ∧ Sj , X]

are surjective. Assume inductively that the morphism

[Ai ∧ Sj , Yn ×MnY MnX]→ [Ai ∧ Sj , Yn]×Mn[Ai∧Sj ,Y ] Mn[Ai ∧ Sj , X]

is an isomorphism for all j ≥ 0. Then the map

[Ai ∧ Sj , Xn]→ [Ai ∧ Sj , Yn ×MnY MnX]

is surjective for all j ≥ 0, and so all squares

[Ai ∧ Sj , Yn+1 ×Mn+1Y Mn+1X] //

��

[Ai ∧ Sj , Xn]

��
[Ai ∧ Sj , Yn+1 ×M0

n+1Y
M0
n+1X] // [Ai ∧ Sj , Yn ×MnY MnX]

are pullbacks in the category of abelian groups by Lemma 1. It follows that the
maps

→
[Ai ∧ Sj , Yn+1]×Mn+1[Ai∧Sj ,Y ] Mn+1[Ai ∧ Sj , X]

are isomorphisms. All homomorphisms

[Ai ∧ Sj , Xn]→ [Ai ∧ Sj , Yn ×MnY MnX]

are therefore surjective, by induction on n.

Corollary 7. Every Reedy fibrant object X is an A-fibrant object of sM.

Recall that for a simplicial object X inM and a simplicial set K, the object
MKX ∈M is defined by

MKX = lim−→
∆m→K

Xm.

Recall further that there is a natural bijection

hom(K ⊗A,X) ∼= hom(A,MKX).

There is a simplicial object MKX which is specified in horizontal degree n by

MKXn = MK×∆nX,
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and there is a natural bijection

hom(L⊗A,MKX) ∼= hom((K × L)⊗A,X).

An adjointness argument then gives the following:

Corollary 8. Suppose that p : X → Y is an A-fibration, Y is Reedy fibrant,
and that i : K ⊂ L is an inclusion of finite simplicial sets. Then the map

MLX →MLY ×MKY MKX

is an A-fibration. which is an A-equivalence if p is an A-equivalence or i is a
weak equivalence of simplicial sets.

Corollary 9. Suppose that X is Reedy fibrant. Then the inclusion ∂∆1 ⊂ ∆1

induces a commutative diagram

M∆1X

(p0,p1)

��
X

s

;;wwwwwwwww

∆
// X ×X

in which the map (p0, p1) is an A-fibration and the maps p0 and p1 are trivial
A-fibrations.

We shall also need the following general facts in later sections.

Lemma 10. Suppose that p : X → Y is a fibration and that

X
iX //

p

��

X̃

q

��
Y

d
// Ỹ

is a fibrant replacement in some proper closed model category, where q is a
fibration. If q has the right lifting property with respect to a cofibration i : A→
B, then so does p.

Proof. Consider the lifting problem

A
f //

i

��

X

p

��
B g

//

>>

Y

In order to solve this problem it suffices to show that the dotted arrow exists in
the diagram

A
f //

i

��

X
iX // X̃

q

��
B g

//

77

Y
iY
// Ỹ
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In effect, the canonical map θ : X → Y ×Ỹ X̃ is a weak equivalence since the
model structure is proper. Factor θ as

X
ω //

θ ##GGGGGGGGG Z

π

��
Y ×Ỹ X̃

where ω is a trivial cofibration and π is a trivial cofibration. Then the indicated
lift induces a lift σ : C → Z. There is a diagram

X
1X //

ω

��

X

p

��
Z q∗π

//

r

>>}}}}}}}
Y

and the composite r · σ is the desired lift.

Lemma 11. Suppose that p : Z →W is a fibration and that W is a fibrant object
in some closed model category with initial object ∅. Suppose that f : A→ B is a
weak equivalence of cofibrant objects. Then p has the right lifting property with
respect to ∅ → A if and only if it has the right lifting property with respect to
∅ → B.

Proof. Precomposition with f defines bijections

[B,W ] ∼= [A,W ], [B,Z] ∼= [A,Z]

and all sets of morphisms in the homotopy category coincide with homotopy
classes of maps since A and B are cofibrant and Z and W are fibrant.

Suppose that p has the right lifting property with respect to ∅ → A and
consider the diagram

∅ //

��

Z

p

��
B α

// W

Then there is a map θ1 : A → Z such that p · θ1 = α · f . But then there is a
map θ2 : B → Z such that θ2 · f ' θ1. Then p · θ2 · f ' α · f so that there is a
homotopy p · θ2 ' α. In other words, α lifts up to homotopy, so α has a lifting
by the usual homotopy lifting argument.

Suppose that p has the right lifting property with respect to ∅ → B and
consider the diagram

∅ //

��

Z

p

��
A

β
// W
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There is a map γ : B → W such that γ · f ' β. At the same time γ lifts to Z
by assumption. It follows that β lifts to Z up to homotopy and hence lifts on
the nose.

2 Pointed simplicial presheaves

Suppose that C is a small Grothendieck site, and let S(C) denote the category of
simplicial presheaves on C. This category has a standard proper closed simplicial
model structure for which the cofibrations are the monomorphisms and the weak
equivalences (usually called local weak equivalences) are maps which induce
isomorphisms in all homotopy groups for all local choices of base points. In
the presence of stalks, a map f : X → Y is a weak equivalence if and only
if f induces weak equivalences f∗ : Xx → Yx of simplicial sets in all stalks.
The fibrations, or global fibrations, are those maps which have the right lifting
property with respect to all maps which are simultaneously cofibrations and
local weak equivalences.

Suppose that α is an infinite cardinal which is greater than the cardinality of
the set of morphisms of C. One shows that a map is a global fibration if and only
if it has the right lifting property with respect to all cofibrations i : A→ B which
are local weak equivalences and are α-bounded in the sense that the cardinality
of all sets of simplices Bn(U), U ∈ C, n ≥ 0, is bounded above by α. This result
is now part of the usual approach to constructing the standard closed model
structure for S(C), in that it produces a set of generating trivial cofibrations for
the structure. In turn (see [4]) it is a consequence of the bounded cofibration
condition (BC), which can be stated as follows:

BC: For every diagram of simplicial presheaf monomorphisms

X

i

��
A // Y

with i a weak equivalence as well as a cofibration and A α-bounded, there
is a subobject B ⊂ Y such that A ⊂ B, the object B is α-bounded, and
the inclusion B ∩X → B is a weak equivalence and a cofibration.

One says that A is α-bounded if the cofibration ∅ → A is α-bounded. The
classes of cofibrations and local weak equivalences in the category of simplicial
presheaves together satisfy this condition.

Formally inverting a cofibration f : A → B of S(C) gives rise to the f -
local theory for the category of simplicial presheaves, as in [4]. The cofibrations
are just monomorphisms again, but the weak equivalences are more difficult
to define. Explicitly, an f -injective object is defined to be a globally fibrant
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simplicial presheaf Z such that the global fibration Z → ∗ has the right lifting
property with respect to all inclusions

(B × Y ) ∪(A×Y ) (A× LU∆n)→ B × LU∆n

which are induced by the map f and all generating cofibrations arising from
subobjects Y ⊂ LU∆n of the simplicial presheaves LU∆n. The objects LU∆n

arise from the standard n-simplices by applying the left adjoints LU of the U -
sections functors X 7→ X(U), U ∈ C. A map g : X → Y is an f -local weak
equivalence if and only if it induces a bijection

[Y,Z] ∼= [X,Z]

of simplicial presheaf homotopy classes of maps for all f -injective objects Z.
Then there is an f -local closed simplicial model category structure on the cate-
gory of simplicial presheaves for which the cofibrations are the monomorphisms
as before, and for which the weak equivalences are the f -local weak equivalences.
The f -local fibrations are defined by a lifting property in the usual way, and
then one shows after the fact that the classes of f -injective and f -local fibrant
objects coincide.

There are two remarks to be made:

1) The f -local theory for S(C) satisfies the bounded cofibration condition
BC for some choice of large cardinal α — this is proved in Lemma 4.7 of
[4].

2) The f -local theory if proper if f is of the form f : ∗ → I, ie. some global
choice of base point for a simplicial presheaf I. This is proved in Appendix
A of [12]. The method of proof for this result leads to a general criterion:
the f -local theory is proper if for every diagram

U

p

��
A

f
// B // X

with p a global fibration and X an f -local fibrant object, the induced map
f∗ : A ×X U → B ×X U is an f -local equivalence. Lemma A.1 of [4]
amounts to a demonstration of this criterion for f : ∗ → I.

We shall henceforth refer to cofibrations, weak equivalences and fibrations
within a proper closed simplicial model structure for the category of simplicial
presheaves; this structure will be either the standard theory, or a proper f -local
theory. The unstable motivic homotopy theory [12] of Morel and Voevodsky [13]
is an example of the latter. All of these theories satisfy a bounded cofibration
condition.

The category S∗(C) of pointed simplicial presheaves ∗ → X inherits a proper
closed model structure from any proper closed simplicial model structure on the
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category of simplicial presheaves. In particular, a pointed map f : X → Y is a
weak equivalence (respectively fibration, cofibration) if and only if f is a weak
equivalence (respectively fibration, cofibration) of S(C). The pointed function
complexes hom∗(X,Y ) appear as fibres of ordinary function complexes in the
usual way, meaning that there is a defining pullback diagram

hom∗(X,Y ) //

��

hom(X,Y )

��
∗ // hom(∗, Y )

We have the following simple consequences of the bounded cofibration con-
dition.

Lemma 12. Suppose given cofibrations A → B → X such that the composite
A → X is a weak equivalence and B is α-bounded. Then there is a trivial
cofibration C ⊂ X such that B ⊂ C and C is α-bounded.

Proof. This result is a consequence of the bounded cofibration condition.
Under the stated assumptions, and for the diagram of cofibrations

A

��
B // X

there is an α-bounded object C with B ⊂ C ⊂ X and such that the induced
cofibration C ∩ A → C is a weak equivalence. Then A = C ∩ A because
A ⊂ C.

Corollary 13. Suppose given a diagram of trivial cofibrations

X

��
A // Y

such that A is α-bounded. Then there is an α-bounded subobject C ⊂ Y such
that the inclusions A ⊂ C and C ∩X → C are trivial cofibrations.

Proof. By the bounded cofibration condition, there is an α-bounded subobject
D1 ⊂ Y with A ⊂ D1 and such that D1 ∩X → D1 is a trivial cofibration. By
the second lemma, there is a trivial cofibration C1 ⊂ Y with C1 α-bounded and
such that D1 ⊂ C1. Inductively form the string of cofibrations

A ⊂ D1 ⊂ C1 ⊂ D2 ⊂ C2 ⊂ . . .

such that all objects are α-bounded, all maps A → Ci and Di ∩ X → Di are
trivial cofibrations. Let C = lim−→Ci ⊂ Y . Then C is α-bounded, the map A→ C
is a trivial cofibration, and C ∩X → C is a trivial cofibration.
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Suppose that i : A → B and j : A → C are α-bounded cofibrations. A
bounded relation from i to j is a commutative diagram

A
j //

  @@@@@@@

i

��

C

u

��
B v

// D

(6)

where u and v are α-bounded trivial cofibrations. I shall also say that j is an
α-bounded approximation of i. In the pointed category, if A = ∗ one says that
C is an α-bounded approximation of B.

Lemma 14. Suppose that the diagram

X
iX //

p

��

X̃

q

��
Y

iY
// Ỹ

is a fibrant replacement of a fibration p in the sense that iX and iY are trivial
cofibrations, Ỹ is fibrant, and q is a fibration. Suppose that i : A → B is an
α-bounded cofibration. Then the dotted arrow exists in all diagrams of the form

A
γ //

i

��

X
iX // X̃

q

��
B

β
//

77

Ỹ

(7)

if and only if p has the right lifting property with respect to all α-bounded cofi-
brations j : A→ C related to i.

Proof. Suppose that p has the right lifting property with respect to all α-
bounded cofibrations related to i, and consider the lifting problem in the di-
agram (7). The map β has a factorization

B
ω //

β ��??????? Z

π

��
Ỹ

where π is a fibration and ω is a trivial cofibration. Then the induced map
iY ∗ : Z ×Ỹ Y → Z is a trivial cofibration by properness since π is a fibration.
Now apply Corollary 13 to the trivial cofibrations

Z ×Ỹ Y

iY ∗

��
B ω

// Z

16



to find a factorization B ⊂ L ⊂ Z of ω with L α-bounded, such that the
inclusion B ⊂ L and the map iY ∗ : L×Ỹ Y → L are trivial cofibrations. Then
there is an induced commutative diagram

A
γ //

��

X

p

��
L×Ỹ Y

σ

;;wwwwwwwww
// Y

in which the lifting σ exists by the hypothesis on p. But then the lift τ exists
in the diagram

L×Ỹ Y
iX ·σ //

iY ∗

��

X̃

q

��
L

π|L
//

τ

;;xxxxxxxxxx
Ỹ

since iY ∗ is a trivial cofibration. The restriction τ |B : B → X̃ is the required
lift.

Suppose that the dotted arrow exists in all diagrams (7) and that the diagram
(6) gives j : A → C the structure of an α-bounded cofibration related to i.
Consider a lifting problem

A
f //

j

��

X

p

��
C g

//

>>

Y

By the proof of Lemma 10 it suffices to show that the dotted arrow exists in
the diagram

A
f //

j

��

X
iX // X̃

q

��
C g

//

77

Y
iY
// Ỹ

There is a diagram

A
f //

j

��
i

�����������������
X

iX // X̃

q

��
C g

//

u

��

Y
iY // Ỹ

B v
//

θ1

::

D

h

77ooooooooooooooo

θ2

??

where the map h exists because u is a trivial cofibration and Ỹ is fibrant.
Then, in order, the dotted arrows θ1 and θ2 exist making the diagram commute,
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because q has the lifting property (7), and then v is a trivial cofibration. The
required lift is the composite θ2 · u.

In general, if i : U → V is an inclusion of simplicial sets, then the map

skn Vn+1 ∪skn Un+1 Un+1 → Vn+1

is a monomorphism, since one can show that

skn Un+1 = skn Vn+1 ∩ Un+1

in Vn+1. It follows that every levelwise cofibration of bisimplicial presheaves
is a Reedy cofibration [5, VII.2], so that the Reedy structure on the category
of bisimplicial presheaves is defined by degreewise cofibrations and degreewise
weak equivalences in the category of simplicial presheaves.

Suppose that
A : I → S∗(C), i 7→ Ai

is an α-bounded diagram of α-bounded homotopy cogroup objects in the cate-
gory of pointed simplicial presheaves, where α is some large cardinal for which
S(C) satisfies the bounded cofibration condition. The requirement that A is
an α-bounded diagram means that the cardinality of the morphism set of the
index category I should be bounded above by α. As in the first section, a map
f : X → Y of bisimplicial presheaves is said to be an A-equivalence if there is
a Reedy fibrant replacement f ′ : X ′ → Y ′ such that the induced maps

πjhom∗(Ai, X ′)→ πjhom∗(Ai, Y ′), i ∈ I, j ≥ 0, (8)

are weak equivalences of simplicial groups. The map f is an A-fibration if f is
a Reedy fibration and the maps (8) are fibrations of simplicial groups.

An A-cofibration is a map which has the left lifting property with respect to
all maps which are A-fibrations and A-equivalences. Every degreewise trivial
cofibration has the left lifting property with respect to all Reedy fibrations, and
is therefore a A-cofibration (as well as a A-equivalence).

Lemma 15. Suppose that the map f : X → Y is a Reedy fibration of bisimplicial
presheaves. Then

1) f is an A-fibration if and only if it has the right lifting property with respect
to all maps

Λmk ⊗B → ∆m ⊗B

where B is any α-bounded approximation of some Ai ∧ Sj, i ∈ I, j ≥ 0.

2) f is an A-fibration and an A-equivalence if and only if f has the right
lifting property with respect to all maps

∂∆m ⊗B → ∆m ⊗B

where B is any α-bounded approximation of some Ai ∧ Sj, i ∈ I, j ≥ 0.
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Proof. Suppose that

X
iX //

f

��

X̃

p

��
Y

iY
// Ỹ

is a Reedy fibrant replacement for f . Then the diagrams

Xm
//

��

X̃m

��
Ym ×Mk

mY
Mk
mX // Ỹm ×Mk

mỸ
Mk
mX̃

Xm
//

��

X̃m

��
Ym ×MmY MmX // Ỹm ×MmỸ

MmX̃

are fibrant replacements in the category of pointed simplicial presheaves by
Lemma 2, where in particular all vertical maps are fibrations. Now use Lemma
6 and Lemma 14.

Theorem 16. Suppose that A : I → S∗(C) is an α-bounded diagram of α-
bounded cogroup objects. Then with the definitions of A-equivalence, A-fibration
and A-cofibration given above, the category sS∗(C) of pointed bisimplicial pre-
sheaves on a small site C satisfies the axioms for a closed model category.

Proof. The axioms CM1 and CM2 are trivially verified. The class of A-
fibrations is closed under retract on account of Lemma 15, giving the non-trivial
part of CM3.

Observe that a map f : X → Y of bisimplicial presheaves is a Reedy fibration
if and only if it has the right lifting property with respect to the maps

(∂∆n ⊗B) ∪(∂∆n⊗A) (∆n ⊗A) ⊂ ∆n ⊗B

where A → B varies over a set of α-bounded cofibrations of simplicial pre-
sheaves. It follows from Lemma 15 that there are factorizations

X
i //

j

��

f

  AAAAAAAA Z

p

��
W q

// Y

of a map f , where i is an A-cofibration and p is an A-fibration and an A-
equivalence, q is an A-fibration and j is an A-cofibration which has the left
lifting property with respect to all A-fibrations.
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Suppose that j : A→ B is anA-cofibration which has the left lifting property
with respect to all A-fibrations. We will show that j is an A-equivalence —
this will complete the proof of the factorization axiom CM5, and then CM4
is a standard consequence. This will be achieved essentially with the Quillen
argument [5, p.114] that starts with the existence of a natural fibrant model,
which is given by Corollary 7.

Use Corollary 9 to form the diagrams

A
iA //

j

��

Ã

B

u

??��������

and A
siBj//

j

��

M∆1B̃

(p0,p1)

��
B

(iB ,j̃·u)

//

h

<<yyyyyyyyy
B̃ × B̃

Then the simplicial group map

u∗ : [Ai ∧ Sj , B]→ [Ai ∧ Sj , Ã]

induces an epimorphism on homotopy groups by the first diagram since iA is
an A-equivalence, while the existence of the homotopy h implies that u∗ is a
monomorphism on homotopy groups. Thus u is an A-equivalence, so j is an
A-equivalence.

3 Presheaves of spectra

The weak equivalences for the stable model category structure for the category
Spt(C) of presheaves of spectra are those maps f : X → Y which induce
isomorphisms f∗ : π∗X → π∗Y for all sheaves of stable homotopy groups. A
map i : A→ B is a cofibration if the map i : A0 → B0 and all maps

(S1 ∧Bn) ∪(S1∧An) A
n+1 → Bn+1

are cofibrations of pointed simplicial presheaves. The fibrations of the category
are the stable fibrations, which are those maps which have the right lifting prop-
erty with respect to morphisms which are cofibrations and stable equivalences.
The stable model structure is a proper closed simplicial model category. It also
satisfies a stable bounded cofibration condition:

sBC: There is an infinite cardinal α such that for every diagram

X

i

��
A // Y

of level cofibrations with i a stable equivalence and A α-bounded, there is
a subobject B ⊂ Y such that A ⊂ B, the object B is α-bounded, and the
inclusion B ∩X → B is a stable equivalence and a level cofibration.
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A level cofibration is a map of presheaves of spectra i : A→ B such that all maps
i : An → Bn are cofibrations. Note that the statement sBC is not the version
of the bounded cofibration condition given in [4], since we do not require the
map i to be a cofibration; it does, however, have the same proof. This version of
the stable bounded cofibration condition implies the former, since cofibrations
pull back along inclusions of subobjects by Lemma 3.1 of [4].

The following two results follow from the stable bounded cofibration condi-
tion sBC in the same way that Lemma 12 and Corollary 13 follow from the
bounded cofibration condition for simplicial presheaves:

Lemma 17. Suppose given inclusions (ie. level cofibrations) A ⊂ B ⊂ X such
that the composite A → X is a stable equivalence and B is α-bounded. Then
there is a subobject C ⊂ X such that B ⊂ C, C is α-bounded, and the inclusion
C ⊂ X is a stable equivalence.

Corollary 18. Suppose given a diagram of level cofibrations

X

��
A // Y

of a presheaf of spectra X such that A is α-bounded and both maps are sta-
ble equivalences. Then there is an α-bounded subobject C ⊂ Y such that the
inclusions A ⊂ C and C ∩X → C are stable equivalences.

Suppose that K is a cofibrant and α-bounded presheaf of spectra. Say that
A is an α-bounded approximation of K if there is a sequence of level cofibrations

A
u−→ B

v←− K

such that B is α-bounded, and both α and β are stable equivalences.

Lemma 19. Suppose given a diagram

X

f

��
K γ

// Y

of maps of presheaves of spectra, where K is cofibrant and α-bounded, and f is
a stable equivalence. Then there is an extended diagram

A //

u

��

X

f

��
B // Y

K

v

OO

γ

>>}}}}}}}
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in which A and B are α-bounded, and the morphisms β and β′ are level cofi-
brations and stable equivalences.

Proof. It is harmless to suppose that the map γ is a level cofibration and a
stable equivalence, since the stable model structure is proper.

Factorize f as

X
j //

f   @@@@@@@ Z

π

��
Y

where j is a cofibration, π is a stable fibration, and both maps are stable equiv-
alences. The map γ lifts to a monomorphism m : K → Z since K is cofibrant,
and then (by Corollary 18) there is an α-bounded subobject B ⊂ Z containing
K such that the induced monomorphism

u : A = B ×Z X → B

is a stable equivalence. The inclusion K ⊂ B is v.

It is shown, for example in [4] that the stable model structure for presheaves
of spectra is cofibrantly generated. In particular, the structure has functorial
factorizations

X
if //

f
""EEEEEEEEE M(f)

pf

��
Y

for arbitrary maps f , such that if is a cofibration and pf is a trivial stable
fibration. Write M(A) for the cofibrant model for a presheaf of spectra A which
arises from the canonical map ∗ → A in this way, and let pA : M(A) → A be
the corresponding trivial stable fibration.

Lemma 20. Suppose that the presheaf of spectra K is α-bounded and cofibrant.
Suppose also that

X
iX //

p

��

X̃

q

��
Y

iY
// Ỹ

is a stably fibrant model for the stable fibration p. Then q has the right lifting
property with respect to ∗ → K if and only if p has the right lifting property with
respect to all cofibrations ∗ →M(A) arising from cofibrant models for α-bounded
approximations A of K.

Proof. First of all q has the right lifting property with respect to ∗ → K if and
only if it has the right lifting property with respect to all ∗ →M(A), by Lemma

22



11. It therefore follows from Lemma 10 that p has the right lifting property
with respect to all ∗ →M(A) if q has the right lifting property with respect to
∗ → K.

Suppose that p has the right lifting property with respect to all maps ∗ →
M(A), and consider the lifting problem

∗ //

��

X̃

q

��
K α

//

??

Ỹ

Use Lemma 19 to find stably trivial level cofibrations A→ B ← K such that B
is α-bounded, and which fit into a commutative diagram

A //

u

��

Y

iY
��

B // Ỹ

K

v

OO

α

??��������

Then the resulting map M(A)→ Y lifts to X by assumption so that the com-
posite M(A) → Y → Ỹ lifts to X̃. It follows from Lemma 11 that the map
M(B)→ Ỹ lifts to X̃, and so the map K → Ỹ lifts to X̃.

Suppose that
A : I → Spt(C), i 7→ Ai

is an α-bounded diagram of α-bounded, cofibrant presheaves of spectra. Fol-
lowing the pattern of definitions of the first section, we say that map f : X → Y
of simplicial presheaves of spectra an A-equivalence if there is a Reedy fibrant
replacement f ′ : X ′ → Y ′ for f such that the induced maps

πjhom(Ai, X ′)→ πjhom(Ai, Y ′) (9)

are weak equivalences of simplicial abelian groups for all i ∈ I and all j ∈ Z.
The map f is an A-fibration if it is a Reedy fibration and all maps (9) are
fibrations of simplicial abelian groups. An A-cofibration is a map of simplicial
presheaves of spectra which has the left lifting property with respect to all maps
which are A-fibrations and A-equivalences.

Lemma 21. Suppose that the map f : X → Y is a Reedy fibration of simplicial
presheaves of spectra. Then

1) the map f is an A-fibration if and only if it has the right lifting property
with respect to all maps

Λmk ⊗M(A)→ ∆m ⊗M(A)

where A runs through the α-bounded approximations of the objects Ai∧Sj.

23



2) the map f is an A-fibration and an A-equivalence if and only if f has the
right lifting property with respect to all maps

∂∆m ⊗M(A)→ ∆m ⊗M(A)

where A is any α-bounded approximation of some Ai ∧ Sj.

Proof. The proof is by analogy with that of Lemma 15. Use Lemma 20 in place
of Lemma 14.

Theorem 22. Suppose that A : I → Spt(C) is an α-bounded diagram of α-
bounded, cofibrant presheaves of spectra Ai. Then with the definitions of A-
equivalence, A-fibration and A-cofibration given above, the category sSpt(C of
simplicial presheaves of spectra on a small site C satisfies the axioms for a closed
model category.

Proof. The axioms CM1 and CM2 are trivially verified. The class of A-
fibrations is closed under retract on account of Lemma 21, giving the non-trivial
part of CM3.

It follows from the bounded cofibration condition sBC that a map of pre-
sheaves of spectra is a stable fibration if and only if it has the right lifting
property with respect to all cofibrations which are α-bounded and stable equiv-
alences [4]. It follows that a map f : X → Y of presheaves of spectra is a Reedy
fibration if and only if it has the right lifting property with respect to the maps

(∂∆n ⊗B) ∪(∂∆n⊗A) (∆n ⊗A) ⊂ ∆n ⊗B

where A→ B varies over a set of α-bounded stably trivial cofibrations. Lemma
21 then implies that there are factorizations

X
i //

j

��

f

  AAAAAAAA Z

p

��
W q

// Y

of a map f , where i is an A-cofibration and p is an A-fibration and an A-
equivalence, q is an A-fibration and j is an A-cofibration which has the left
lifting property with respect to all A-fibrations.

The proof is finished by showing that every A-cofibration j : A → B which
has the left lifting property with respect to all A-fibrations must be an A-
equivalence. This is done as in the proof of Theorem 16.

Write SptΣ(C) for the category of presheaves of symmetric spectra on the
site C. It is shown in [11, Th. 12] that this category has a proper closed
simplicial model structure. The fibrations for this theory, or stable fibrations,
are those morphisms p : X → Y of presheaves of symmetric spectra such that the
underlying map p∗ : UX → UY of presheaves of spectra are stable fibrations in
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the sense described above. A stable weak equivalence f : X1 → X2 of SptΣ(C)
is a map which induces a weak equivalence of function complexes

hom(X2,W )→ hom(X1,W )

where W is stably fibrant and injective. An injective object is a fibrant object in
a model structure of level cofibrations and level weak equivalences. The function
complexes displayed above are formed in the expected way, and are part of the
data for the simplicial model structure.

Observe that p : X → Y is a stable fibration of presheaves of symmetric
spectra if and only if it has the right lifting property with respect to all maps
i∗ : V A → V B arising from α-bounded trivial stable cofibrations i : A → B of
presheaves of spectra, by application of the left adjoint V : Spt(C)→ SptΣ(C)
to the functor U : SptΣ(C)→ Spt(C) which forgets the symmetric structure.

Suppose that
A : I → Spt(C), i 7→ Ai,

is an α-bounded diagram of α-bounded, cofibrant presheaves of spectra as above.
Say that a map f : X → Y of simplicial presheaves of symmetric spectra is an
A-equivalence if there is a Reedy fibrant replacement f ′ : X ′ → Y ′ for f such
that the induced maps

πjhom(V Ai, X ′)→ πjhom(V Ai, Y ′) (10)

are weak equivalences of simplicial abelian groups for all i ∈ I and j ∈ Z. The
map f is an A-fibration if it is a Reedy fibration and all maps (10) are fibrations
of simplicial abelian groups. An A-cofibration is a map of simplicial presheaves
of symmetric spectra which has the left lifting property with respect to all maps
which are A-fibrations and A-equivalences.

The following is a consequence of Lemma 21, by an adjointness argument:

Lemma 23. Suppose that the map f : X → Y is a Reedy fibration of simplicial
presheaves of symmetric spectra. Then

1) the map f is an A-fibration if and only if it has the right lifting property
with respect to all maps

Λmk ⊗ VM(A)→ ∆m ⊗ VM(A)

where A runs through the α-bounded approximations of the objects Ai∧Sj
in Spt(C).

2) the map f is an A-fibration and an A-equivalence if and only if f has the
right lifting property with respect to all maps

∂∆m ⊗ VM(A)→ ∆m ⊗ VM(A)

where A is any α-bounded approximation of some Ai ∧ Sj in Spt(C).
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Theorem 24. Suppose that A : I → Spt(C) is an α-bounded diagram of α-
bounded, cofibrant presheaves of spectra Ai. Then with the definitions of A-
equivalence, A-fibration and A-cofibration given above, the category sSptΣ(C)
of simplicial presheaves of symmetric spectra on a small site C satisfies the
axioms for a closed model category.

Proof. The axioms CM1 and CM2 are trivially verified. The class of A-
fibrations is closed under retract on account of Lemma 23, giving the non-trivial
part of CM3.

Observe that a map f : X → Y of presheaves of symmetric spectra is a
Reedy fibration if and only if it has the right lifting property with respect to
the maps

(∂∆n ⊗ V B) ∪(∂∆n⊗V A) (∆n ⊗ V A) ⊂ ∆n ⊗ V B

where A→ B varies over a set of α-bounded stably trivial cofibrations of Spt(C).
It follows from Lemma 23 that there are factorizations

X
i //

j

��

f

  AAAAAAAA Z

p

��
W q

// Y

of a map f , where i is an A-cofibration and p is an A-fibration and an A-
equivalence, q is an A-fibration and j is an A-cofibration which has the left
lifting property with respect to all A-fibrations.

The proof is finished by showing that every A-cofibration j : A → B which
has the left lifting property with respect to all A-fibrations must be an A-
equivalence. This is achieved by the usual argument, as in the proof of Theorem
16.

The forgetful functor U : SptΣ(C)→ Spt(C) preserves stable fibrations and
trivial stable fibrations, and so U and its left adjoint V form a Quillen adjunction
[6]. One knows further that the functor U reflects stable equivalences between
fibrant objects [11, Lem. 10], and that the composite

X
η−→ UV X

Uj−−→ U(V X)s

is a stable equivalence of presheaves of spectra, where j : V X → V Xs is any
choice of stably fibrant model in the category of presheaves of symmetric spectra
[11, p. 154]. Then it follows by a standard argument given in [6] that the
functors U and V induce an adjoint equivalence of stable homotopy categories

Ho(Spt(C)) ' Ho(SptΣ(C)).

Similar statements obtain for simplicial objects. The functor U induces a
forgetful functor

U : sSptΣ(C)→ sSpt(C).
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This functor preserves and reflects Reedy fibrations, and also preserves and
reflects A-fibrations and trivial A-fibrations. The functor U further reflects A-
equivalences between A-fibrant objects. Any Reedy fibrant model j : V X →
(V X)R is an A-fibrant model for any simplicial presheaf of spectra X, so the
component maps j : V Xn → ((V X)R)n are stably fibrant models. Finally, all
composites

Xn
η−→ UV Xn

j∗−→ U((V X)R)n

are stable equivalences so that the map

X
η−→ UV X

j∗−→ U(V X)R

is an A-equivalence. This last statement holds in particular when X is A-
cofibrant, so [6, Cor. 1.3.16] implies the following:

Theorem 25. Suppose that A : I → Spt(C) is an α-bounded diagram of α-
bounded, cofibrant presheaves of spectra Ai. Then the adjoint functors

U : sSptΣ(C)� sSpt(C) : V

form a Quillen equivalence between the model structures associated to the dia-
gram A on the respective categories of simplicial objects, and hence induce an
adjoint equivalence

HoA(sSptΣ(C)) ' HoA(sSpt(C))

of the associated homotopy categories.

4 The motivic stable category

Suppose that (Sm|S)Nis denotes the category of smooth schemes of finite type
over a scheme S of finite dimension, and suppose that this category is equipped
with the Nisnevich topology. Choose a fixed pointed simplicial presheaf T on
(Sm|S)Nis which is compact in the sense of [12, Sec. 2.2] — examples of such
include all constant simplicial presheaves associated to pointed finite simplicial
sets such as S1, all constant simplicial presheaves represented by pointed smooth
S-schemes. The collection compact objects is closed under taking homotopy
cofibres, and therefore includes the Morel-Voevodsky object A1/(A1 − 0).

A T -spectrumX consists of pointed simplicial presheavesXn, n ≥ 0 together
with bonding map T ∧Xn → Xn+1, and maps between T -spectra f : X → Y
consist of collections of pointed simplicial presheaf maps f : Xn → Y n which
preserve structure in the obvious way.

The corresponding category of T -spectra is denoted by SptT (Sm|S)Nis. It is
shown in [12, Th. 2.9] that this category carries a proper closed simplicial model
structure whose associated homotopy category is the motivic stable category of
Morel and Voevodsky. The cofibrations for that theory are defined by analogy
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with cofibrations of spectra: a map i : A → B is a cofibration of T -spectra if
i : A0 → B0 and all morphisms

(T ∧Bn) ∪(T∧An) A
n+1 → Bn+1

are monomorphisms of simplicial presheaves. A morphism f : X → Y of T -
spectra is said to be a stable equivalence if the induced map f∗ : QTLX →
QTLY is a level motivic weak equivalence, where X → LX is a natural level mo-
tivic fibrant model and the stabilization functor Y 7→ QTY is the T -stabilization
functor which is constructed by analogy with the stabilization functor for ordi-
nary spectra by iterating a T -loop construction.

Level cofibrations, level motivic weak equivalences and level motivic fibra-
tions have meanings analogous to those in the previous section: a level cofibra-
tion (respectively level equivalence, level fibration) is a map f : X → Y such
that all component maps f : Xn → Y n are cofibrations (respectively motivic
weak equivalences, motivic fibrations) of simplicial presheaves on the smooth
Nisnevich site (Sm|S)Nis. Recall that a motivic weak equivalence (respectively
motivic fibration) is an f -weak equivalence (repectively f -fibration) of simplicial
presheaves on (Sm|S)Nis, where we have formally inverted a map f : ∗ → A

1

in the simplicial presheaf closed model structure arising from the Nisnevich
topology.

The motivic stable model structure satisfies a bounded cofibration condition:

sBC: There is an infinite cardinal α such that for every diagram

X

i

��
A // Y

of level cofibrations with i a stable equivalence and A α-bounded, there is
a subobject B ⊂ Y such that A ⊂ B, the object B is α-bounded, and the
inclusion B ∩X → B is a stable equivalence and a cofibration.

The proof of this result is given in [12, Sec. 2.5], but the result itself is not stated
there in this form. As with the statement of the bounded cofibration condition
for presheaves of spectra (and since cofibrations are preserved by pullback), the
version given here is slightly stronger but has the same proof.

As in the case of presheaves of spectra, the following two results follow
from the stable bounded cofibration condition sBC in the way that Lemma 12
and Corollary 13 follow from the bounded cofibration condition for simplicial
presheaves. For Corollary 27, one has to know that an inductive limit of stable
equivalences is a stable equivalence, but this is the result of a standard argument.

Lemma 26. Suppose given level cofibrations A ⊂ B ⊂ X of T -spectra such that
the composite A→ X is a stable equivalence and B is α-bounded. Then there is
a subobject C ⊂ X such that B ⊂ C, C is α-bounded, and the inclusion C ⊂ X
is a stable equivalence.
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Corollary 27. Suppose given a diagram of level cofibrations

X

��
A // Y

such that A is α-bounded, and both maps are stable equivalences. Then there is
an α-bounded subobject C ⊂ Y such that the inclusions A ⊂ C and C ∩X → C
are stable equivalences.

As before, Corollary 27 give rise to a bounded approximation technique.
Suppose that K is a cofibrant and α-bounded T -spectrum. Say that A is an
α-bounded approximation of K if there is a sequence of level cofibrations

A
u−→ B

v←− K

such that B is α-bounded, and both u and v are stable equivalences. Then we
have the following analogue of Lemma 19, having formally the same proof:

Lemma 28. Suppose given a diagram

X

f

��
K γ

// Y

of maps of T -spectra, where K is cofibrant and α-bounded, and f is a stable
equivalence. Then there is an extended diagram

A //

u

��

X

f

��
B // Y

K

v

OO

γ

>>}}}}}}}

in which A and B are α-bounded, and the morphisms u and v are level cofibra-
tions and stable equivalences.

The bounded cofibration condition sBC implies that a map p : X → Y of
T -spectra is a stable fibration if and only if it has the right lifting property with
respect to all α-bounded stably trivial cofibrations. Also, since trivial stable
and trivial level fibrations coincide, the map p is stable fibration and a stable
equivalence if and only if it has the right lifting property with respect to all
cofibrations

Σ∞T Y+[−n]→ Σ∞T LU∆n
+[−n]
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of shifted suspension T -spectrum objects arising from inclusions of simplicial
presheaves Y ⊂ LU∆n. It follows that the motivic stable model structure is
cofibrantly generated. In particular, as in ordinary stable homotopy theory, the
structure has functorial factorizations

X
if //

f
""EEEEEEEEE M(f)

pf

��
Y

for arbitrary maps f , such that if is a cofibration and pf is a trivial stable
fibration. Write M(A) for the cofibrant model for a T -spectrum X which arises
from the canonical map ∗ → A in this way, and let pA : M(A) → A be the
corresponding trivial stable fibration.

Lemma 29. Suppose that the T -spectrum K is α-bounded and cofibrant. Sup-
pose also that

X
iX //

p

��

X̃

q

��
Y

iY
// Ỹ

is a stably fibrant model for the stable fibration p. Then q has the right lifting
property with respect to ∗ → K if and only if p has the right lifting property with
respect to all cofibrations ∗ →M(A) arising from cofibrant models for α-bounded
approximations A of K.

Proof. The proof of Lemma 29 is formally the same as the proof of Lemma
20.

Suppose that
A : I → SptT (Sm|S)Nis, I 7→ Ai

is an α-bounded diagram of α-bounded, cofibrant T -spectra. We say that map
f : X → Y of simplicial T -spectra an A-equivalence if there is a Reedy fibrant
replacement f ′ : X ′ → Y ′ for f such that the induced maps

πjhom(Ai, X ′)→ πjhom(Ai, Y ′) (11)

are weak equivalences of simplicial abelian groups for all i ∈ I and all j ∈ Z.
The map f is an A-fibration if it is a Reedy fibration and all maps (11) are
fibrations of simplicial abelian groups. An A-cofibration is a map of simplicial
T -spectra which has the left lifting property with respect to all maps which are
A-fibrations and A-equivalences.

Remark 30. It’s worth pointing out once again that there are isomorphisms

πjhom(Ai, X ′) ∼= [Ai ∧ Sj , X ′] ∼= [Ai ∧ Sj , X],
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which arise from the simplicial model structure on the category of T -spectra.
It follows, for example, that the map f : X → Y of simplicial T -spectra is an
A-equivalence if and only if it induces a weak equivalence of simplicial abelian
groups

[Ai ∧ Sj , X]→ [Ai ∧ Sj , Y ]

for all i and j. Note that only the topological suspensions are involved, and
that they are necessary for the fibre sequence arguments for Lemma 6 to work.
One can build in a dependence on T -suspensions by insisting, for example, that
the diagram A is closed under the functor Ai 7→ Ai ∧ T .

The following is a consequence of Lemma 29:

Lemma 31. Suppose that the map f : X → Y is a Reedy fibration of simplicial
T -spectra. Then

1) the map f is an A-fibration if and only if it has the right lifting property
with respect to all maps

Λmk ⊗M(A)→ ∆m ⊗M(A)

where A runs through the α-bounded approximations of the objects Ai∧Sj.

2) the map f is a A-fibration and a A-equivalence if and only if f has the
right lifting property with respect to all maps

∂∆m ⊗M(A)→ ∆m ⊗M(A)

where A is any α-bounded approximation of some Ai ∧ Sj.

We then have the following analog of Theorem 22:

Theorem 32. Suppose that A : I → SptT (Sm|S)Nis is an α-bounded diagram
of α-bounded, cofibrant T -spectra Ai. Then with the definitions of A-equivalence,
A-fibration and A-cofibration given above, the category sSptT (Sm|S)Nis of sim-
plicial T -spectra satisfies the axioms for a closed model category.

Proof. The axioms CM1 and CM2 are trivially verified. The class of A-
fibrations is closed under retract on account of Lemma 31, giving the non-trivial
part of CM3.

Observe that a map f : X → Y of T -spectra is a Reedy fibration if and only
if it has the right lifting property with respect to the maps

(∂∆n ⊗B) ∪(∂∆n⊗A) (∆n ⊗A) ⊂ ∆n ⊗B

where A → B varies over a set of α-bounded stably trivial cofibrations. It
follows from Lemma 31, that there are factorizations

X
i //

j

��

f

  AAAAAAAA Z

p

��
W q

// Y
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of a map f , where i is an A-cofibration and p is an A-fibration and an A-
equivalence, q is an A-fibration and j is an A-cofibration which has the left
lifting property with respect to all A-fibrations.

The proof is finished by showing that every A-cofibration j : A → B which
has the left lifting property with respect to all A-fibrations must be an A-
equivalence, but this is proved just like the corresponding step in the proof of
Theorem 16.

Write SptΣ
T (Sm|S)Nis for the category of presheaves of symmetric T -spectra.

It is shown in [12, Th. 4.15] that this category has a proper closed simplicial
model structure. The fibrations for this theory, or stable fibrations, are those
morphisms p : X → Y of symmetric T -spectra such that the underlying map
p∗ : UX → UY of T -spectra are stable fibrations in the sense described above.
A stable weak equivalence f : X1 → X2 of SptΣ

T (Sm|S)Nis is a map which
induces a weak equivalence of function complexes

hom(X2,W )→ hom(X1,W )

where W is stably fibrant and injective. An injective object is a fibrant object in
a model structure of level cofibrations and level weak equivalences. The function
complexes are formed in the expected way.

Observe that p : X → Y is a stable fibration of symmetric T -spectra if and
only if it has the right lifting property with respect to all maps i∗ : V A→ V B
arising from α-bounded trivial stable cofibrations i : A → B of T -spectra, by
application of the left adjoint V : SptT (Sm|S)Nis → SptΣ

T (Sm|S)Nis to the
functor U : SptΣ

T (Sm|S)Nis → SptT (Sm|S)Nis which forgets the symmetric
structure. Recall further [12, Cor. 4.14] that a map p : X → Y of symmetric
T -spectra is a stable fibration and a stable equivalence if and only if it has the
right lifting property with respect to all maps

Fn(A)→ Fn(LU∆r
+)

induced by inclusions A ⊂ LU∆r by the left adjoint to the level n functor X 7→
Xn which takes values in pointed simplicial presheaves on the smooth Nisnevich
site. It follows that the symmetric T -spectrum category SptΣ

T (Sm|S)Nis is
cofibrantly generated.

Suppose that
A : I → SptT (Sm|S)Nis, i 7→ Ai,

is an α-bounded diagram of α-bounded, cofibrant T -spectra as above. Say that
a map f : X → Y of simplicial symmetric T -spectra is an A-equivalence if there
is a Reedy fibrant replacement f ′ : X ′ → Y ′ for f such that the induced maps

πjhom(V Ai, X ′)→ πjhom(V Ai, Y ′) (12)

are weak equivalences of simplicial abelian groups for all i ∈ I and j ∈ Z. The
map f is an A-fibration if it is a Reedy fibration and all maps (12) are fibrations
of simplicial abelian groups. An A-cofibration is a map of simplicial symmetric
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T -spectra which has the left lifting property with respect to all maps which are
A-fibrations and A-equivalences.

The following is a consequence of Lemma 29, by an adjointness argument:

Lemma 33. Suppose that the map f : X → Y is a Reedy fibration of simplicial
symmetric T -spectra. Then

1) the map f is an A-fibration if and only if it has the right lifting property
with respect to all maps

Λmk ⊗ VM(A)→ ∆m ⊗ VM(A)

where A runs through the α-bounded approximations of the objects Ai∧Sj
in SptT (Sm|S)Nis.

2) the map f is an A-fibration and an A-equivalence if and only if f has the
right lifting property with respect to all maps

∂∆m ⊗ VM(A)→ ∆m ⊗ VM(A)

where A is any α-bounded approximation of some Ai ∧ Sj in the category
of T -spectra.

Theorem 34. Suppose that A : I → SptT (Sm|S)Nis is an α-bounded diagram
of α-bounded, cofibrant T -spectra Ai. Then with the definitions of A-equivalence,
A-fibration and A-cofibration given above, the category sSptΣ

T (Sm|S)Nis of sim-
plicial symmetric T -spectra satisfies the axioms for a closed model category.

Proof. The axioms CM1 and CM2 are trivially verified. The class of A-
fibrations is closed under retract on account of Lemma 33, giving the non-trivial
part of CM3.

Observe that a map f : X → Y of symmetric T -spectra is a Reedy fibration
if and only if it has the right lifting property with respect to the maps

(∂∆n ⊗ V B) ∪(∂∆n⊗V A) (∆n ⊗ V A) ⊂ ∆n ⊗ V B

where A → B varies over a set of α-bounded stably trivial cofibrations of
SptT (Sm|S)Nis. It follows from Lemma 33 that there are factorizations

X
i //

j

��

f

  AAAAAAAA Z

p

��
W q

// Y

of a map f , where i is an A-cofibration and p is an A-fibration and an A-
equivalence, q is an A-fibration and j is an A-cofibration which has the left
lifting property with respect to all A-fibrations.

The proof is finished by showing that every A-cofibration j : A → B which
has the left lifting property with respect to all A-fibrations must be an A-
equivalence. This is accomplished by the usual argument.
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The forgetful functor U : SptΣ
T (Sm|S)Nis → SptT (Sm|S)Nis preserves sta-

ble fibrations and trivial stable fibrations, and so U and its left adjoint V form
a Quillen adjunction. One knows further that the functor U reflects stable
equivalences between fibrant objects [12, Cor. 4.6], and that the composite

X
η−→ UV X

Uj−−→ U(V X)s

is a stable equivalence of T -spectra, where j : V X → V Xs is any choice of
stably fibrant model in the category of symmetric T -spectra [12, Prop 4.30].
Then it follows that the functors U and V induce an adjoint equivalence of
stable homotopy categories

Ho(SptT (Sm|S)Nis) ' Ho(SptΣ
T (Sm|S)Nis).

The functor U induces a forgetful functor

U : sSptΣ
T (Sm|S)Nis → sSptT (Sm|S)Nis.

This functor preserves and reflects Reedy fibrations, and also preserves and
reflects A-fibrations and trivial A-fibrations. The functor U also reflects A-
equivalences between A-fibrant objects. Any Reedy fibrant model j : V X →
(V X)R is an A-fibrant model for any T -spectrum X, so in particular the compo-
nent maps j : V Xn → ((V X)R)n are stably fibrant models. Then all composites

Xn
η−→ UV Xn

j∗−→ U((V X)R)n

are stable equivalences so that the map

X
η−→ UV X

j∗−→ U(V X)R

is an A-equivalence. As in the case of presheaves of spectra, we then have the
following:

Theorem 35. Suppose that A : I → SptT (Sm|S)Nis is an α-bounded diagram
of α-bounded, cofibrant T -spectra Ai. Then the adjoint functors

U : sSptΣ
T (Sm|S)Nis � sSptT (Sm|S)Nis : V

form a Quillen equivalence between the model structures associated to the dia-
gram A on the respective categories of simplicial objects, and hence induce an
adjoint equivalence

HoA(sSptΣ
T (Sm|S)Nis) ' HoA(sSptT (Sm|S)Nis)

of the associated homotopy categories.
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