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Preface (1994)

This paper was written in October, 1983, but never published. I am making it
available on the internet in this form as a response to the requests for copies of the
preprint received in the intervening years. As long as these servers are running, a
dvi file of this paper will be available by gopher at gopher.math.uwo.ca and on the
world wide web at http://www.math.uwo.ca.

Only very minor changes have been made to the body of the paper for this
version. The references have been updated to reflect publication of cited papers
that were still preprints at the time when the original manuscript was written. In
particular, Karoubi gives proofs for Theorem 1 and (implicitly) Theorem 8 in [9].

Introduction (1983)

Let k be an algebraically closed field, and choose a prime number ` which is not
equal to the characteristic of k. What is coming to be known as the Gabber-Gillet-
Thomason rigidity theorem, [2], [3], asserts that, if x is a rational point on a smooth
k-variety X, then the residue map induces an isomorphism

K∗(O
sh
x ;Z/`)

∼=→ K∗(k;Z/`),

where Oshx is the strict henselization of the local ring at x. The purpose of this note
is to show that this theorem may be promoted to a similar statement for Karoubi L-
theory, away from characteristic 2. A computation of the groups εL∗(k;Z/`) follows,
along the lines of the computation of K∗(k;Z/`) given in [5]. The method is to prove
the isomorphism conjecture for the groups εO(k). This is not a generalization of
Suslin’s arguments [15], [16].

Typeset with LAMS-TEX.

1



1. Complements.

Suppose, for the rest of this paper, that the characteristic of the algebraically
closed field k is not 2, and choose ε in k such that ε2 = 1. The groups εO(k) are
defined as in [6].

The groups εLi(A;Z/`) are defined, for a k-algebra A with involution, by

εLi(A;Z/`) = [Y i, EεO(A)+], i ≥ 2,

where Y i is the cofibre of the self-map of Si−1 which is multiplication by 1. In
addition, I define

εL1(A;Z/`) = [Y 2, BεO(SA)+], and

K1(A;Z/`) = [Y 2, BG`(SA)+].

The groups εLi(A;Z/`) are abelian, and there are exact sequences

0→ εLi(A)⊗ Z/`→ εLi(A;Z/`)→ Tor(Z/`, εLi−1(A)→ 0

for i ≥ 1.
The fibre squares

UA w

u

C(M2(A))

u
S(A×A0) w S(M2A))

and

VA w

u

C(A×A0)

u
S(A) w S(A×A0)

of [8] give rise to long exact sequences

...→ εU2(A;Z/`)→ K2(A;Z/`)→ εL2(A;Z/`)
∂
→ εU1(A;Z/`)→ K1(A;Z/`)→ εL1(A;Z/`),(1)

...→ εV2(A;Z/`)→ εL2(A;Z/`)→ K2(A;Z/`)
∂
→ εV1(A;Z/`)→ εL1(A;Z/`)→ K1(A;Z/`).(2)

Here, εUi(A;Z/`) = εLi+1(UA;Z/`) and εVi(A;Z/`) = εLi+1(A;Z/`) by definition.
The statement of Karoubi’s fundamental theorem that I require asserts that there

is a natural homotopy equivalence

εL(VA) ∼= Ω−εL(UA)

of L-theory spaces, in the notation of [8]. This equivalence induces isomorphisms

(3) εVi(A;Z/`) ∼= −εUi+1(A;Z/`)

for i ≥ 1.
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2. The main results.

The following rigidity theorem for L-theory is proved first:

Theorem 1. Let k be an algebraically closed field of characteristic not equal to 2.
Let ` be a prime which is distinct from the characteristic of k. Let x be a rational
point of a smooth k-scheme X. Then the residue map induces an isomorphism

π∗ : εLi(O
sh
x ;Z/`)

∼=→ εLi(k;Z/`) for i ≥ 1, ε = ±1,

where Oshx is the strict henselization of the local ring at x.

The main reduction step in the proof of the theorem is

Lemma 2. If π∗ is an isomorphism for i = 1 and 2 and all ε, then π∗ is an isomor-
phism for i ≥ 1 and all ε.

Proof: For notational convenience, εLi(A) and Ki(A) should be understood to
have Z/` coefficients.

The residue map π : Oshx → k induces an epimorphism in all invariants, since
Oshx is a k-algebra. Suppose that

π∗ : εLi(O
sh
x )→ εLi(k)

is an isomoprhism for all ε, and consider the diagram

εLi+1(Oshx ) w

u

Ki+1(Oshx ) w

u
∼=

εVi(O
sh
x )

uu
π∗

w εLi(Oshx ) w

u
∼=

Ki(O
sh
x )

u
∼=

εLi+1(k) w Ki+1(k) w εVi(k) w εLi(k) w Ki(k)

The induced maps in K-theory are isomorphisms by the Gabber-Gillet-Thomason
rigidity theorem. Chasing the diagram shows that

π∗ : εVi(O
sh
x )→ εVi(k)

is monic, and hence an isomorphism. But then

π∗ : −εUi+1(Oshx )→ −εUi+1(k)

is an isomorphism by (3), and this for all ε. Chasing the diagram

εUi+2(Oshx ) w

u

Ki+2(Oshx ) w

u
∼=

εLi+2(Oshx ) w

uu
π∗

εUi+1(Oshx ) w

u
∼=

Ki+1(Oshx )

u
∼=

εUi+2(k) w Ki+2(k) w εLi+2(k) w εUi+1(k) w Ki+1(k)
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shows that
π∗ : εLi+2(Oshx )→ εLi+2(k)

is an isomorphism.

Lemma 3. The map
π∗ : εL0(Oshx )→ εL0(k)

(no coefficients) is an isomorphism for ε = ±1.

Proof: Suppose that M is a non-singular n×n symmetric matrix with coefficients
in Oshx , and let M be its image in Gln(k). By pulling back from kn, one can find
a column vector v in (Oshx )n such that tvMv is a unit of Oshx . Since char(k) 6= 2,
and Oshx is henselian, we may assume that tvMv = 1. It follows by induction on n
that (Oshx )n has an orthonormal basis for the symmetric form which is defined by
M . This implies that 1L0(Oshx ) ∼= 1L0(k) ∼= Z.

A form which is defined by a non-singular anti-symmetric matrix over Oshx is
always hyperbolic, since Oshx is local. This implies that there are isomorphisms

−1L0(Oshx ) ∼= −1L0(k) ∼= Z.

Lemma 4. The maps
π∗ : εL1(Oshx )→ εL1(k)

are isomorphisms for ε = ±1.

Proof: The groups SO(Oshx ) and Sp(Oshx ) are generated by elementary transfor-
mations [10] (see also the proof of Lemma 5), and hence are perfect. It follows
immediately that −1L1(Oshx ) = −1L1(k) = 0. Also, SO(Oshx ) is the commutator
subgroup of 1O(Oshx ), and so there are isomorphisms 1L1(Oshx ) ∼= 1L1(k) ∼= Z/2.

Lemma 5. The maps

π∗ : εL2(Oshx )⊗ Z/`→ εL2(k)⊗ Z/`

are isomorphisms for ε = ±1 if char(k) 6= 2.

Proof: Let Gr be the universal group of type Dr, where r ≥ 3. The covering map
γ : Gr → SP2r determines the central extension

1→ Z/2→ Gr(O
sh
x )

γ∗→ SO2r(O
sh
x )→ 1.

In effect, the obstructions to the surjectivity of γ∗ lie in H1
fl(Sp(O

sh
x );µ2) = 0

(see [4]), and µ2(Oshx ) = Z/2 since Oshx is an integral domain by the smoothness
assumption on X.
Gr(O

sh
x ) is generated by elementary transformations [10], and so H2(Gr(O

sh
x );Z)

is Stein’s group L(Dr;O
sh
x ) (see [13], [14]). Stein shows that this group is generated

by symbols {u, v}α, α ∈ Br, u ∈ (Oshx )∗. The relation

{u2, vw}α = {u2, v}α · {u
2, w}α
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holds in L(Dr;O
sh
x ). Every element in (Oshx )∗ has a square root and an `th root by

the assumptions on k and the henselian property. It follows that

{u, v}α = {u, w}`α

where w` = v, and hence that L(Dr;O
sh
x ) is `-divisible. A similar argument shows

that
H2(Sp2r(O

sh
x );Z) ∼= L(Cr;O

sh
x )

is `-divisible if r ≥ 3.
The comparison of central extensions

1 w Z/2 w Gr(Oshx ) w
u

SO2r(O
sh
x ) w

u

1

1 w Z/2 w Gr(k) w SO2r(k) w 1

induces a comparison of Hochschild-Serre spectral sequences which determines a
diagram of exact sequences.

0 w H2(Gr(O
sh
x );Z) w
u

H2(SO2r(O
sh
x );Z) w

u

Z/2 w 0

0 w H2(Gr(k);Z) w H2(SO2r(k);Z) w Z/2 w 0.

Thus, tensoring with Z/` gives an isomorphism

H2(SO2r(O
sh
x );Z)⊗ Z/` ∼= H2(SO2r(k);Z)⊗ Z/`.

The `-divisibility of H2(Sp(Oshx );Z) and H2(Sp(k);Z) give the result for −1L2.

Consider the diagrams

0 w εLi(Oshx )⊗ Z/` w
u

εLi(O
sh
x ;Z/`) w
u π∗

Tor(Z/`, εLi−1(Oshx )) w
u

0

0 w εLi(k)⊗ Z/` w εLi(k;Z/`) w Tor(Z/`, εLi−1(k)) w 0

for i = 1 and 2. Lemmas 3 and 4 imply that π∗ is an isomorphism when i = 1.
Lemmas 4 and 5 imply that π∗ is an isomorphism when i = 2. Theorem 1 is proved,
by Lemma 2.
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Let (Sm|k)et denote the site of smooth k-schemes with the etale topology, as in
[5], and let the algebraic group εOn,n represent a sheaf of groups on this site. The
sheaf of groups εO is defined by

εO = lim
−→
n

εOn,n

where the filtered colimit is taken in the sheaf category on (Sm|k)et. Consider the
canonical map

ε̃ : Γ∗εO(k)→ εO,

where Γ∗εO(k) is the constant sheaf on the discrete group of rational points εO(k).
ε̃ determines a map of homology sheaves

ε̃∗ : H∗(BΓ∗εO(k);Z/`)→ H∗(BεO;Z/`),

and Theorem 1 implies (see also [16])

Corollary 6. The comparison map

ε̃∗ : H∗(BΓ∗εO(k);Z/`)→ H∗(BεO;Z/`),

is an isomorphism of sheaves on (Sm|k)et.

The methods of [5] then yield

Theorem 7. The induced comparsion map

ε̃∗ : H∗et(BεO;Z/`)→ H∗(BεO(k);Z/`)

is an isomorphism.

H∗(BεO(k);Z/`) is the cohomology of the discrete group εO(k). The assertion of
Theorem 7 is a special case of the generalized isomorphism conjecture.

When k is the field C of complex numbers, one knows that there is an isomorphism

H∗top(BεO(C);Z/`) ∼= H∗et(BεO;Z/`),

and so Hi(BεO(C);Z/`) and Hi
top(BεO(C);Z/`) are finite dimensional Z/`-vector

spaces of the same dimension, for i ≥ 0 [12]. There is a commutative diagram

Hi
top(BεOn,n(C);Z/`) wη

Hi(BεOn,n(C);Z/`)

Hi
top(BεO(C);Z/`) w

u

Hi(BεO(C);Z/`)

u
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in which η is monic [11]. It follows that the map

Hi
top(BεO(C);Z/`)→ Hi(BεO(C);Z/`)

is a monomorphism, and hence an isomorphism.
Also, H∗(BεO;Z/`) is invariant of the underlying algebraically closed field, so

that an inclusion k ⊂ L of algebraically closed fields induces an isomorphism

H∗(BεO(L);Z/`)→ H∗(BεO(k);Z/`).

Putting this together with the Brauer lift techniques of [1] gives a complete calcu-
lation of the groups εLi(k;Z/`).

Theorem 8. Suppose that k is an algebraically closed field such that char(k) 6= 2,
and let ` be an odd prime such that ` 6= char(k). Then, for i ≥ 1, the groups

εLi(k;Z/2) and εLi(k;Z/`) are as follows:

i(mod 8) 1Li( ,Z/2) −1Li( ,Z/2) 1Li( ,Z/`) −1Li( ,Z/`)

0 Z/2 Z/2 Z/` Z/`

1 Z/2 0 0 0

2 Z/4 0 0 0

3 Z/2 0 0 0

4 Z/2 Z/2 Z/` Z/`

5 0 Z/2 0 0

6 0 Z/4 0 0

7 0 Z/2 0 0

Recall that the Moore space Y 2 is a copy of RP 2, and K̃O(RP 2) ∼= Z/4: the
generator is the tangent bundle.
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