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Introduction

The identification of morphism sets in path categories of simplicial (or cubical)
complexes is a central theme of concurrency theory. The path category functor,
on the other hand, plays a role in the homotopy theory of quasi-categories that
is roughly analogous to that of the fundamental groupoid in standard homotopy
theory.

Concurrency theory is the study of models of parallel processing systems.
One of the prevailing geometric forms of the theory represents systems as fi-
nite cubical complexes, called higher dimensional automata. Each r-cell of the
complex K represents the simultaneous action of a group of r processors, while
the holes in the complex represent constraints on the system, such as areas of
memory that cannot be shared. The vertices of K are the states of the system,
and the morphisms P (K)(x, y) from x to y in the path category P (K) are the
execution paths from the state x to the state y.

There is no prevailing view of what higher homotopy invariants should mean
in concurrency theory, or even what these invariants should be. The path cat-
egory functor is not an artifact of standard homotopy theory, but it is a cen-
tral feature of the theory of quasi-categories. The homotopy theory of quasi-
categories is constructed abstractly within the category of simplicial sets by
methods that originated in homotopy localization theory, and its weak equiva-
lences are not described by homotopy groups.

Is the homotopy theory of quasi-categories the right venue for the study
of higher homotopy phenomena in concurrency theory? Well maybe, but a
definitive answer is not presented here.

It is a fundamental aspect of this flavour of homotopy theory that if a map
X → Y of simplicial sets is a quasi-category weak equivalence (a “categorical
weak equivalence” below), then the induced functor P (X)→ P (Y ) is an equiv-
alence of categories — see Lemma 28. This phenomenon may be a bit strong
for computational purposes, given that recent complexity reduction techniques
for concurrency algorithms focus on producing subcomplexes L ⊂ K of a sim-

∗This research was supported by NSERC.

1



plicial complex K which induce fully faithful imbeddings P (L)→ P (K) of the
associated path categories.

It nevertheless appears that the homotopy theory of quasi-categories is a
good first approximation of a theory that is suitable for the homotopy theoretic
analysis of the computing models that are represented by higher dimensional
automata.

Further, recent work of Nicholas Meadows [7] shows that the theory of
quasi-categories can be extended to a homotopy theory for simplicial presheaves
whose weak equivalences are those maps which are stalkwise quasi-category weak
equivalences. Meadows’ theory starts to give a local to global picture of systems
that are infinite in the practical sense that they cannot be studied by ordinary
algorithms.

This paper is esssentially expository: it is an introduction to the “ordinary”
homotopy theory of quasi-categories. The exposition presented here has evolved
from research notes that were written at a time when complete descriptions
of Joyal’s quasi-category model structure for simplicial sets were not publicly
available. The overall line of argument is based on a method which first appeared
Cisinski’s thesis [1], [2], and is now standard. This presentation is rapid, and is
at times aggressively combinatorial. Some readers may prefer other descriptions
of the theory, such as one finds in [5] or [6].

From a calculational point of view, the most interesting result of this paper
might be Proposition 38, which characterizes weak equivalences between quasi-
categories as maps which induce equivalences on a naturally defined system of
groupoids. These groupoids are effectively the higher homotopy “groups” for
quasi-category homotopy theory.

The collection of ideas appearing in the argument for Proposition 38 also
applies within the ordinary homotopy theory of simplicial sets. Corollary 39
says that there is a system of naturally defined groupoids for Kan complexes,
such that a map of Kan complexes is a standard weak equivalence if and only
if it induces equivalences of this list of associated groupoids. This criterion is
base point free, but may not be all that new — it can be proved directly with
standard techniques of simplicial homotopy theory.
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1 The path category functor

Suppose that X is a simplicial set. The path category P (X) of X is the category
freely that is generated by the graph defined by the vertices and edges of X,
subject to the relations

d1(σ) = d0(σ) · d2(σ),

one for each 2-simplex σ of X, and s0(x) = 1x for each vertex x of X.
The category P (X) has morphism sets P (X)(x, y) defined by equivalence

classes of strings of 1-simplices

α : x = x0
α1−→ x1

α2−→ . . .
αn−−→ xn = y,

where the equivalence relation is generated by relations of the form α ∼ α′

occurring in the presence of a 2-simplex σ of X with boundary

xi
β //

αi+1

��

xi+2

xi+1

αi+2

AA

and where α′ is the string

α′ : x0
α1−→ . . .

αi−→ xi
β−→ xi+2

αi+3−−−→ . . .
αn−−→ xn.

Composition in P (X) is defined by concatenation of representing strings.
The resulting functor X 7→ P (X) is left adjoint to the nerve functor

B : cat→ sSet,

essentially since the nerve functor takes values in 2-coskeleta. The inclusion
sk2(X) ⊂ X induces an isomorphism of categories

P (sk2(X)) ∼= P (X).

Given a simplicial set map f : X → BC, the adjoint functor f∗ : P (X)→ C
is the map f : X0 → Ob(C) in degree 0, and that takes a 1-simplex α : d1(α)→
d0(α) to the morphism f(α) : f(d1(α)) → f(d0(α)) of C. In particular, the
canonical functor ε : P (BC) → C is the identity on objects, and takes a 1-
simplex α : x→ y of BC to the corresponding morphism of C.

Lemma 1. The canonical functor

ε : P (BC)→ C

is an isomorphism for each small category C.
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Proof. There is a functor s : C → P (BC), which is the identity on objects,
and takes a morphism α : x → y to the morphism that is represented by the
1-simplex α of BC. The composition law is preserved, because the 2-simplices
of BC are composition laws. The morphism of P (BC) that is represented by a
string of 1-simplices

x = x0
α1−→ x1

α2−→ . . .
αn−−→ xn = y

in BC is also represented by the composite αn · · ·α1, and it follows that the
functor s is full. But ε · s = 1C , so that s is faithful as well as full, and is
therefore an isomorphism of categories.

Lemma 2. The canonical functor

P (X × Y )→ P (X)× P (Y )

is an isomorphism for all simplicial sets X and Y .

Proof. If C and D are small categories, then there is a diagram

P (B(C ×D)) //

ε ∼=
��

P (BC)× P (BD)

ε×ε∼=
��

C ×D
1

// C ×D

by Lemma 1, so the claim holds for X = BC and Y = BD. In general X × Y
is a colimit of products

∆n ×∆m = B(n)×B(m),

and so the comparison map is a colimit of the isomorphisms

P (∆n ×∆m)
∼=−→ P (∆n)× P (∆m).

Corollary 3. 1) Every simplicial homotopy h : X ×∆1 → Y between maps
f, g : X → Y induces a natural transformation h∗ : P (X) × 1 → P (Y )
between the corresponding functors f∗, g∗ : P (X)→ P (Y ).

2) Every simplicial homotopy equivalence X → Y induces a homotopy equiv-
alence of categories P (X)→ P (Y ).

3) Every trivial Kan fibration π : X → Y induces a strong deformation
retraction π∗ : P (X) → P (Y ) of P (X) onto P (Y ). The functor π∗ is a
homotopy equivalence of categories.

A functor f : C → D between small categories is a homotopy equivalence if
the induced map BC → BD is a homotopy equivalence. This means that there
is a functor g : D → C and natural transformations C×1→ C and D×1→ D
between g · f and 1C and between f · g and 1D. Note that the direction of these
natural transformations is not specified.
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Proof of Corollary 3. Statement 1) is a consequence of Lemma 1 and Lemma 2.
For statement 2), we are assuming the existence of a simplicial set map

g : Y → X, together with simplicial homotopies X ×∆1 → X between gf and
1X and Y ×∆1 → Y between fg and 1Y . The claim follows from statement 1).

To prove statement 3), it is a standard observation that π has a section
σ : Y → X along with a simplicial homotopy h : X × ∆1 → X between σπ
and 1X , so that Y is a strong deformation retract of X. More explicitly, h is
constructed by finding the lifting in the diagram

X × ∂∆1
(1X ,σπ) //

��

X

π

��
X ×∆1

π×1
//

h

44

Y ×∆1
pr

// Y

where the projection pr is a constant homotopy. If x ∈ X0, then the composite

∆1 (x,1)−−−→ X ×∆1 h−→ X

is a 1-simplex of the fibre Fπ(x) over π(x). This fibre is a Kan complex, so
that the path is invertible in P (Fπ(x)) and hence in P (X). It follows that the
induced natural transformation

h∗ : P (X)× 1→ P (X)

is a natural isomorphism.

The set π(X,Y ) of naive homotopy classes between simplicial sets X and Y
is the set of path components of the function space hom(X,Y ). Generally the
set of path components π0(X) of a simplicial set X coincides with the set

π0P (X) = π0(B(P (X)))

of path components of the path category of X. We shall be interested in some-
thing stronger, namely the set

τ0P (X)

of isomorphism classes of P (X).
Say that maps f, g : X → Y are strongly homotopic if there is an isomorphism

f
∼=−→ g in the path category P (hom(X,Y )), and write

τ0(X,Y ) = τ0P (hom(X,Y )).

Suppose that X is a Kan complex. Then a morphism of P (X) that is
represented by a string of 1-simplices

x0
α1−→ x1

α2−→ . . .
αn−−→ xn,
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is also represented by a 1-simplex x0 → xn. In effect, the string

x0
α1−→ x1

α2−→ x2

defines a simplicial set map Λ2
1 → X that extends to a 2-simplex σ : ∆2 → X,

and so the morphism represented by the string (α1, α2) is also represented by
the 1-simplex d1(σ) : x0 → x2.

Lemma 4. Suppose that X is a Kan complex. Then P (X) is a groupoid.

Proof. Every morphism of P (X) is represented by a 1-simplex α : x→ y of X.
The solutions of the lifting problems

Λ2
0

( ,s0(x),α) //

��

X

∆2

::

and

Λ2
2

(α,s0(y), ) //

��

X

∆2

::

imply that there are 1-simplices g : y → x and h : y → x (respectively) such
that g · α = 1x and α · h = 1y in P (X). But then

g = g · α · h = h

so that α has an inverse in P (X).

Joyal shows in [4] (see also Corollary 17 below) that if X is a quasi-category
(see Section 2), then the path category P (X) is a groupoid if and only if X is
a Kan complex.

Remark 5. Lemmas 1 and 4 together imply that the functor X 7→ P (X) does
not preserve standard weak equivalences. In other words, it is not the case
that a weak equivalence f : X → Y necessarily induces a weak equivalence
BP (X) → BP (Y ). Otherwise, the natural weak equivalence X ' B(∆/X)
and any fibrant model j : X → Z (Z a Kan complex) would together give weak
equivalences

X ' B(∆/X) ' BP (X) ' BP (Z),

while BP (Z) has only trivial homotopy groups in degrees above 1.

Lemma 6. Suppose that i : Λnk ⊂ ∆n is the standard inclusion, where n ≥ 2
and k 6= 0, n. Then the induced functor

i∗ : P (Λnk )→ P (∆n)

is an isomorphism.
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Proof. Recall that the canonical map

P (∆n) = P (B(n))
ε−→ n

is an isomorphism. A functor α : n → C can be identified with the string of
arrows

α(0)
α(0≤1)−−−−→ α(1)

α(1≤2)−−−−→ . . .
α(n−1≤n)−−−−−−−→ α(n).

It follows that the 1-simplices i ≤ i+ 1 : ∆1 → ∆n together define a simplicial
set inclusion

γn : Pathn = ∆1 ∗ · · · ∗∆1 ⊂ ∆n

defined on the join Pathn of n copies of ∆1 (end to end), which induces an
isomorphism

γn∗ : P (Pathn)
∼=−→ P (∆n) ∼= n.

All 1-simplices i ≤ i + 1 of ∆n are members of Λnk since k 6= 0, 1: in effect,
i ≤ i+ 1 is a member of dn(∆n−1) if i ≤ n− 1, and i ≤ i+ 1 is in d0(∆n−1) if
i ≥ 1. It follows that there is a commutative diagram

Λnk

i

��
Pathn

;;

γn
// ∆n

and hence a commutative diagram

P (Λnk )

i∗

��
P (Pathn)

γ̂
99

γn∗

∼= // P (∆n)

Every ordinal number map θ : m→ n determines a commutative diagram

P (Pathm)

γm∗ ∼=
��

θ̃ // P (Pathn)

γn∗∼=
��

P (∆m)
θ∗

// P (∆n)

where θ̃ sends the 1-simplex i ≤ i+ 1 to the composite morphism

θ(i) ≤ θ(i) + 1 ≤ θ(i) + 2 ≤ · · · ≤ θ(i+ 1).

It follows that every 1-simplex i ≤ j of Λnk , which is in some face dr(∆n−1), is
in the image of the functor

γ̂ : P (Pathn)→ P (Λnk ).

The functor γ̂ is therefore surjective on morphisms, and is an isomorphism.
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2 Quasi-categories

The class of inner anodyne extensions in simplicial sets is the saturation of the
set of morphisms

i : Λnk ⊂ ∆n, k 6= 0, n.

A quasi-category is a simplicial set X such that the map X → ∗ has the right
lifting property with respect to all inner anodyne extensions. A map p : X → Y
that has the right lifting property with respect to all inner anodyne extensions
is called an inner fibration.

Example: Suppose that C is a small category. Then BC is a quasi-category,
by Lemma 6.

Here’s an observation:

Lemma 7. Suppose that i : A → B is an inner anodyne extension. Then the
map i : A0 → B0 on vertices is a bijection.

Proof. The class of monomorphisms j : E → F that are bijections on vertices
is saturated and includes all inclusions Λnk ⊂ ∆n, 0 < k < n.

To see this last claim, observe that every vertex i of ∆n is in the face dj :
∆n−1 → ∆n if j 6= i. Thus, if n ≥ 2 then the vertex i is in at least two faces of
∆n.

The following result is more serious:

Lemma 8. Suppose that S is a proper subset of the (n− 1)-simplices di in ∆n

that contains d0 and dn, and let 〈S〉 be the subcomplex of ∆n that is generated
by the simplices in S. Then the inclusion 〈S〉 ⊂ ∆n is inner anodyne.

Proof. The proof is by decreasing induction on the cardinality of S and increas-
ing induction on the dimension n. Observe that 2 ≤ |S| ≤ n, and 〈S〉 = Λnk for
some k if |S| = n.

Suppose that S′ is obtained from S by adding a simplex dk, where 0 < k < n.
Then the intersection

〈dk〉 ∩ 〈S′〉

is the subcomplex of ∆n−1 ∼= 〈dk〉 that is generated by the set S′′ of simplices
dkdi and dkdj−1, where the simplices di, dj are the members of S′ with i < k and
j > k, respectively. In particular, the bottom and top faces dkd0 and dkdn−1 of
〈dk〉 are in S′′, and |S′′| = |S′| − 1 < n− 1.

There is a pushout diagram

〈S′′〉 //

i

��

〈S′〉

��
∆n−1

dk
// 〈S〉
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The inclusion i is inner anodyne by induction on dimension, so that the inclusion
〈S′〉 ⊂ 〈S〉 is inner anodyne. Thus, since 〈S〉 ⊂ ∆n is inner anodyne, the
inclusion 〈S′〉 ⊂ ∆n is inner anodyne as well.

The following result is proved in Section 4 (Theorem 45) below. The proof
is somewhat delicate, and makes heavy use of Lemma 8.

Theorem 9. Suppose that 0 < k < n. Then the inclusion

(Λnk ×∆m) ∪ (∆n × ∂∆m) ⊂ ∆n ×∆m

is inner anodyne.

Remark 10. The inclusion ∆0 → ∆1 of a vertex induces a map

(∆0 ×∆1) ∪ (∆1 × ∂∆1) ⊂ ∆1 ×∆1,

which is not inner anodyne. This observation is a consequence of Lemma 6,
since the induced map of path categories is not an isomorphism.

Corollary 11. 1) Suppose that A ⊂ B is an inclusion of simplicial sets, and
that X is a quasi-category. Then the map

i∗ : hom(B,X)→ hom(A,X)

is an inner fibration. If the map i : A→ B is an inner anodyne extension
then the map i∗ is a trivial Kan fibration.

2) Suppose that X is a quasi-category and that K is a simplicial set. Then
the function complex hom(K,X) is a quasi-category.

Suppose again that X is a quasi-category, and suppose that α, β : ∆1 → X
are 1-simplices x → y. A right homotopy α ⇒R β is a 2-simplex σ : ∆2 → X
with boundary

y

s0(y)

��
x

β
//

α

FF

y

and a left homotopy β ⇒L α is a 2-simplex of X with boundary

x

α

��
x

β
//

s0(x)

FF

y

Then the following are equivalent (by suitable choices of 3-simplices):

a) there is a right homotopy α⇒R β,

9



b) there is a right homotopy β ⇒R α,

c) there is a left homotopy β ⇒L α,

d) there is a left homotopy α⇒L β.

If any one of these conditions holds, say that α is homotopic to β, and write
α ' β.

Write ho(X) for the category whose objects are the vertices of X, whose
morphisms [α] : x → y are the homotopy classes of paths α : x → y in X, and
with composition law

ho(X)(x, y)× ho(X)(y, z)→ ho(X)(x, z)

defined for classes [α] : x→ y and [β] : y → z by

[β] · [α] = [d1(σ)]

where σ : ∆2 → X is a choice of extension, as in the diagram

Λ2
1

(β, ,α) //

i
��

X

∆2

σ

>>

One must show that the class [d1(σ)] is independent of the choices that are
made.

Lemma 12. There is an isomorphism of categories

P (X) ∼= ho(X)

for all quasi-categories X.

Proof. The functor P (X) → ho(X) is induced by the assignment α 7→ [α] for
paths α, while all members of a homotopy class represent the same morphism
in P (X). Thus, there is a functor ho(X) → P (X), and the two functors are
inverse to each other.

It follows (choose some 3-simplices) that if α : ∆1 → X is invertible in P (X),
where X is a quasi-category, then there is a path β : ∆1 → X together with
2-simplices σ, σ′ : ∆2 → X having respective boundaries

y

β

��
x

s0(x)
//

α

FF

x

x

α

��
y

s0(y)
//

β

FF

y

Under these circumstances, say that the 1-simplex α is a quasi-isomorphism of
X, as is β.
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In the presence of such 2-simplices for a path α : ∆1 → X in an arbitrary
simplicial set X, the corresponding morphism α is invertible in the path category
P (X).

Say that a simplicial set map p : X → Y is a right fibration if p has the
right lifting property with respect to all inclusions Λnk ⊂ ∆n with k > 0. This
definition is consistent with [6].

Lemma 13. Suppose that p : X → Y is a right fibration, and that X and Y
are quasi-categories. Suppose that α : ∆1 → X is a 1-simplex of X such that
p(α) is a quasi-isomorphism. Then α is a quasi-isomorphism.

We also say that the map p of Lemma 13 creates quasi-isomorphisms.

Proof. The simplex p(α) has a right inverse, so there is a 2 simplex σ : ∆2 → Y
with boundary ∂σ = (p(α), p(y), γ). The lifting exists in the diagram

Λ2
2

(α,y, ) //

��

X

p

��
∆2

σ
//

θ

>>

Y

so that α has a right inverse ζ = d2θ in P (X). Similarly ζ has a right inverse ω
in P (X). Thus,

α = α · ζ · ω = ω

in P (X), so that α is a quasi-isomorphism.

Write ∆m ∗∆n ∼= ∆m+n+1 for the (poset) join of the simplices ∆n and ∆m.
The join X ∗ Y of the simplicial sets X and Y is defined by the colimit formula

X ∗ Y = lim−→
∆m→X, ∆n→Y

∆m ∗∆n.

where the colimit is computed over the product ∆/X ×∆/Y of the respective
simplex categories. It is relatively easy to show that the maps

(Λmk ∗∆n) ∪ (∆m ∗ ∂∆n)→ ∆m ∗∆n

(∂∆m ∗∆n) ∪ (∆m ∗ ∂nk )→ ∆m ∗∆n

(∂∆m ∗∆n) ∪ (∆m ∗ ∂∆n)→ ∆m ∗∆n

are isomorphic to the maps Λm+n+1
k ⊂ ∆m+n+1, Λm+n+1

m+k+1 ⊂ ∆m+n+1, and
∂∆m+n+1 ⊂ ∆m+n+1, respectively.

Suppose that homj(X,Y ) is the simplicial set with r-simplices given by the
maps ∆r ∗X → Y . If p : X → Y is an inner fibration then the induced map

(i∗, p∗) : homj(∆
n, X)→ homj(∂∆n, X)×homj(∂∆n,Y ) homj(∆

n, Y )
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is a right fibration provided that n ≥ 0. It follows (by setting Y = ∗) that all
maps

homj(∆
n, X)→ homj(∂∆n, X)

are right fibrations if X is a quasi-category.

Proposition 14. Suppose given a commutative solid arrow diagram

Λn0
α //

��

X

p

��
∆n //

>>

Y

where n ≥ 2, X and Y are quasi-categories, p is an inner fibration, and the
map α takes the 1-simplex 0→ 1 to a quasi-isomorphism of X. Then the dotted
arrow lifting exists, making the diagram commute.

Proof. The lifting problem

Λn0
α //

��

X

p

��
∆n //

>>

Y

is isomorphic to a lifting problem

Λ1
0

x //

��

homj(∆
n−2, X)

(i∗,p∗)

��
∆1

α∗
//

44

homj(∂∆n−2, X)×homj(∂∆n−2,Y ) homj(∆
n−2, Y )

where i : ∂∆n−2 ⊂ ∆n The map (i∗, p∗) is a right fibration, as is the projection
map

homj(∂∆n−2, X)×homj(∂∆n−2,Y ) homj(∆
n−2, Y )→ homj(∂∆n−2, X).

The inclusion of any vertex of ∂∆n−2 induces a right fibration

homj(∂∆n−2, X)→ X.

It follows from Lemma 13 that the 1-simplex α∗ is a quasi-isomorphism.
Let β be an inverse for α∗. The lifting problem

Λ1
1

x //

��

homj(∆
n−2, X)

(i∗,p∗)

��
∆1

β
//

θ

44

homj(∂∆n−2, X)×homj(∂∆n−2,Y ) homj(∆
n−2, Y )

has a solution since the map (i∗, p∗) is a right fibration. It follows from Lemma
13 that θ is a quasi-isomorphism of homj(∆

n−2, X). Let γ be an inverse of θ.
Then i∗(γ) ∼ α∗ so that α lifts along i∗.
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Here’s the dual statement:

Corollary 15. Suppose given a commutative solid arrow diagram

Λnn
α //

��

X

p

��
∆n //

>>

Y

where n ≥ 2, X and Y are quasi-isomorphisms, p is an inner fibration, and the
map α takes the 1-simplex n − 1 → n to a quasi-isomorphism of X. Then the
dotted arrow lifting exists, making the diagram commute.

Corollary 16. Suppose that X is a quasi-category and suppose that n ≥ 2.
Then the liftings exist in the diagrams

Λn0
α //

��

X

∆n

>> Λnn
β //

��

X

∆n

>>

provided that α takes the simplex 0 → 1 to a quasi-isomorphism of X, respec-
tively that β takes the simplex n− 1→ n to a quasi-isomorphism of X.

Corollary 17. Suppose that X is a quasi-category. Then we have the following:

1) If P (X) is a groupoid, then X is a Kan complex. Thus, a quasi-category
X is a Kan complex if and only if P (X) is a groupoid.

2) Let J(X) ⊂ X be the subobject consisting of those simplices σ : ∆n → X
such that all composites

∆1 → ∆n σ−→ X

represent isomorphisms of P (X). Then J(X) is a Kan complex, and it is
the maximal Kan subcomplex of X.

The subcomplex J(X) is often called the core of the quasi-category X.

Corollary 18. Suppose that p : X → Y is an inner fibration, where X and Y
are Kan complexes. Suppose also that p has the path lifting property. Then p is
a Kan fibration.

Proof. The lifting problems

Λn0 //

��

X

p

��
∆n //

>>

Y

Λnn //

��

X

p

��
∆n //

>>

Y

have solutions for n = 1 by assumption, and have solutions for n > 1 by the
results above, since every 1-simplex of a Kan complex is a quasi-isomorphism.
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Suppose that X is a simplicial set, and write homI(∆
1, X) for the simplicial

set whose n-simplices are the maps α : ∆1 ×∆n → X such that all vertices x
of ∆n determine composites

∆1 (1,x)−−−→ ∆1 ×∆n α−→ X,

which represent isomorphisms of the path category P (X). Write I = Bπ(∆1)),
and observe that π(∆1) is the free groupoid on the ordinal number 1, and is
therefore the groupoid that is freely generated by one non-trivial arrow η : 0→
1. The path

∆1 η−→ I

induces a map

hom(I,X)
η∗−→ homI(∆

1, X).

Lemma 19. Suppose that X is a quasi-category and let n > 0. Then the inner
fibration

i∗ : hom(∆n, X)→ hom(∂∆n, X)

induced by the inclusion i : ∂∆n ⊂ ∆n creates quasi-isomorphisms.

Remark 20. Lemma 19 implies that the n-simplices of homI(∆
1, X) for a

quasi-category X are exactly the quasi isomorphisms ∆n × ∆1 → X of the
quasi-category hom(∆n, X), provided that X is a quasi-category.

Proof of Lemma 19. Suppose that α : ∆n ×∆1 → X is a morphism such that
the composite

α∗ : ∂∆n ×∆1 i×1−−→ ∆n ×∆1 α−→ X

is a quasi-isomorphism of hom(∂∆n, X). Then there is a 1-simplex β : ∂∆n ×
∆1 → X, and a 2-simplex σ : ∂∆n ×∆2 → X of hom(∂∆n, X) such that

∂(σ) = (d0σ, d1σ, d2σ) = (β, s0(d1α∗), α∗).

We therefore have an induced map

(∂∆n ×∆2) ∪ (∆n × Λ2
0)

(σ,( ,s0(d1α),α))−−−−−−−−−−−→ X

and I claim that it suffices to show that this map extends to a morphism θ :
∆n ×∆2 → X.

If so, then β′ = d1σ is a left inverse for α in P (hom(∆n, X), and so every
simplex α such that i∗(α) is a quasi-isomorphism has a left inverse in the path
category, and is therefore monic. But then β′ is also monic in the path category,
so that

β′ · α · β′ = β′

forces α · β′ = 1, so that α is a quasi-isomorphism.
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We must therefore solve the extension problem

(∂∆n ×∆2) ∪ (∆n × Λ2
0)

(σ,( ,s0(d1α),α)) //

��

X

∆n ×∆2

44

We do this by using the ordering on the set of non-degenerate simplices of
∆n ×∆2 of dimension n + 2 that is developed in connection with the proof of
Theorem 45 below.

A non-degenerate (n+ 2)-simplex

(0, 0)→ · · · → (n, 2)

is a path in the poset n× 2 with first segment either (0, 0)→ (1, 0) or (0, 0)→
(0, 1). Let S0 be the set of non-degenerate (n+2)-simplices starting with (0, 0)→
(1, 0) and let S′ be those non-degenerate (n+2)-simplices starting with (0, 0)→
(0, 1). The path

P : (1, 2) // . . . // (n, 2)

(1, 1)

OO

(0, 0) // (1, 0)

OO

is the minimal simplex of S0, and the path

Qn : (n, 2)

(0, 1) // . . . // (n, 1)

OO

(0, 0)

OO

is the maximal simplex of S′.
If T is a set of non-degenerate (n+ 2)-simplices, write

(∆n ×∆2)(T )

for the subcomplex of ∆n ×∆2 that is generated by the subcomplex

(∂∆n ×∆2) ∪ (∆n × Λ2
0)

15



and the members of T .
All members P ′ of S0 have d0P

′ and dn+2P
′ in the subcomplex

(∆n ×∆2)(∅) = (∂∆n ×∆2) ∪ (∆n × Λ2
0),

so the inclusion
(∆n ×∆2)(∅) ⊂ (∆n ×∆2)(S0)

is inner anodyne by Lemma 8.
Suppose that Qi is the (n+ 2)-simplex

(i, 2) // . . . // (n, 2)

(0, 1) // . . . // (i, 1)

OO

(0, 0)

OO

and write
S′i = S ∪ {Q0, . . . , Qi}.

Suppose first that i < n.
The face d0Qi has faces d0d0Qi and dn+1d0Qi in the the image of the bound-

ary subcomplex ∂(∆n ×∆1) under the map 1× d0 : ∆n ×∆1 → ∆n ×∆2, and

the intersection of the boundary of d0Qi with (∆n × ∆2)(S′i−1) is missing the
face di+1d0Qi.

If i < n, then di+2Qi is an interior simplex and it is only a face of Qi and
Qi+1, so that di+2Qi is not in the subcomplex

(∆n ×∆2)(S′i−1).

It follows that the inclusion

(∆n ×∆2)(S′i−1) ⊂ (∆n ×∆2)(S′i)

is a sequence of inner anodyne extensions that is achieved by first attaching
d0Qi and then attaching Qi if i < n.

Thus, there is a sequence of inner anodyne extensions

(∆n ×∆2)(∅) ⊂ (∆n ×∆2)(S0) ⊂ (∆n ×∆2)(S′i)

if i < n. The “last” simplex Qn has

diQn ∈ (∆n ×∆2)(S′n−1)

if i > 0, and d0Qn is not a face any simplex in S′n−1 since it is a maximal
non-degenerate simplex of ∆n ×∆1.
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The image of the 1-simplex (0, 0)→ (0, 1) under the composite

α∗ : ∂∆n ×∆1 i×1−−→ ∆n ×∆1 α−→ X

is a quasi-isomorphism of X, since that composite is a quasi-isomorphism of
hom(∂∆n, X). It follows from Corollary 16 that the last of the extension prob-
lems (the dotted arrow) in the list

(∆n ×∆2)(∅)

��

// X

(∆n ×∆2)(S)

��

88

(∆n ×∆2)(S′n−1)

��

AA

∆n ×∆2

FF

can be solved.

Corollary 21. Suppose that i : A → B is a cofibration of simplicial sets such
that i is a bijection on vertices. Suppose that X is a quasi-category. Then the
induced map

i∗ : hom(B,X)→ hom(A,X)

of quasi-categories creates quasi-isomorphisms.

Lemma 22. Suppose that X is a quasi-category, and suppose given a diagram

(∆n × {ε}) ∪ (∂∆n ×∆1)
(β,α) //

��

X

∆n ×∆1

66

where α : ∂∆n ×∆1 → X is a quasi-isomorphism of hom(∂∆n, X), and ε is 0
or 1. Then the indicated extension problem can be solved.

Proof. We’ll suppose that ε = 0. The case ε = 1 is similar (or even dual).
Write hi for the non-degenerate (n+ 1)-simplex

(0, 0) // . . . // (i, 0)

��
(i, 1) // . . . // (n, 1)
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Let T = {h1, . . . , hn} and write (∆n ×∆1)(T ) for the subcomplex of ∆n ×∆1

generated by the subcomplex

(∆n ×∆1)(∅) = (∆n × {0}) ∪ (∂∆n ×∆1)

and the simplices in T . Then the inclusion

(∆n ×∆1)(∅) ⊂ (∆n ×∆1)(Sn−1)

is inner anodyne and there is a pushout diagram

Λn+1
0

//

��

(∆n ×∆1)(T )

��
∆n+1

h0

// ∆n ×∆1

In the diagram

(∆n ×∆1)(∅) (β,α) //

��

X

(∆n ×∆1)(T )

γ

99

��
∆n ×∆1

BB

the extension γ takes the simplex (0, 0) → (0, 1) to a quasi-isomorphism of X,
so the indicated extension problem can be solved by Corollary 16.

Corollary 23. Suppose that X is a quasi-category. Then the map

i∗ : J(hom(∆n, X))→ J(hom(∂∆n, X))

is a Kan fibration for n ≥ 0.

Proof. The map i∗ : hom(∆n, X) → hom(∂∆n, X) is an inner fibration by
Theorem 9, and has the path lifting property for quasi-isomorphisms by Lemma
22.

Lemma 19 says that i∗ creates quasi-isomorphisms. It follows that the dia-
gram

J(hom(∆n, X)) //

i∗

��

hom(∆n, X)

i∗

��
J(hom(∂∆n, X)) // hom(∂∆n, X)

is a pullback. The map

i∗ : J(hom(∆n, X))→ J(hom(∆n, X))

is thus an inner fibration between Kan complexes that has the path lifting
property, and is therefore a Kan fibration by Corollary 18.
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Proposition 24. Suppose that X is a quasi-category. Then the map

η∗ : hom(I,X)→ homI(∆
1, X)

is a trivial Kan fibration.

Proof. The lifting problem

∂∆n //

��

hom(I,X)

η∗

��
∆n

α
//

88

homI(∆
1, X)

is isomorphic to the lifting problem

∆1 α∗ //

η

��

hom(∆n, X)

i∗

��
I //

99

hom(∂∆n, X)

(1)

The map α∗ is a quasi-isomorphism by Lemma 19, and so the diagram (1)
factors through the diagram

∆1 α∗ //

η

��

J(hom(∆n, X))

i∗

��
I //

88

J(hom(∂∆n, X))

The map i∗ is a Kan fibration by Corollary 23. The map η is a trivial cofibration
in the standard model structure for simplicial sets, so the lifting exists.

3 The quasi-category model structure

Let I = B(π(∆1)) represent an interval theory on simplicial sets in the sense of
[2]. In particular, recall that the assignment

P(n) 7→ �n = I×n

defines a functor I• : �→ sSet, giving a representation of the box category �
in simplicial sets.

The existence of two distinct maps 0, 1 : ∆0 → I is part of the structure
of an interval theory, and in this case these maps are given by the the two
objects 0, 1 of the groupoid π(∆1). An I-homotopy f ∼I g for an interval I is
a commutative diagram

K
(1K ,0) ��

f

''
K × I h // X

K

(1K ,1)
OO

g

77
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Write πI(K,X) for the corresponding set of I-homotopy classes of maps.
Following [2], write ∂�n for the union of the faces

I×(k−1) × {ε} × I×(n−k)

of �n in the category of simplicial sets. The subcomplex un(k,ε) ⊂ ∂�n is the

result of deleting the face I×(k−1) × {ε} × I×(n−k) from ∂�n.
The set S of inner anodyne extensions Λnk ⊂ ∆n and the interval I together

determine an (I, S)-model structure on the category sSet of simplicial sets [2],
for which the cofibrations are the monomorphisms, and the fibrant objects are
those simplicial sets Z for which the map Z → ∗ has the right lifting property
with respect all inclusions

(Λnk ×�m) ∪ (∆n)× ∂�m) ⊂ ∆n ×�m (2)

induced by inner horns Λnk ⊂ ∆n, and with respect to all maps

(∂∆n ×�m) ∪ (∆n × um(k,ε)) ⊂ ∆n ×�m. (3)

A weak equivalence of the (I, S)-model structure is a map X → Y which induces
an isomorphism

πI(Y, Z)
∼=−→ πI(X,Z)

in I-homotopy classes of maps for all fibrant objects Z.
There is a natural cofibration j : X → LX, such that the map j is in the

saturation of the set of maps described in (2) and (3), and LX has the right
lifting property with respect to all such maps, and is therefore fibrant for the
(I, S)-model structure. The map j : X → LX is a fibrant model for the (I, S)-
model structure.

A map X → Y is a weak equivalence if and only if the induced map LX →
LY is an I-homotopy equivalence.

If h : K× I → X is an I-homotopy taking values in a quasi-category X then
the composite map

K ×∆1 1K×η−−−−→ K × I h−→ X

is a quasi-isomorphism of quasi-category hom(K,X): the requisite inverse and
2-simplices are defined in I. Following Joyal [5], let τ0(K,X) denote the set
of isomorphism classes in P (hom(K,X)). It follows that there is an induced
function

πI(K,X)
η∗−→ τ0(K,X).

We have, from Proposition 24, a trivial Kan fibration

η∗ : hom(I,hom(K,X))→ homI(∆
1,hom(K,X)).

The vertices of the space homI(∆
1,hom(K,X)) are the quasi-isomorphisms of

the quasi-category hom(K,X). The trivial fibration η∗ is, among other things,

20



surjective on vertices, and so for every quasi-isomorphism h : K × ∆1 → X
there is an extension

K ×∆1 h //

1K×η
��

X

K × I
H

;;

Thus if there is a homotopy h : K × ∆1 → X from f to g that is a quasi-
isomorphism of hom(K,X), then there is an I-homotopy H : K × I → X from
f to g, and conversely. We have proven the following:

Proposition 25. Suppose that X is a quasi-category and that K is a simplicial
set. Then precomposing with the map η : ∆1 → I defines a bijection

πI(K,X) ∼= τ0(K,X).

This bijection is natural in simplicial sets K and quasi-categories X.

Lemma 26. Suppose that X is a quasi-category. Then all extension problems

(∂∆m ×�n) ∪ (∆m × un(i,ε)) //

��

X

∆m ×�n

66

can be solved for ε = 0, 1.

Proof. The extension problem in the statement of the Lemma can be rewritten
as a lifting problem

un(i,ε)
α //

j

��

hom(∆m, X)

i∗

��
�n

β
//

88

hom(∂∆m, X)

(4)

by adjointness. The maps α and β both map 1-simplices to quasi-isomorphisms,
so the lifting problem (4) factors through a lifting problem

un(i,ε)
α //

j

��

J(hom(∆m, X))

i∗

��
�n

β
//

77

J(hom(∂∆m, X))

The map i∗ in the diagram is a Kan fibration by Corollary 23, and the inclusion
un(i,ε) ⊂ �n is a standard weak equivalence (of contractible spaces), so that the
dotted arrow exists.
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Theorem 27. Quasi-categories are the fibrant objects for the (I, S)-model struc-
ture on simplicial sets that is determined by the set S of inner anodyne exten-
sions and the interval theory defined by the space I = B(π(∆1)).

Proof. If the inclusion A ⊂ B is inner anodyne, then so are all inclusions

(A×�n) ∪ (B × ∂�n) ⊂ (B ×�n).

This is a consequence of Theorem 9.
If X is a quasi-category, then the map X → ∗ has the right lifting property

with respect to all inclusions

(∂∆m ×�n) ∪ (∆m × un(i,ε)) ⊂ ∆m ×�n

by Lemma 26.

Proposition 25 says that the naive homotopy classes of maps πI(K,X) taking
values in a quasi-category X for the (I, S)-model structure for simplicial sets
coincide up to natural bijection with Joyal’s set

τ0(K,X) = π0J(hom(K,X)),

so that the fibrant objects, weak equivalences and cofibrations of the (I, S)-
structure coincide with the respective classes of maps in Joyal’s model structure
for quasi-categories [5]. It follows that the (I, S)-structure for simplicial sets
coincides with Joyal’s structure.

In particular, the weak equivalences and the fibrations for the (I, S)-struc-
ture are the weak categorical equivalences and the pseudo-fibrations of [5], re-
spectively. We shall continue to use these terms.

In particular, a weak categorical equivalence is a simplicial set map f : X →
Y such that the induced map

f∗ : πI(Y, Z)→ πI(X,Z)

is a bijection for all quasi-categories Z.
Observe that a map p : X → Y is a weak categorical equivalence and a

pseudo-fibration if and only if it is a trivial fibration in the standard model
structure for simplicial sets.

The natural fibrant model jX : X → LX for the (I, S)-model structure also
has a much simpler construction, such that j is an inner anodyne extension and
LX is a quasi-category.

Lemma 28. If g : X → Y is a categorical weak equivalence, then the induced
map g∗ : P (X)→ P (Y ) is an equivalence of categories.

Proof. There is a commutative diagram

X
jX //

g

��

LX

g∗

��
Y

jY
// LY
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where jX and jY are inner anodyne extensions and LX and LY are quasi-
categories. The map g∗ is a categorical weak equivalence of quasi-categories,
and is therefore an I-homotopy equivalence. It follows that the induced map

g∗ : P (LX)→ P (LY )

is an equivalence of categories.
In effect, the functor X 7→ P (X) preserves finite products and P (I) ∼=

π(∆1). Finally, Lemma 6 implies that the inner anodyne extensions iX , iY
induce isomorphisms P (X) ∼= P (Xf ) and P (Y ) ∼= P (Yf ).

We also have the following, by a very similar argument:

Lemma 29. Every categorical weak equivalence is a standard weak equivalence
of simplicial sets.

Proof. The inner horn inclusions Λnk ⊂ ∆n are standard weak equivalences, so
that the inner anodyne extension jX : X → LX is a standard weak equivalence.
The interval I is contractible in the standard model structure, and a map f :
Z → W of quasi-categories is a weak equivalence if and only if it is an I-
homotopy equivalence, so that every I-homotopy equivalence is a standard weak
equivalence.

Lemma 30. Suppose that g : X → Y is a categorical weak equivalence, and that
K is a simplicial set. Then the map g × 1K : X ×K → Y ×K is a categorical
weak equivalence.

Proof. Suppose that Z is a quasi-category. The exponential law induces a nat-
ural bijection

πI(X,hom(K,Z)) ∼= πI(X ×K,Z).

The function complex hom(K,Z) is a quasi-category by Corollary 11, so that
the induced map

g∗ : πI(Y,hom(K,Z))→ πI(X,hom(K,Z))

is a bijection.

Corollary 31. Suppose that i : A → B is a cofibration and a categorical weak
equivalence, and that j : C → D is a cofibration. Then the cofibration

(B × C) ∪ (A×D) ⊂ B ×D

is a categorical weak equivalence.

Example 32. A functor f : C → D of small categories induces a categorical
weak equivalence f∗ : BC → BD if and only if the finctor f is an equivalence
of categories.

In effect, BC and BD are quasicategories, so that f∗ is a categorical weak
equivalence if and only if it is an I-homotopy equivalence. This means that there
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is a functor g : D → C and homotopies C × π(∆1) → C and D × π(∆1) → D
which define the homotopies g · f ' 1 and f · g ' 1.

It follows that the quasi-category BC is weakly equivalent to a point if and
only if C is a trivial groupoid.

Example 33. Suppose that C is a small category. Then JBC is the nerve
B(Iso(C)) of the nerve of the groupoid of isomorphisms in C. The inclusion
JBC ⊂ BC is a quasi-category equivalence if and only if C is a groupoid.

Thus, in general, the map JX ⊂ X is not a quasi-category equivalence for
quasi-categories X.

Lemma 34. 1) Suppose that p : X → Y is a pseudo-fibration of quasi-
categories. Then the induced map p : J(X)→ J(Y ) is a Kan fibration.

2) Suppose that p : X → Y is a trivial fibration of quasi-categories. Then the
induced map p : J(X)→ J(Y ) is a trivial Kan fibration.

3) Suppose that f : X → Y is a categorical weak equivalence of quasi-
categories. Then the induced map f : J(X)→ J(Y ) is a weak equivalence
of simplicial sets.

Proof. For statement 1), suppose given a commutative diagram

Λnk
//

��

J(X) //

��

X

p

��
∆n //

θ

66

J(Y ) // Y

where 0 < k < n. Then the dotted arrow θ exists since p is an inner fibration.
The map P (Λnk ) → P (∆n) is an isomorphism, so θ maps all 1-simplices of ∆n

to quasi-isomorphisms. Thus, θ factors through a map θ′ : ∆n → J(X), and so
the map p : J(X)→ J(Y ) is an inner fibration.

The map p has the path lifting property in the sense that all lifting problems

{ε} //

��

X

p

��
I //

>>

Y

can be solved, where ε = 0, 1. Any lift I → X has its image in J(X), since I is
a Kan complex.

Suppose given a lifting problem

{ε} //

��

J(X)

p

��
∆1

α
//

<<

J(Y )
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Then there is a morphism α′ : I → J(Y ) such that α′ · η = α, where η : ∆1 → I
is the trivial cofibration that we’ve been using, since J(Y ) is a Kan complex. It
follows that there is a commutative diagram

{ε} //

��

J(X) //

p

��

X

p

��
∆1 // I

α′
//

>>

J(Y ) // Y

and so the map p : J(X) → J(Y ) has the path lifting property. The map p is
therefore a Kan fibration, by Corollary 18.

For statement 2), the trivial fibration p : X → Y creates quasi-isomorphisms,
so that the diagram

J(X) //

p

��

X

p

��
J(Y ) // Y

is a pullback. It follows that the map p : J(X)→ J(Y ) is a trivial Kan fibration.
Statement 3) is a formal consequence of statement 2), by the usual factor-

ization trick: the map f is a composite f = q · j where q is a pseudo-fibration
and a categorical weak equivalence (a trivial fibration), and j is a section of a
trivial fibration.

Remark 35. Suppose that f : X → Y is a map of quasi-categories such that
f∗ : J(X) → J(Y ) is a weak equivalence of simplicial sets. It does not follow
that f is a categorical weak equivalence.

For example, suppose that C is a small category and recall that the core
J(BC) of the nerve of C is the nerve B(Iso(C)) of the groupoid of isomorphisms
of C. The map B(Iso(C)) → BC induces an isomorphism of cores, but is not
a categorical weak equivalence in general, since C may not be a groupoid. See
also Example 33.

The fibrant model construction j : X → LX for the quasi-category model
structure is defined by a countable sequence of cofibrations

X = X0 → X1 → X2 → . . .

with LX = lim−→i
Xi. In all cases, Xi+1 is constructed from Xi by forming the

pushout ⊔
Λn

k→Xi
Λnk

//

��

Xi

��⊔
Λn

k→Xi
∆n // Xi+1

where the disjoint union is indexed over all maps Λnk → Xi of inner horns to Xi.
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Suppose that α is a regular cardinal. It is a consequence of the construction
that if X is α-bounded, then LX is α-bounded. Each of the functors X 7→ Xi

preserves monomorphisms and filtered colimits, and it follows that the functor
X 7→ LX has these same properties. If A and B are subobjects of a simplicial
set X, then there is an isomorphism

L(A ∩B)
∼=−→ LA ∩ LB,

as subobjects of LX.

Lemma 36. Suppose that i : X → Y is a cofibration and a categorical weak
equivalence. Suppose that A ⊂ Y is an α-bounded subobject of Y . Then there is
an α-bounded subobject B of Y with A ⊂ B, such that the map B ∩X → B is
a categorical weak equivalence.

This result is a consequence of the method of proof of Lemma 4.9 of [2].

Proof. The map i∗ : LX → LY is a filtered colimit of the maps L(B∩X)→ LB,
indexed over the α-bounded subobjects B of Y . All diagrams

L(B ∩X) //

��

LX

i∗

��
LB // LY

are pullbacks. Every map f : Z →W between quasi-categories has a functorial
factorization f = p ·j, where p is a pseudo-fibration and j is a section of a trivial
fibration. For the map LX → LY this factorization has the form

LX
j //

""

Z

p

��
LY

(5)

For each α-bounded subobject B ⊂ Y , the factorization of the map L(B∩X)→
LB can be written

L(B ∩X)
jB //

%%

ZB

pB

��
LB

(6)

The diagram (5) is a filtered colimit of diagrams (6). It follows that all lifting
problems

∂∆n //

��

ZA

��
∆n //

<<

LA
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have solutions over some LB1, where B1 is an α-bounded subcomplex of Y such
that A ⊂ B1. Continue inductively, to produce a chain of α-bounded subobjects

A ⊂ B1 ⊂ B2 ⊂ . . .

such that all lifting problems

∂∆n //

��

ZBi

��
∆n //

<<

LBi

have solutions over LBi+1.
Set B = lim−→i

Bi. Then the map pB : ZB → LB is a trivial fibration, so the

map L(B ∩X)→ LB is a quasi-category weak equivalence.

Lemma 37. Suppose that f : X → Y is a categorical weak equivalence of
quasi-categories and that A is a simplicial set. Then the map

hom(A,X)→ hom(A, Y )

is a categorical weak equivalence of quasi-categories.

Proof. The object hom(A,X) is a quasi-category if X is a quasi-category, by
Corollary 11.

The map f has a factorization f = q · j, where q is a trivial fibration and
j is a section of a trivial fibration. The functor X 7→ hom(A,X) preserves
trivial fibrations, and therefore preserves categorical weak equivalences between
quasi-categories.

Proposition 38. A map f : X → Y between quasi-categories is a categorical
weak equivalence if and only if it induces equivalences of groupoids

f∗ : πJ(hom(∂∆n, X))→ πJ(hom(∂∆n, Y )) and

f∗ : πJ(hom(∆n, X))→ πJ(hom(∆n, Y ))
(7)

for n ≥ 1.

Proof. Suppose that f : X → Y is a quasi-weak equivalence of quasi-categories.
Then all induced maps

hom(A,X)→ hom(A, Y )

are quasi-weak equivalences of quasi-categories by Lemma 37. The induced
maps

Jhom(A,X)→ Jhom(A, Y )

are weak equivalences of Kan complexes by Lemma 34, and therefore induce
equivalences of fundamental groupoids

πJhom(A,X)→ πJhom(A, Y )
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It follows that the maps of (7) are equivalences of groupoids.
For the converse, suppose that all morphisms (7) are weak equivalences of

groupoids.
It suffices to assume that f is a pseudo-fibration, by the usual fibration

replacement trick for maps between Kan complexes: if f = p · i where i is a
section of a trivial fibration and p is a pseudo-fibration, then f satisfies the
conditions of the Lemma if and only if p does so.

Suppose, therefore, that f is a pseudo-fibration. We want to solve the lifting
problem

∂∆n α //

i

��

X

f

��
∆n

β
//

<<

Y

The map
f∗ : hom(∆n, X)→ hom(∆n, Y )

is a pseudo-fibration by Lemma 30. The map

f∗ : πJ(hom(∆n, X))→ πJ(hom(∆n, Y ))

is an equivalence of groupoids by assumption, so that there is a quasi-isomor-
phism ∆1 → hom(∆n, Y ) from the vertex β to p(γ) for some γ : ∆n → X.

All pseudo-fibrations p : Z →W satisfy the path lifting property

{ε} //

��

Z

p

��
I //

==

W

It follows that all pseudo-fibrations p between quasi-categories satisfy a lifting
property

{ε} //

��

Z

p

��
∆1

γ
//

θ

>>

W

for quasi-isomorphisms γ, since a quasi-isomorphism γ extends to a morphism

I → J(W ) ⊂W.

We can further assume that the lifting θ is a quasi-isomorphism of Z.
It follows that there is a quasi-isomorphism ∆1 → hom(∆n, X) from a pre-

image β′ of β to γ, and in particular there is a lifting

X

f

��
∆n

β
//

β′
==

Y
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The map
f∗ : J(hom(∂∆n, X))→ J(hom(∂∆n, Y ))

is a Kan fibration by Lemma 34. The vertices β′ · i and α of the Kan complex
J(hom(∂∆n, X)) have the same image, namely β · i under this fibration f∗,
and are therefore in the fibre Fβ·i of f∗ over β · i. The fibration f∗ induces an
equivalence of fundamental groupoids by assumption, so that the fibre Fβ·i is a
connected Kan complex. It follows that there is a path h : ∆1 → Fβ·i from α
to β′ · i, and so there is a map h′ making the diagram

∆1 h //

η

��

Fβ·i

I

h′

==

since the map η is a trivial cofibration in the standard model structure for
simplicial sets. Write H for the adjoint of the composite

I
h′−→ Fβ·i → J(hom(∂∆n, X).

Then the lifting problem

(∆n × {1}) ∪ (∂∆n × I)
(β′,H) //

��

X

f

��
∆n × I //

θ

66

Y

can be solved since f is a pseudo-fibration, by Lemma 22. It follows that there
is a commutative diagram

∂∆n α //

i

��

X

f

��
∆n

β
//

θ′
<<

Y

where θ′ is the composite

∆n × {0} ⊂ ∆n × I θ−→ X.

Corollary 39. A map f : X → Y between Kan complexes is a standard weak
equivalence of simplicial sets if and only if it induces equivalences of groupoids

f∗ : π(hom(∂∆n, X))→ π(hom(∂∆n, Y )) (8)

for n ≥ 1.

29



Proof. Suppose that all maps (8) are weak equivalences of groupoids. Then the
morphism π(X)→ π(Y ) is an equivalence of fundamental groupoids, since it is
a retract of the equivalence

πhom(∂∆1, X)→ πhom(∂∆1, Y ).

Any vertex ∗ → ∆n induces a natural weak equivalence

hom(∆n, X)
'−→ X

of Kan complexes, while there is an identification

J(hom(∆n, X)) = hom(∆n, X).

It follows that all induced groupoid morphisms

πJ(hom(∆n, X))→ πJ(hom(∆n, Y ))

are equivalences.
It follows from Proposition 38 that the map f : X → Y is a categorical weak

equivalence. The Kan complexes X and Y are quasi-categories, so Lemma 29
implies that f is a standard weak equivalence.

Corollary 39 can also be proved directly, by using traditional methods of
simplicial homotopy theory.

It follows from Lemma 4.13 of [2] that a map p : X → Y between quasi-
categories is a pseudo-fibration if and only if it has the right lifting property
with respect to the maps (2) and (3).

The maps (2) induce isomorphisms of path categories, and the map (3)
induces an isomorphism of path categories

P ((∂∆n ×�m) ∪ (∆n × um(k,ε)))
∼=−→ P (∆n ×�m)

if m ≥ 1. It follows that a functor p : C → D between small categories induces
a pseudo-fibration if and only if it has the right lifting property with respect to
all functors n× {ε} → n× π(∆1), where ε = 0, 1.

It is then an exercise to show that the functor p : C → D defines a pseudo-
fibration BC → BD if and only if it has the isomorphism lifting property in the
sense that all lifting problems

{ε} //

��

C

p

��
1

α
//

>>

D

have solutions, where ε = 0, 1, and the morphism defined by the functor α is an
isomorphism of D.

If p : C → D has the isomorphism lifting property, then the induced functors
p : Cn → Dn have the isomorphism lifting property, for all n ≥ 1.
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Example 40. Suppose that the functor p : C → D has the isomorphism lifting
property, and suppose that the induced map p∗ : BC → BD of quasi-categories
satisfies the criteria for a categorical weak equivalence that are given by Propo-
sition 38. These criteria mean, precisely, that all induced functors

Iso(Cn)→ Iso(Dn) (9)

and
Iso(CP (∂∆n))→ Iso(DP (∂∆n)) (10)

are equivalences of groupoids for n ≥ 0. These functors are then trivial fibrations
of groupoids in the traditional sense, by Lemma 34.

To solve the lifting problems

∂∆n //

��

BC

p∗

��
∆n //

;;

BD

it suffices to assume that n ≤ 2, since the induced functors P (∂∆n) → P (∆n)
are isomorphisms for n ≥ 3.

Every object x of D is isomorphic to the image p(y) of some object y of
C since the map Iso(C) → Iso(D) is an equivalence of groupoids. We make a

specific choice of isomorphism α : x
∼=−→ p(y) in D. The lifting problem

{1}
y //

��

C

p

��
1

α
//

>>

D

has a solution, so there is an object z of C such that p(z) = x.
Suppose given a lifting problem

∂∆2 α //

��

BC

p∗

��
∆2

β
//

<<

BD

The map Iso(C2) → Iso(D2) is an equivalence of groupoids, so there is an
isomorphism h : 1→ Iso(D2) from β to a functor p(γ), for some γ : 2→ C. The
isomorphism h lifts along the pseudo-fibration C2 → D2 to an isomorphism H :

ω
∼=−→ γ in C2. The restriction ω|∂∆2 and α have the same image, namely β|∂∆2

under p, and the map p : Iso(CP (∂∆2)) → Iso(DP (∂∆2)) is a trivial fibration of

groupoids. It follows that there is an isomorphism ω|∂∆2 → α of Iso(CP (∂∆2))
which maps to the identity of β|∂∆2 under p. It follows that there is a (unique)
functor ζ : 2→ C which maps to β under p and restricts to α on ∂∆2.
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The solution of the lifting problem

∂∆1 α //

��

BC

p∗

��
∆1

β
//

<<

BD

is very similar.
The moral is that a functor f : C → D is an equivalence of categories if and

only if the functors (9) and (10) are equivalences of groupoids for 0 ≤ n ≤ 2.

4 Products of simplices

Lemma 41. Suppose that σ : ∆n → ∆r × ∆s is a non-degenerate simplex.
Then n ≤ r + s.

Proof. Suppose that σ is defined by the path

(i0, j0)→ (i1, j1)→ · · · → (in, jn)

in the product poset r × s. The simplex σ is non-degenerate, so there are no
repeats in the string. Thus, i0 < i1 or j0 < j1.

If i0 < i1 then the string

d0(σ) : (i1, j1)→ · · · → (in, jn)

lies in a subobject of r × s isomorphic to a poset r′ × s, where r′ < r, and
inductively d0(σ) has length L(d0(σ)) bounded above by r′ + s. Thus, σ has
length

n = 1 + L(d0(σ)) ≤ 1 + (r′ + s) ≤ r + s.

The same outcome obtains (with a similar argument) if j0 < j1.

Corollary 42. The non-degenerate simplices σ : ∆n → ∆r × ∆s of maximal
dimension have dimension n = r + s.

Suppose that

σ : (0, 0) = (i0, j0)→ · · · → (in, jn) = (r, s) (11)

is a non-degenerate simplex of maximal dimension n = r+s. Then ik+1 ≤ ik+1
for k < r, for otherwise, there is a non-degenerate path

(ik, jk)→ (ik + 1, jk)→ (ik+1, jk+1)

having the path (ik, jk)→ (ik+1, jk+1) as a face, and σ does not have maximal
length. Similarly (or dually), jk+1 ≤ jk + 1 for k < r. Observe also that

a) if ik+1 = ik then jk < jk+1 so that jk + 1 = jk+1, and
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b) (dually) if jk+1 = jk then ik+1 = ik + 1.

Suppose that

γ : (0, 0) = (i′0, j
′
0)→ · · · → (i′n, j

′
n) = (r, s)

is another simplex of maximal dimension n = r+ s in ∆r ×∆s. Say that σ ≤ γ
if ik ≤ i′k for 0 ≤ k ≤ n.

Lemma 43. For the ordering σ ≤ γ on the set of non-degenerate simplices of
∆r ×∆s of maximal dimension, the simplex

(0, 0)→ (0, 1)→ · · · → (0, s)→ (1, s)→ · · · → (r, s)

is minimal, and the simplex

(0, 0)→ (1, 0)→ · · · → (r, 0)→ (r, 1)→ · · · → (r, s)

is maximal.

Proof. If σ is a path as (11), then there are relations

0 = i0 ≤ i1 ≤ · · · ≤ ir
and ik+1 ≤ ik + 1. It follows that 0 ≤ ij ≤ j for 0 ≤ j ≤ r. Also, ij ≤ r for all
j, and hence for all j > r. It follows that the indicated simplex is maximal.

The relation
ik + jk = k,

holds for all non-degenerate simplices of maximal dimension — this is a conse-
quence of the observations in statements a) and b) above. Thus, for 0 ≤ k ≤ r,
is+k + js+k = s+ k and js+k ≤ s together force is+k = (s− js+k) + k ≥ k. The
assertion that the indicated simplex is minimal follows.

Suppose that σ is a non-degenerate (r+s)-simplex such that the path defining
σ contains a segment

(ik + 1, jk + 1)

(ik, jk) // (ik + 1, jk)

OO

Then the path σ′ that is obtained from σ by replacing the segment above by
the path

(ik, jk + 1) // (ik + 1, jk + 1)

(ik, jk)

OO
(12)

satisfies σ′ ≤ σ.
Observe that dk+1(σ) = dk+1(σ′), and that σ and σ′ are the only two non-

degenerate (r+ s)-simplices for which dk+1(σ) could be a face. In particular, if
τ < σ′ then dk+1(σ) is not a face of τ .

33



Lemma 44. Suppose that σ is a non-degenerate (r + s)-simplex of ∆r ×∆s.

1) If σ is not maximal, then it contains a segment

(ik, jk + 1) // (ik + 1, jk + 1)

(ik, jk)

OO

2) If σ is not minimal, then it contains a segment

(ir + 1, jr + 1)

(ir, jr) // (ir + 1, jr)

OO

Proof. We prove statement 1). The proof of statement 2) is similar.
We argue by induction on r + s ≥ 2.
If r = s = 1 there are two non-degenerate 2-simplices in ∆1 × ∆1 and the

one that is not maximal has the form (12).
Suppose that ik is minimal such that (ik, jk) = (ik, s). If ik < r, then σ has

a segment

(ik, r) // (ik + 1, r)

(ik, r − 1)

OO

Suppose that ik = r. Choose the minimal ip such that (ip, jp) = (r, jp).
Then ip > 0 since σ is not maximal, and the segment of σ ending at (r, jp)) has
the form

(0, 0)→ · · · → (r − 1, jp)→ (r, jp).

This segment defines a maximal non-degenerate simplex of ∆r ×∆jp , which is
susceptible to the argument of the first paragraph. This simplex therefore has
a segment of the required form, as does the simplex σ.

An interior simplex of ∆r ×∆s is a poset morphism

m
θ−→ r× s

such that the composites

m
θ−→ r× s→ r

m
θ−→ r× s→ s

with the respective projections are surjective. Such a simplex θ cannot lie in
the boundary subcomplex

(∂∆r ×∆s) ∪ (∆r × ∂∆s),
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for then one of the two composites above would fail to be surjective.

Theorem 45. Suppose that 0 < k < n. Then the inclusion

(Λnk ×∆m) ∪ (∆n × ∂∆m) ⊂ ∆n ×∆m

is inner anodyne.

Proof. Suppose that T is a set of non-degenerate (m+n)-simplices of ∆m×∆n

that is order closed in the sense that if γ ∈ T and τ ≤ γ then τ ∈ T .
Given T pick a smallest σ such that σ /∈ T . Then the collection of all

simplices τ such that τ < σ is contained in T and the set T ′ = T ∪ {σ} is order
closed. The empty set ∅ of non-degenerate (m + n)-simplices is the minimal
order-closed set, and the full set of non-degenerate (m + n)-simplices is the
maximal order-closed set.

Write
(∆n ×∆m)(T )

for the subcomplex of ∆m ×∆n that is generated by the subcomplex

(∆n ×∆m)(∅) = (Λnk ×∆m) ∪ (∆n × ∂∆m)

and the simplices in T .
The idea of the proof is to show that all inclusions

(∆n ×∆m)(T ) ⊂ (∆n ×∆m)(T ′)

are inner anodyne for order closed sets T and T ′ = T ∪ {σ} as above.
Every non-degenerate (m + n)-simplex σ has d0(σ) and dm+n(σ) in the

subcomplex (∆n ×∆m)(∅):

1) If the first member in the path

σ : (0, 0) = (i0, j0)→ · · · → (im+n, jm+n) = (n,m)

is the morphism (0, 0) → (1, 0) then d0(σ) is in the image of the poset
morphism d0 × 1 : (n− 1) × m → n × m, which is in Λnk × ∆m since
k 6= 0. If the first member of the path σ is the morphism (0, 0) → (0, 1)
then d0(σ) is in the image of the morphism 1×d0 : n× (m− 1)→ n×m,
which is in ∆n × ∂∆m.

2) If the last morphism in the path σ is the morphism (n − 1,m) → (n,m)
then dn+m(σ) is in the image of the poset morphism dn×1 : (n− 1)×m→
n × m, which is in Λnk × ∆m since k 6= n. If the last morphism of σ
is (n,m − 1) → (n,m) then dn+m(σ) is in the image of the morphism
1× dm : n× (m− 1)→ n×m, which is in ∆n × ∂∆m.
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There is a pushout diagram

K //

��

(∆n ×∆m)(T )

i
��

∆m+n
σ
// (∆n ×∆m)(T ′)

where
K = ∆m+n ∩ (∆n ×∆m)(T )

in ∆n ×∆m.
I claim that the maximal non-degenerate simplices of K have dimension

m+ n− 1 so that K = 〈S〉 some set S of non-degenerate (m+ n− 1)-simplices
of ∆m+n.

To see this, let γ be such a maximal non-degenerate simplex of K, and write

(γ(0), γ′(0))→ · · · → (γ(r), γ′(r))

for the string defining γ.
If (γ(0), γ′(0)) 6= (0, 0) then γ is contained in the image of one of the mor-

phisms d0 × 1 or 1 × d0, and the maximum length of non-degenerate simplices
in these images in m + n − 1. It follows that γ = d0(σ). Thus, we can as-
sume (for otherwise γ is a face of a simplex of dimension m+ n− 1 of K) that
(γ(0), γ′(0)) = (0, 0). We can similarly assume that (γ(r), γ′(r)) = (m,n).

Suppose that the morphism

(γ(i), γ′(i))→ (γ(i+ 1), γ′(i+ 1))

is one of the morphisms in the string defining γ. This morphism is the composite
of the segment of morphisms

τi : (i1, j1)→ · · · → (ik, jk)

appearing in the string defining σ. This segment is a non-degenerate simplex of
∆r ×∆s for some r, s. If this string τi is not minimal among all such simplices
then it contains a substring of the form

(iv + 1, jv + 1)

(iv, jv) // (iv + 1, jv)

OO

by Lemma 44. It follows that γ is a face of dv+1(σ), which is a face of σ as well
as a face of some (unique) σ′ < σ, so γ = dv+1(σ) is an (n+m− 1)-simplex of
K.

We can therefore assume that all of the strings τi are minimal. It follows that
the string σ is minimal among strings of length n+m passing through all of the
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points (γ(i), γ′(i)). It follows that γ is a face of some simplex in (∆n ×∆m)(∅),
and hence that γ is not interior.

If the composite

r
γ−→ n×m→ n

is not surjective, then there is an i for which γ(i) + 1 < γ(i + 1). This means
that the corresponding segment of σ has the form

(γ(i), γ′(i)) // . . . // (γ(i), γ′(i) + s)

��
(γ(i) + 1, γ′(i) + s) // . . . // (γ(i) + r, γ′(i) + s)

where r > 1. But then dv(σ) is in the image of some dj×1 : (n− 1)×m→ n×m
(for some v determined by the point (γ(i) + 1, γ′(i) + s) in the string above), so
that γ = dv(σ) has dimension m+ n− 1. A similar argument shows that γ has
dimension m+ n− 1 if the other composite is not surjective.

With all of that in hand, suppose that σ is not maximal. Then σ contains a
segment

(ir, jr + 1) // (ir + 1, jr + 1)

(ir, jr)

OO

and the face dr+1(σ) is not in any smaller non-degenerate (n+m)-simplex and
is interior. There is a pushout diagram

〈S〉 //

��

(∆n ×∆m)(T )

i
��

∆n+m
σ
// (∆n ×∆m)(T ′)

(13)

where S is a set of non-degenerate (n+m− 1)-simplices of ∆n+m that includes
the simplices d0 and dn+m but is missing dr+1. It follows from Lemma 8 that
the morphism i is inner anodyne.

If σ is maximal, there is still a pushout diagram of the form (13), and the
faces d0 and dm+n are still in the set S, but dk = dk(σ) is not a member of
S. In effect, dk(σ) 7→ dk under the projection ∆n ×∆m → ∆m so it is not in
Λnk ×∆n, and the composite

n + m− 1
dk(σ)−−−→ n×m→m

is surjective, so that dk(σ) is not in ∆n×∂∆m. Finally, dk(σ) is not a face of any
smaller non-degenerate (m+ n)-simplices because it contains the vertex (n, 0),
so that dk(σ) is not a member of S. The map i is therefore inner anodyne.
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d’homotopie. Astérisque, 308:xxiv+390, 2006.

[2] J. F. Jardine. Categorical homotopy theory. Homology, Homotopy Appl.,
8(1):71–144 (electronic), 2006.

[3] J. F. Jardine. Path categories and resolutions. Homology Homotopy Appl.,
12(2):231–244, 2010.

[4] A. Joyal. Quasi-categories and Kan complexes. J. Pure Appl. Algebra, 175(1-
3):207–222, 2002. Special volume celebrating the 70th birthday of Professor
Max Kelly.

[5] A. Joyal. Notes on quasi-categories. Preprint, http://ncatlab.org/nlab/
show/Andre+Joyal, 2008.

[6] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 2009.

[7] N. Meadows. The local Joyal model structure. Preprint, 2015.

38


