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Introduction

The paper [8] constructs model structures for pro-objects in simplicial presheaves.
These constructions are based on the standard methods of local homotopy the-
ory [9], and generalize known results for pro-objects in ordinary categories of
spaces [2], [5]. The homotopy theory of pro-objects, as displayed in all of these
papers, is based on (and generalizes) standard features of étale homotopy theory
[1], [3], and is an artifact of the étale topology, and ultimately of Galois theory.

One can ask if there are intrinsic invariants which arise from different Groth-
endieck topologies, which would generalize and extend existing pro-homotopy
theoretic techniques. The theory of cocycle categories [7], [9] suggests this:
it involves diagrams of weak equivalences which extend classical diagrams of
hypercovers, with techniques that are present in all topologies. These diagrams
have very little structure, and must be considered in the context of arbitrary
small diagrams of simplicial presheaves, with a suitably defined notions of “pro-
map” and “pro-equivalence”.

Suppose that X : I → sPre and Y : J → sPre are small diagrams of
simplicial presheaves.

If I and J are left filtered and X and Y are pro-objects, the most efficient
way to define a pro-map φ : X → Y (following Grothendieck) is to say that φ
is a natural transformation

lim−→
j∈J

hom(Yj , )→ lim−→
i∈I

hom(Xi, )

of the corresponding pro-representable functors. Then, as in [8], the map φ is a
pro-equivalence if the induced map

lim−→
j∈J

hom(Yj , Z)→ lim−→
i∈I

hom(Xi, Z)

of colimits of function spaces is a weak equivalence for all fibrant objects Z.
The displayed colimits are filtered, and filtered colimits are already homotopy
colimits, so this makes perfect sense from a homotopy theoretic point of view.

1



In more general situations, in which the categories I and J are no longer
filtered, the colimits above must be replaced with homotopy colimits. Then, for
example, the homotopy colimit for the functor j 7→ hom(Yj , Z) is the nerve of
the slice category Y/Z whose objects are the morphisms Yj → Z, and whose
morphisms are commutative diagrams

Yj

''
α∗

��
Z

Yj′

77

in which α : j → j′ is a morphism of J . In this way, the diagram Y : J → sPre
homotopy pro-represents a functor B(Y/?) : sPre→ sSet, with

Z 7→ B(Y/Z).

A pro-map X → Y for arbitrary index categories is then naturally defined as a
natural transformation

B(Y/?)→ B(X/?)

of homotopy pro-representable functors. One can show that a pro-map, so
defined, consists of a functor α : J → I and a natural transformation θ : X ·α→
Y , and is therefore a morphism of the Grothendieck construction associated to
the list of diagram categories sPreI and the functors between them which are
defined by restriction along functors J → I.

Each such pro-map (α, θ) : X → Y induces a commutative diagram

holim−−−→ j∈J hom(Yj , Z)

��

θ∗ // holim−−−→ j∈J hom(Xα(j), Z)

��

α∗// holim−−−→ i∈I hom(Xj , Z)

��
BJ

1
// BJ

α
// BI

and I say that the map (α, θ) is a pro-equivalence if the simplicial set map
α : BJ → BI is a weak equivalence, and the top composite

holim−−−→ j∈J hom(Yj , Z)→ holim−−−→ i∈I hom(Xj , Z)

is a weak equivalence of simplicial sets for each fibrant object Z.
The requirement that the map α : BJ → BI be a weak equivalence is not

an issue if I and J are filtered categories, because the spaces BJ and BI are
contractible in that case. The definition of pro-map between arbitrary small
diagrams, while motivated by the classical Grothendieck description as a trans-
formation of pro-representable functors, is more rigid, because it involves a
comparison of functors that are represented by homotopy colimits.

If I is a fixed small category, then a natural transformation f : X → Y of
I-diagrams of simplicial presheaves is a pro-map in the sense described above,
and it is a pro-equivalence if and only if it induces weak equivalences

f∗ : holim−−−→ i∈I hom(Yi, Z)→ holim−−−→ i∈I hom(Xi, Z)
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for all injective fibrant objects Z. Observe that if I is left filtered, then the
homotopy colimits can be replaced by filtered colimits, and then the transfor-
mation f would be a pro-equivalence of pro-objects.

One wants to show that the general description of pro-equivalence that is
displayed above is part of a homotopy theoretic structure for small diagrams,
but this has so far not been realized.

The purpose of the present paper is more modest, to show that the cate-
gory of I-diagrams of simplicial presheaves, with ordinary cofibrations and pro-
equivalences, has a homotopy theoretic structure in that it satisfies the axioms
for a left proper closed simplicial model category that is cofibrantly generated.
This is the main result of this paper, and appears as Theorem 12 below.

This has not previously been done for classical pro-objects, and that theory
is worked out as a test case in Section 1. The corresponding model structure is
given by Proposition 5.

The main steps in the arguments for Proposition 5 and Theorem 12 are
bounded monomorphism statements (in the style of [9]), which appear as Lemma
1 and Lemma 11, respectively. Lemma 1 is a special case of Lemma 11, but it
appears in the first section with a much easier argument that makes heavy use
of standard filtered colimit techniques.

The proof of Lemma 11 is more interesting, in that it involves restrictions
of I-diagrams to finite diagrams defined on order complexes of finite simpli-
cial complexes, in conjunction with subdivision arguments that appeal to the
stalklike structure of Kan’s Ex∞ construction.

Contents
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3 General diagram categories 13

1 The left filtered case

Suppose that I is a small category, and let C be a small Grothendieck site.
In all of this paper, we assume that α is a regular cardinal such that α >

|Mor(C)| and α > |I|, and define the injective fibrant model functor X 7→
L(X) for simplicial presheaves X by formally inverting the α-bounded trivial
cofibrations for the injective model structure on the simplicial presheaf category
sPre.

In this case, we know that there is a regular cardinal λ > α, such that if X
is a simplicial presheaf such that |X| < λ then the fibrant model L(X) satisfies
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|L(X)| < λ. Further, the fibrant model construction satisfies

L(X) = lim−→
Y ∈Bλ(X)

L(Y ),

where Bλ(X) denotes the family of λ-bounded subobjects of X. The functor
X 7→ L(X) also preserves monomorphisms and intersections. See Lemma 7.16
of [9].

It follows, for example, that, given a general lifting problem of simplicial
presheaves

A
f //

i

��

Z

B

?? (1)

with i a cofibration, A λ-bounded and Z injective fibrant, we can replace Z by
the λ-bounded object L(A). In effect, we find a factorization

A
j //

f
!!

L(A)

��
Z

of the map f , where the map j is the fibrant model. It follows that, if we can
solve the lifting problem

A
j //

i

��

L(A)

B

==

then we can solve the lifting problem (1) for all injective fibrant objects Z.

Suppose, for the rest of this section, that the index category I is left filtered.
Suppose given a diagram of cofibrations

X

i

��
A // Y

where A is λ-bounded and i is a pro-equivalence.
The map

lim−→
i

hom(Yi, Z)→ lim−→
i

hom(Xi, Z)
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is a trivial fibration of simplicial sets for all injective fibrant objects Z. This is
equivalent to the assertion that any lifting problem

(∂∆n × Yi) ∪ (∆n ×Xi)
f //

��

Z

∆n × Yi

66 (2)

can be solved after refining along i. Solution after refinement means that there
is a morphism α : j → i of I with a commutative diagram

(∂∆n × Yj) ∪ (∆n ×Xj)
α∗ //

��

(∂∆n × Yi) ∪ (∆n ×Xi)
f // Z

∆n × Yj
θ

22

We replace the map to Z in the picture by the fibrant model

(∂∆n × Yi) ∪ (∆n ×Xi)
j−→ Z(Y )i.

Write Z(B)i for the fibrant model of the object

(∂∆n ×Bi) ∪ (∆n × (Bi ∩Xi)),

where B varies through the λ-bounded subobjects of Y . There is a relation

lim−→
B

Z(B)i = Z(Y )i

where the colimit is indexed over the λ-bounded subobjects B of Y . In effect,
every λ-bounded subobject C of

(∂∆n × Yi) ∪ (∆n ×Xi)

is contained in some

(∂∆n ×Bi) ∪ (∆n × (Bi ∩Xi)),

with B ⊂ Y λ-bounded, while Z(Yi) is a filtered colimit of the objects Z(C).
It follows that the image of the composite map

∆n ×Aj → ∆n × Yj
θ−→ Z(Y )i

lies in Z(B)i for some λ-bounded B such that A ⊂ B.
This is the start of an inductive process. There is a λ-bounded subobject B

with A ⊂ B such that every lifting problem

(∂∆n ×Ai) ∪ (∆n × (Ai ∩Xi))
j //

��

Z(A)i

∆n ×Ai

55
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(i.e. for all i) is solved over B after refinement. It follows that there is a
λ-bounded C with A ⊂ C ⊂ Y such that every lifting problem

(∂∆n × Ci) ∪ (∆n × (Ci ∩Xi))
j //

��

Z(C)i

∆n × Ci

55

is solved after refinement, and this for all i.
We have proved the following bounded monomorphism statement:

Lemma 1. Suppose that I is a left filtered category. Suppose given a diagram
of cofibrations

X

i

��
A // Y

where A is λ-bounded and i is a pro-equivalence. Then there is an λ-bounded
subobject C ⊂ Y with A ⊂ C such that the map C∩X → C is a pro-equivalence.

Say that a map p : X → Y is a pro-fibration if it has the right lifting property
with respect to all cofibrations A→ B which are pro-equivalences.

Lemma 2. A map p : X → Y is a pro-fibration and a pro-equivalence if and
only if it has the right lifting property with respect to all cofibrations.

Proof. Suppose that p is a pro-fibration and a pro-equivalence. We show that
it has the right lifting property with respect to all λ-bounded cofibrations.

The converse assertion is clear: if p has the right lifting property with re-
spect to all cofibrations, then it is a sectionwise equivalence and hence a pro-
equivalence, and it has the right lifting property with respect to a cofibrations
which are pro-equivalences.

Suppose given a lifting problem

A //

i

��

X

p

��
B //

>>

Y

where i is an λ-bounded cofibration and p is a pro-fibration and a pro-equivalence.
We show that the indcated lift exists.

This will be true for all λ-bounded cofibrations, and these generate the class
of all cofibrations, so it follows that p has the right lifting property with respect
to all cofibrations.
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Factorize p as p = q · j where q is a trivial injective fibration and j is a
cofibration. Then there is a diagram

A //

i

��

X

p

��

j

xx
V

q

&&
B

θ
99

// Y

The cofibration j is a pro-equivalence, and the image θ(B) is λ-bounded, so
there is a subobject D ⊂ V with θ(B) ⊂ D, such that the map D ∩X → D is
a pro-equivalence, by Lemma 1. We have found a factorization

A //

��

D ∩X

��

// X

��
B // D //

;;

Y

of the original diagram, with a pro-equivalence D ∩ X → D, and the lifting
problem has the indicated solution.

Corollary 3. A map p : X → Y is a pro-fibration and a pro-equivalence if and
only if it is a trivial injective fibration.

The following statements are also clear:

Lemma 4. 1) A map p is a pro-fibration if and only it has the right lifting
property with respect to all λ-bounded cofibrations which are pro-equivalences.

2) The class of maps which are cofibrations and pro-equivalences is closed
under pushout.

We can now prove the following:

Proposition 5. Suppose that the category I is left filtered, and that C is a
Grothendieck site. The category sPreI of I-diagrams in simplicial presheaves on
C, together with the classes of cofibrations, pro-equivalences and pro-fibrations,
satisfies the axioms for a left proper closed simplicial model category. This model
structure is cofibrantly generated.

Proof. The factorization axiom CM5 follows from Corollary 3 and Lemma 4.
The lifting axiom CM4 follows from Corollary 3. The other closed model axioms
are automatically true. The function complex hom(X,Y ) is the standard one,
and one shows that, given a cofibration A→ B of I-diagrams and a cofibration
K → L of simplicial sets, then the map

(A× L) ∪ (B ×K)→ B × L

is a cofibration which is a pro-equivalence if A → B is a pro-equivalence or
K → L is a weak equivalence.

Left properness is trivial to verify, and cofibrant generation is a consequence
of Lemma 1.
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2 Subdivisions and simplex categories

Suppose that X is a simplicial set. The poset NX has objects given by all
non-degenerate simplices σ ∈ X, and we say that σ ≤ τ if σ is a member of the
subcomplex of X which is generated by τ .

Suppose that K is a finite simplicial complex, in the sense that K is a
subcomplex of some simplex ∆N . Then σ ≤ τ in NK if σ is a face of τ ;
furthermore, σ is a face of τ in a unique way. The nerve BNK is often said
to be the order complex of the simplicial complex K [10]. The non-degenerate
simplices σ of K are those for which the canonical map σ : ∆n → K is a
monomorphism.

The simplex category ∆/X for a simplicial set X has objects consisting of
all simplicial set maps σ : ∆n → X. The morphisms θ : τ → σ are commutative
diagrams of simplicial set maps

∆m
τ

''
θ

��
X

∆n σ

77

Suppose that X is a simplicial set and that L is a finite simplicial complex.
A map f : L→ X determines a functor f : ∆/L→∆/X of simplex categories
in the obvious way.

Since L is a simplicial complex, there is an inclusion functor NL → ∆/L,
and we have the following:

Lemma 6. Suppose that L is a finite simplicial complex. Then the composite
map

lim−→
∆n⊂L

∆n → lim−→
∆n→L

∆n ∼=−→ L

is an isomorphism. A simplicial set map f : L→ X is defined by the composite
functor

f̃ : NL→∆/L
f∗−→∆/X.

Lemma 6 says that a finite simplicial complex is a colimit of its non-degenerate
simplices.

Proof. The r-simplices x ∈ ∆n σ−→ L and y ∈ ∆m τ−→ L have the same image in
K if and only if there is a diagram

∆r x //

y

��

∆n

σ

��
∆m

τ
// L

8



Since L is a finite simplicial complex, the pullback ∆m×L∆n is a non-degenerate
simplex of L if σ and τ are non-degenerate. It follows that the composite map

lim−→
∆n⊂L

∆n → lim−→
∆m→L

∆m ∼=−→ L

is an isomorphism, and so there is a commutative diagram

lim−→∆n⊂L ∆n f̃∗ //

∼=
��

lim−→∆n→X ∆n

∼=
��

L
f

// X

Corollary 7. Suppose that g : K → L is a morphism of simplicial complexes.
Then the map g is induced by a functor g∗ : NK → NL which takes a non-
degenerate simplex σ to the non-degenerate simplex which generates the subcom-
plex 〈g(σ)〉 of L.

Proof. Consider the picture

lim−→∆n⊂K ∆n

∼=
��

// lim−→∆m⊂L ∆m

∼=
��

lim−→∆n→K ∆n

∼=
��

g∗ // lim−→∆m→L ∆m

∼=
��

K
g

// L

in which the vertical maps are isomorphisms by Lemma 6.
If σ : ∆n → K is a non-degenerate simplex, then the composite

∆n σ−→ K
g−→ L

has a unique factorization

∆n sσ−→ ∆r dσ−→ L,

where sσ is a codegeneracy and dσ is a non-degenerate simplex of L. Write
g∗(σ) = dσ, and observe that the assignment σ 7→ g∗(σ) defines a functor
g∗ : NK → NL. The codegeneracies sσ and the functor g∗ define the dotted
arrow map in the diagram, in the sense that there are commutative diagrams

∆n sσ //

inσ

��

∆r

ing∗(σ)

��
lim−→∆n⊂K ∆n // lim−→∆m⊂L ∆m
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Remark 8. A similar argument shows that the inclusion NL ⊂ ∆/L is a
homotopy equivalence of categories for each finite simplicial complex L. Every
simplex σ : ∆n → L has a canonical factorization σ = dσsσ, and the assignment
σ 7→ dσ defines a functor ∆/L → NL which is inverse to the inclusion up to
homotopy defined by the morphisms sσ.

Corollary 9. Suppose given maps

K
g−→ L

f−→ X

where K and L are finite simplicial complexes. Then the composite f · g is
induced by the composite functor

NK
g∗−→ NL

f̃−→∆/X.

The subdivision sd(∆n) is defined to be the nerve of the corresponding order
complex:

sd(∆n) = BN∆n.

More generally, the subdivision sd(X) of a simplicial set X is defined by the
assignment

sd(X) = lim−→
∆m→X

sd(∆m).

There is a map
π : sd(X)→ BNX

that is natural in simplicial sets X, and is defined by the composites

sd(∆n)
∼=−→ BN∆n σ∗−→ BNX.

arising from the simplices ∆n → X of X.

Lemma 10. The map π : sd(K) → BNK is an isomorphism if K is a finite
simplicial complex.

Proof. There is a commutative diagram

lim−→σ∈NK sd〈σ〉
∼= //

π∗

��

sd(K)

π

��
lim−→σ∈NK BN〈σ〉 ∼=

// BNK

where 〈σ〉 is the subcomplex of X that is generated by the simplex σ. The top
horizontal map is an isomorphism, since K is a colimit of the subcomplexes 〈σ〉
which are generated by non-degenerate simplices σ by Lemma 6. The bottom
horizontal map is an isomorphism, again since the intersection of two non-
degenerate simplices of the simplicial complex K is a non-degenerate simplex.

All maps π : sd〈σ〉 → BN〈σ〉 are isomorphisms, again since K is a simplicial
complex: if σ is a non-degenerate n-simplex of K, then the canonical map
∆n → 〈σ〉 that is defined by σ is an isomorphism.
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Suppose again that K ⊂ ∆N is a finite simplicial complex. The induced
functor NK → N∆N is a fully faithful imbedding, which induces a monomor-
phism sd(K) → sd(∆N ) of associated nerves. There is a total ordering on the
non-degenerate simplices of ∆N which extends the total ordering on its vertices,
such that every k-simplex is less than every (k + 1)-simplex for 0 ≤ k ≤ N − 1.
In this way, there is a fully faithful imbedding N∆N ⊂ M for some ordinal
number M , and so there is a monomorphism sd(∆N ) ⊂ ∆M . It follows from
the resulting string of inclusions

sd(K) ⊂ sd(∆N ) ⊂ ∆M

that sd(K) is a finite simplicial complex.
The last vertex functor N∆n → n is defined by sending a non-degenerate

simplex σ : k → n to σ(k) — see [4], [6]. This functor induces a simplicial set
map γ : sd ∆n → ∆n. The maps γ are natural in simplices ∆n, and together
induce a map

γ : sd(X)→ X

which is natural in simplicial sets X. Composition of instances of this map
defines the various natural maps

sdk(X)
γ−→ sdk−1(X)

γ−→ . . .
γ−→ sd(X)

γ−→ X,

all of which will be denoted by γ, and called subdivision maps.
It is a consequence of the results of this section (specifically, Corollary 9)

that if K is a finite simplicial complex and X is a simplicial set, then the string
of simplicial set maps

sdk(K)
γ−→ sdk−1(K)

γ−→ . . .
γ−→ sd(K)

γ−→ K
f−→ X

is induced by the string of functors

N sdk(K)
γ∗−→ N sdk−1(K)

γ∗−→ . . .
γ∗−→ N sd(K)

γ∗−→ NK
f̃−→∆/X.

Suppose that f : X → Y is a map of Kan complexes, and replace f by a
fibration in the usual way, by forming the pullback diagram

X ×Y Y I
f∗ //

��

Y I
d1 //

d0

��

Y

X
f

// Y

Let π be the composite d1 · f∗. Then π is a fibration which is weakly equivalent
to f .

Here, Y I is the function complex hom(∆1, Y ), and the maps d0, d1 : Y I → Y
are defined by precomposition with the maps d0, d1 : ∆0 → ∆1, respectively.
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A solution of the lifting problem

∂∆n
(α,h∗)//

��

X ×Y Y I

π

��
∆n

β
//

99

Y

is equivalent an extension of the adjoint diagram

∂∆n α //

d0
��

X

f

��
(∂∆n ×∆1) ∪ (∆n × {0})

(h,β)
// Y

(3)

to a diagram

∆n θ //

d0
��

X

f

��
∆n ×∆1

H
// Y

(4)

It follows that a simplicial set map f : X → Y between Kan complexes is a
weak equivalence if and only if every diagram (3) extends to a diagram (4).

If X and Y are not Kan complexes, then f : X → Y is a weak equivalence if
and only if all diagrams (3) extend to diagrams (4) after subdivision. In other
words, given a diagram (3), there is some k ≥ 0 such that the composite diagram

sdk(∂∆n)
γ //

d0∗
��

∂∆n α // X

f

��
sdk((∂∆n ×∆1) ∪ (∆n × {0}))

γ
// (∂∆n ×∆1) ∪ (∆n × {0})

(h,β)
// Y

extends to a diagram

sdk(∆n)
γ //

d0∗
��

∆n θ // X

f

��
sdk(∆n ×∆1)

γ
// ∆n ×∆1

H
// Y

This follows from the fact that the map f : X → Y is a weak equivalence if
and only if the induced map Ex∞X → Ex∞ Y is a weak equivalence of Kan
complexes — see section III.4 of [4].
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3 General diagram categories

Suppose that I is a fixed (but arbitrary) small index category.
The definitions of Section 1 persist for the category sPreI of I-diagrams of

simplicial presheaves with their natural transformations. A cofibration is a sec-
tionwise monomorphism. A pro-equivalence X → Y is a natural transformation
which induces a weak equivalence of simplicial sets

f∗ : holim−−−→ i∈I hom(Yi, Z)→ holim−−−→ i∈I hom(Xi, Z)

for all injective fibrant objects Z..Finally, a pro-fibration is a map which has
the right lifting property with respect to maps which are cofibrations and pro-
equivalences.

We prove, in this section, an analogue of Proposition 5, which asserts that
these definitions give the category sPreI the structure of a left proper closed
simplicial model category. The main result is Theorem 12 below.

Suppose that X is an I-diagram of simplicial presheaves and that the sim-
plicial presheaf Z is injective fibrant. Suppose that K is a finite simplicial
complex.

A simplicial set map f : K → holim−−−→ Iop hom(X,Z) is induced by a functor

f̃ : NK →∆/ holim−−−→ Iop hom(X,Z),

according to Lemma 6. The homotopy colimit can be identified with the diago-
nal of the nerve of a simplicial category HI(X,Z) with morphisms in simplicial
degree n having the form

X(i)×∆n α∗×1 //

!!

X(j)×∆n

}}
Z

where α : i→ j is a morphism of I. Observe that there is a forgetful functor

π : HI(X,Z)→ I.

An n-simplex D of the homotopy colimit consists of a functor α : n→ I and
a diagram

X(α(0))×∆n

**

// X(α(1))×∆n

##

// . . . // X(α(n− 1))×∆n

yy

// X(α(n))×∆n

τ

ssZ

or alternatively an n-simplex in the nerve of the slice category X×∆n/Z. Note
(this is standard) that the simplex is completely determined by the functor α
and the map τ .
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Given such an object, if θ : m → n is an ordinal number map then the

simplex θ∗D is defined by the composite functor m
θ−→ n

α−→ I and the composite
diagram

X(α(θ(0)))×∆m

1×θ
��

// X(α(θ(1)))×∆m

1×θ
��

// . . . // X(α(θ(m− 1)))×∆m

1×θ
��

// X(α(θ(m)))×∆m

1×θ
��

X(α(θ(0)))×∆n

++

// X(α(θ(1)))×∆n

$$

// . . . // X(α(θ(m− 1)))×∆n

xx

// X(α(θ(m)))×∆n

ssZ

Alternatively, the n-simplex above is a functor α : n → I and a natural
transformation f : (X · α) × ∆n → Z. Then θ∗(α, f) is the pair consisting of
the composite functor α · θ together with the composite natural transformation

(X · α · θ)×∆m 1×θ−−→ (X · α · θ)×∆n f ·θ−−→ Z.

Write
EI(X,Z) = ∆/ holim−−−→ Iop hom(X,Z)

to make the notation easier to deal with.

Suppose that i : X → Y is a monomorphism of I-diagrams. Let j : K ⊂ L
be an inclusion of finite simplicial complexes, and consider a diagram

K //

��

holim−−−→ Iop hom(Y, Z)

��
L // holim−−−→ Iop hom(X,Z)

Converting to functors by using the methods of the last section (Corollary 9)
gives the diagram of functors

NK
ω //

j

��

EI(Y, Z)

i∗

��
NL

β
// EI(X,Z)

The functor i∗ is defined by restriction to X. The diagram consists of a functor
ω whose restriction to X extends to a functor β that is defined on NL.

There is a functor
vY : EI(Y,Z)→ sPre,

which takes any n-simplex f : Y ·α×∆n → Z to the simplicial set Y (α(n))×∆n

(which is the colimit of Y · α × ∆n). This functor vY is independent of Z: if
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Z →W is a simplicial set map, then the diagram

EI(Y,Z) //

vY ""

EI(Y,W )

vY||
sPre

commutes.
The functor ω : NK → EI(Y,Z) can be identified with a natural transfor-

mation
vY · ω → Z.

Taking the colimit LK(Y ) of the composite functor

NK
ω−→ EI(Y,Z)

vY−−→ sPre

therefore defines a functor ω∗ : NK → EI(Y,LK(Y )) and a simplicial set map
fω : LK(Y )→ Z such that the diagram of functors

NK
ω∗ //

ω
&&

EI(Y, LK(Y ))

fω∗

��
EI(Y, Z)

commutes.
Write j : LK(Y )→ L(LK(Y )) for the natural injective fibrant model of the

simplicial presheaf LK(Y ). The map fγ : LK(Y ) → Z factors through a map
L(LK(Y ))→ Z.

Suppose given a commutative diagram of inclusions

K //

��

K ′

��
L // L′

(5)

of finite complexes, and suppose that i : X → Y is a cofibration of I-diagrams
such that all diagrams

NK
ω //

��

EI(Y, Z)

��
NL

β
// EI(X,Z)

(6)

extend to diagrams

NK ′ //

��

EI(Y,Z)

��
NL′ // EI(X,Z)

(7)
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after subdivision, for all injective fibrant Z.
This means that, for each diagram (6) there is a k ≥ 0 such that the diagram

N sdk(K)
γ∗ //

��

NK
ω // EI(Y, Z)

��
N sdk(L)

γ∗
// NL

β
// EI(X,Z)

extends to a diagram

N sdk(K ′) //

��

EI(Y,Z)

��
N sdk(L′) // EI(X,Z)

A commutative diagram (6) is, equivalently, a diagram of simplicial presheaf
maps

LKX //

��

LLX

��
LKY // Z

(8)

and to say that diagram (6) extends to a diagram (7) amounts to the assertion
that there is a diagram

LK′X //

��

LL′X

��
LK′Y // Z

which restricts to the given diagram (8) along the maps

LKY

��

LKXoo //

��

LLX

��
LK′Y LK′Xoo // LL′X

In other words, we require the existence of a lifting in the diagram

LKY ∪LKX LLX //

��

Z

LK′Y ∪LK′X LL′X

77 (9)

for all injective fibrant Z.
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The requirement that (6) extends to (7) up to subdivision amounts to the
existence of a number k ≥ 0 such that the lift exists in the diagram

Lsdk(K)Y ∪Lsdk K
(X) Lsdk(L)X //

��

LKY ∪LKX LLX // Z

Lsdk(K′)Y ∪Lsdk(K′)X
Lsdk(L′)X

22

It is enough to solve the extension problem in the case where Z is an injective
fibrant model of the pushout LKY ∪LKX LLX, since all extension problems (9)
are solved by the existence of extensions for this fibrant model.

We return to the cases of (3) and (4), which concern the cases of (5) given
by the countable list of diagrams

K = ∂∆n //

��

∆n

��
L = (∂∆n ×∆1) ∪ (∆n × {0}) // ∆n ×∆1

where n ≥ 0. We also suppose that the regular cardinals λ > α are chosen as
above.

Then for a fixed diagram (5), or fixed n ≥ 0, the list of associated extension
problems (9) is determined by the size of the set of functors NL → I. The
category I is λ-bounded, while there are countably many finite complexes L =
∆n × ∆1 of interest, and so the entire list of relevant extension problems is
λ-bounded.

Lemma 11. Suppose that the regular cardinals λ > α are chosen as above.
Suppose that the monomorphism i : X → Y is a pro-equivalence, and that A is
a λ-bounded subobject of Y . Then there is a λ-bounded subobject B ⊂ Y with
A ⊂ B such that the map B ∩X → B is a pro-equivalence.

Proof. Consider the commutative diagram of inclusions of I-diagrams

A ∩X //

��

X

i

��
A // Y

where A is a λ-bounded subobject of Y . Suppose that the lifting problem (9)
can be solved up to subdivision for i : X → Y , and that Z is the fibrant model
L(LKY ∪LKX LLX). Consider the diagram

LKA ∪LK(A∩X) LL(A ∩X) //

��

LKY ∪LKX LLX //

��

Z

LK′A ∪LK′ (A∩X) LL′(A ∩X)
j
// LK′Y ∪LK′X LL′X

θ

88
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The image of the composite θ · j is λ-bounded, and Z = L(LKY ∪LKX LLX)
is a filtered colimit of the subobjects L(LKC ∪LK(C∩X)LL(C ∩X)), as C varies
through the λ-bounded subobjects of Y , so the image of θ · j factors through
L(LKA1∪LK(A1∩X)LL(A1∩X)) for some λ-bounded A1 ⊂ Y with A ⊂ A1. This
can be done simultaneously for the full λ-bounded list of extension problems.

Repeat this construction λ times, and let B = lim−→t<λ
At. Then the map

lim−→
t<λ

L(LKAt ∪LK(At∩X) LL(At ∩X))→ L(LKB ∪LK(B∩X) LL(B ∩X))

is an isomorphism, and there is a commutative diagram

LKB ∪LK(B∩X) LL(B ∩X)
j //

��

L(LKB ∪LK(B∩X) LL(B ∩X))

LK′B ∪LK′ (B∩X) LL′(B ∩X)

33

where j is the fibrant model map. This holds for all relevant extension problems,
so that the map B ∩X → B is a pro-equivalence.

Lemma 11 is the generalization of Lemma 1, to the case of arbitrary small
index categories I. Proposition 5 follows from Lemma 1, via a sequence of formal
steps given by Lemma 2, Corollary 3 and Lemma 4. These same results apply
to the present case of arbitrary I-diagrams, starting from Lemma 11, giving the
following result:

Theorem 12. Suppose that I is a small category I, and that C is a Grothendieck
site. The category sPreI of I-diagrams in simplicial presheaves on C, together
with the classes of cofibrations, pro-equivalences and pro-fibrations, satisfies the
axioms for a left proper closed simplicial model category. This model structure
is cofibrantly generated.
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