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Abstract. For a suitable choice of the cube category, we construct a Grothendieck topology on
it such that sheaves with respect to this topology are exactly simplicial sets (thus establishing
simplicial sets as a reflective subcategory of cubical sets). We then extend the construction of the
homotopy coherent nerve to cubical categories and establish an analogue of Lurie’s straightening–
unstraightening construction.

Introduction

Cubical sets provide a well-studied combinatorial model for spaces. They were considered by Kan
[Kan55, Kan56] before the introduction of simplicial sets. However, while there is only one category
of simplicial sets, there are several different categories of cubical sets, depending on the choice of
morphisms in the indexing category �.

In each case, the objects of � are posets of the form [1]n = {0 ≤ 1}n, but different authors consider
different choices of maps. The minimalistic choice (considered for example by Jardine [Jar06])
would be to take the smallest category generated by the face and degeneracy maps. This category
is for instance a test category, but its cartesian product is not homotopically well-behaved (e.g. the
cartesian product of the interval with itself has the homotopy type of S1 ∨ S2), which is somewhat
unsatisfying. Other authors extend the category � to include also connections [Mal09, Cis06], which
fixes some of the problems with the cartesian product and makes � into a strict test category.

In this paper, we consider a new category of combinatorial cubes, taking � to be the full subcategory
of Cat with those objects. Until now, this category has not been used in homotopy theory and
has only been considered in dependent type theory to give a constructive interpretation of the
Univalence Axiom [CCHM15].1 Many of the standard methods from simplicial homotopy theory
are not available in this setting, for instance, the Eilenberg–Zilber Lemma (asserting that every
simplex is a degeneracy of a unique non-degenerate one in a unique way, see e.g. [JT08, Prop.
1.2.2]). Our category � is also not a (generalized) Reedy category.

We show however that this category can be used to gain a better understanding of several con-
structions in higher category theory and simplicial homotopy theory.

In Section 1, we introduce cubical sets and cubical categories. Our first observation is that cubical
sets are more general than simplicial sets. To make this statement precise, we equip the cube
category with a Grothendieck topology and show that the sheaves for this topology are precisely
simplicial sets. Thus we obtain a full embedding sSet ↪→ cSet of the category of simplicial sets into
the category of cubical sets. The corresponding sheafification functor “triangulates” a cubical set
into a simplicial set.

In Section 2, we generalize the construction of the homotopy coherent nerve from the category
of simplicial categories to that of cubical categories. Precisely, we define a functor N� : cCat →
sSet (here, cCat denotes the category of categories enriched over cubical sets) and show that the

Date: September 15, 2020.
1In fact, [CCHM15] works with yet another variation on the notion of a cubical set, although our cube category

is perfectly sufficient for all of their applications.
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homotopy coherent nerve functor N4 is then the composite sCat ↪→ cCat → sSet of the inclusion
sCat ↪→ cCat, induced by sSet ↪→ cSet, with N�.

We moreover show that if the cubical category is locally Kan, then the resulting simplicial set is a
quasicategory, which mirrors an analogous result for the homotopy coherent nerve.

In Section 3, we give a functorial construction taking a map F : S → N�cSet of simplicial sets to a
simplicial map

∫
S F → S. This is analogous to the category of elements of F , although

∫
S F does

not need to be a (nerve of a) category. Finally, we prove that
∫
S is a right adjoint by explicitly

constructing its left adjoint and show that by passing between simplicial and cubical categories,
this adjunction recovers Lurie’s (straightening a unstraightening)-adjunction.

We note that the results of Sections 2 and 3 hold also for more restrictive choices of the category, e.g.,
the one of [Mal09]. Indeed, since this paper was first made available in 2018, its results were used
to show [KLW19] that the unstraightening-over-the-point functor in the sense of Section 3 below
defines a coreflection of cubical sets with connections (as studied by Maltsiniotis) onto simplicial
sets.

The results of this paper were obtained jointly by the authors. Vladimir Voevodsky passed away
during the preparation of this manuscript, and the final version was prepared for publication by
Kapulkin with permission from Daniel Grayson, the academic executor of Voevodsky’s estate.

1. The category of cubical sets

Let � denote the full subcategory of the category Cat of small categories (or Pos of small posets)
whose objects are posets of the form [1]n, where [1] = {0 ≤ 1}. Depending on the context, we
represent the elements of [1]n as either subsets of the set {1, . . . , n} or binary sequences (x1, . . . , xn).
We refer to � as the cube category. The category cSet of cubical sets is the category of contravariant
functors �op → Set and natural transformations.

We will write �n for the standard n-cube, that is, the representable cubical set, represented by
[1]n. For each i = 1, . . . , n and ε = 0, 1, we write ∂i,ε : �n−1 → �n for the image of the (i, ε)-face
map (x1, . . . , xn−1) 7→ (x1, . . . , xi−1, ε, xi, . . . , xn) under the Yoneda embedding. Similarly, for each
i = 1, . . . , n, we write σi : �[1]n → �[1]n−1 for the image of the degeneracy map (x1, . . . , xn) 7→
(x1, . . . , xi−1, xi+1, . . . xn) under the Yoneda embedding. The action of these cubical operators is
written on the right, e.g., for an n-cube x : �n → X, we write x∂i,ε for its (i, ε)-face.

As the category cSet is a topos, we can speak about images of maps, as well as unions and inter-
sections of subobjects. By a face of a cube, we understand the image of one of the ∂i,ε’s. We define
the boundary ∂�n of the n-cube �n as the union of all of its faces, and similarly, the (i, ε)-open
box uni,ε as the union of all the faces except the one in the image of ∂i,ε.

Definition 1.1.

(1) A cubical set X is a (cubical) Kan complex if for all n ∈ N, i = 1, . . . , n, and ε = 0, 1, and
any map uni,ε → X, there exists an extension

uni,ε X

�n

(2) A cubical set X is a universal Kan complex if for any cubical set K, the exponential XK is
a Kan complex.
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Taking K = �[0], we see that every universal Kan complex is also a Kan complex. The converse
however is not true. Indeed, this result is usually proven, e.g., for simplicial sets or some categories
of cubical sets, using induction on skeleta, a technique not available outside of the Reedy setting.
Specific examples of failure of general Kan complexes to be stable under taking exponentials were
constructed by C. Sattler, but these constructions tend to be technically involved and go beyond
the scope of the present paper.

Moreover, as we shall see in Lemma 1.5, many of the interesting Kan complexes are indeed universal.
And as indicated above the category of universal Kan complexes has better categorical properties,
e.g., being cartesian closed, than the category of (all) Kan complexes. We write Kan for the full
subcategory of cSet whose objects are universal Kan complexes.

Remark 1.2. Using [Mal05, Ex. 1.5.9 and 1.6.11], the category � is easily seen to be a strict
test category and thus cSet carries a model structure, in which cofibrations are monomorphisms.
However, not every fibrant object in this model structure is a cubical Kan complex and thus this
model structure is not helpful from our point of view.

Our next goal is to establish a topology J on � such that the category of sheaves Sh(�, J) is
equivalent to the category sSet of simplicial sets. We will obtain it from a more general construction.

Let C be a small category and consider the topology Jjef on the presheaf category PrSh(C), given
by jointly epimorphic families. Let u : T ↪→ PrSh(C) be a full subcategory with the property that
every representable ĉ ∈ PrSh(C) admits a cover by the objects from T. Considering T as a site
with the topology u∗Jjef induced by u from Jjef (i.e., the topology in which a sieve R ⊆ T(−, t) is
covering if and only if for any f : t′ → t, the sieve u(f∗R) ⊆ PrSh(C)(−, ut′) is covering), we obtain
a composite map:

PrSh(C) ↪→ Sh(PrSh(C), Jjef)
u∗→ Sh(T, u∗Jjef)

where the first map is the Yoneda embedding, and the second map is given by precomposition with
u.

Lemma 1.3. The map PrSh(C)→ Sh(T, Jjef |T) above is an equivalence of categories.

Proof. By [MR77, Prop. 1.3.14], the inclusion PrSh(C) ↪→ Sh(PrSh(C), Jjef) is an equivalence of
categories. The inclusion of sites u : (T, u∗Jjef) ↪→ (PrSh(C), Jjef) satisfies the assumptions of the

Lemme de Comparaison [AGV71, Thm. 4.1], and thus u∗ gives an equivalence Sh(PrSh(C), Jjef)
u∗→

Sh(T, u∗Jjef). �

Note that the construction of the composite map PrSh(C)→ Sh(T, u∗Jjef) a priori depends on the
choice of a universe, since the category Sh(PrSh(C), Jjef) is a category of sheaves on a large category.
However, the composite map itself does not depend on such a choice, as it can be written explicitly
as X 7→ T(u(−), X). Similarly, Lemma 1.3 is a statement about this specific map and hence its
truth value is independent of the choice of a universe.

Let N: Cat→ sSet be the nerve functor, taking a category C to a simplicial set NC whose n-simplices
are given by (NC)n = Cat([n],C). This functor is full and faithful.

Theorem 1.4. The category C = ∆ and the inclusion u : � ↪→ sSet given by the restriction of the
nerve functor satisfy the assumptions of Lemma 1.3, thus yielding an equivalence sSet ' Sh(�, J),
where J is the topology induced by the restriction of the nerve functor from the topology given by
jointly epimorphic families on sSet.

Proof. The symmetric group Σn acts on ∆[1]n ∼= N([1]n) by permuting the factors and the standard
n-simplex is the quotient of ∆[1]n by this action. �
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Denote the inclusion sSet ' Sh(�, J) ↪→ cSet by U. By construction, we obtain that for a simplicial
set X, UX is a cubical set whose n-cubes are given by:

U(X)n = sSet(∆[1]n, X).

The sheafification functor T: cSet→ sSet is given by triangulation, that is, the left Kan extension
of the inclusion u : � ↪→ sSet along the Yoneda embedding:

cSet ⊥ sSet

�

T

U

u

It follows that U is full and faithful, the counit map TU → idsSet is an isomorphism, and T, as
associated sheaf functor, preserves finite limits.

Lemma 1.5. The functor U: sSet → cSet takes (simplicial) Kan complexes to universal Kan
complexes.

Proof. Let X be a simplicial Kan complex, K a cubical set and consider a lifting problem:

uni,ε (UX)K

�n

Since T preserves finite limits, a filler for the open box uni,ε → (UX)K corresponds, by adjointness,
to a lift in:

TK × Tuni,ε X

TK × T�n

Since T preserves monomorphisms, the map Tuni,ε → T�n = ∆[1]n is a cofibration. It is moreover
a weak equivalence, because both simplicial sets are contractible. Thus it is anodyne and hence
the desired lift exists. �

Remark 1.6. There are n! inclusions of the n-simplex ∆[n] into the simplicial n-cube ∆[1]n

(canonically indexed by the symmetric group Σn). These inclusions are jointly epimorphic, and it
follows that the topology on � is generated by the families {σ : �n → �n}σ∈Σn , where σ is a map
whose image under T factors through the inclusion ∆[n] ↪→ ∆[1]n corresponding to σ.

Note however that the inclusions {U∆[n] ↪→ �n}Σn are not jointly epimorphic in cSet, since a
surjection with a representable codomain must necessarily admit a section.

We will write cCat for the category of cubical categories (i.e. categories enriched over the cartesian
monoidal category cSet) and cubical functors. Similarly, we will write sCat for the category of
simplicial categories (categories enriched over the cartesian monoidal category sSet) and simplicial
functors.
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Given a simplicially/cubically enriched category C and two objects x, y ∈ C, we will write MapC(x, y)
for the mapping simplicial/cubical set. The subscript C will be omitted whenever no ambiguity is
possible.

Let C be a cubical category and x, y ∈ C two objects. We will write f : x → y to mean that
f ∈MapC(x, y)0. Given f, g : x→ y, we write H : f → g for H ∈MapC(x, y)1 such that H∂1,0 = f
and H∂1,1 = g. The composition in a cubical category will be denoted with ‘·’ and will be written
in the diagrammatic order. Thus for f : x→ y and g : y → z, their composite will be written f · g.

Every (1-)category can be regarded as a cubical category with discrete mapping cubical sets, which
defines an inclusion Cat ↪→ cCat.

Since both T and U preserve finite products, the adjunction T: cSet � sSet :U gives rise to

cCat ⊥ sCat.

T•

U•

where T•C (respectively, U•C) has the same objects as C and the mapping objects are obtained by
applying T (resp. U) to those of C.

We conclude this section with a discussion of homotopies and (homotopy) equivalences in cubical
categories. Since the mapping spaces MapC(x, y) may not be Kan complexes, we need to consider
the notion of a zig-zag (cf. [GZ67, Sec. II.2.5.1 and IV.1.1.1]) in order to make homotopy an
equivalence relation.

An abstract zig-zag is a cubical set of the form �1 +�0 . . .+�0 �1 with the property that if some �1

receives two maps from �0 in the above colimit, then these maps must be different (and necessarily
be ∂1,0, ∂1,1 : �0 → �1). A zig-zag in a cubical set X is a cubical map from an abstract zig-zag to
X.

Definition 1.7.

(1) An elementary homotopy between two maps f, g : x→ y in a cubical category C is H : f → g
(i.e. a 1-cube H ∈ MapC(x, y)1 with H∂1,0 = f and H∂1,1 = g). We write H : f ∼1 g to
indicate that H is an elementary homotopy from f to g.

(2) A homotopy between two maps f, g : x→ y in a cubical category C is a zig-zag of elementary
homotopies from f to g. We write H : f ∼ g to indicate that H is a homotopy from f to g.

(3) A morphism f : x → y in a cubical category C is an equivalence if there exist maps
g1, g2 : y → x and homotopies H1 : f · g1 ∼ idx and H2 : g2 · f ∼ idy.

Lemma 1.8. Homotopy defines an equivalence relation on MapC(x, y).

Proof. For reflexivity, we take fσ1 : f ∼ f . Symmetry is immediate since zig-zags are symmetric.
Finally, we can compose zig-zags by taking the appropriate pushout along �0. �

Lemma 1.9. In every cubical category C, the class of equivalences is closed under composition and
every identity is an equivalence.

Proof. To see that identities are homotopy equivalences, take g1 = g2 = id and use reflexivity

of homotopy. Now, suppose that x
f→ y

f ′→ z are both homotopy equivalences with inverses
g1, g2 : y → x and g′1, g

′
2 : z → y. Suppose we wish to show that g′1 · g1 is a one-sided inverse of f ·f ′.

Let H1 : f · g1 ∼ idx and H ′1 : f ′ · g′1 ∼ idy. Then f∗(g1)∗H
′
1 is a homotopy f · f ′ · g′1 · g1 ∼ f · g1, so

composing it with H1 gives the desired homotopy f · f ′ · g′1 · g1 ∼ idx. Similarly, one verifies that
g′2 · g2 is an inverse of f · f ′ on the other side. �
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Definition 1.10. A cubical category C is locally Kan if for every pair x, y ∈ ObC, the cubical set
MapC(x, y) is a (cubical) Kan complex.

We note that we do not require here that MapC(x, y) is a universal Kan complex, as this notion is
sufficient for our results, e.g., Theorem 2.6.

Examples 1.11.

(1) The full cubical subcategory Kan (with MapKan(X,Y ) = Y X) of cSet spanned by the
universal Kan complexes is locally Kan.

(2) By Lemma 1.5, U•C is a locally Kan cubical category for any locally Kan simplicial category
C.

(3) The cubical categories arising via the inclusion Cat ↪→ cCat are locally Kan since every
discrete cubical set is Kan.

Proposition 1.12. Let C be a cubical category and x, y ∈ C two objects such that MapC(x, y) is a
cubical Kan complex. Then two maps f, g : x→ y are homotopic if and only if they are elementary
homotopic (i.e. ∼=∼1) and hence elementary homotopy is an equivalence relation on MapC(x, y)0.

Proof. It suffices to show that every homotopy of the form �1+�0�1 →MapC(x, y) can be replaced
by an elementary homotopy. This follows by considering lifting of different u1

i,ε ↪→ �2. �

2. The nerve of a cubical category

The goal of this section is to give a construction of the sSet-valued functor N� : cCat→ sSet taking
the coherent nerve of a cubical category, the analog of the homotopy coherent nerve of simplicial
categories. This functor will arise from a cosimplicial object C : ∆→ cCat in the category of cubical
categories. We will prove that if all mapping cubical sets of a cubical category C are Kan complexes,
then the resulting simplicial set is a quasicategory. If in addition all maps of C are equivalences,
then N�C is a Kan complex.

For n ∈ N, we define a cubical category C[n] as follows:

• the objects are 0, 1, . . . , n;
• given i, j ∈ {0, 1, . . . , n}, we define:

Map(i, j) := �j−i−1,

where we assume �−1 is a singleton and �k = ∅ for k ≤ −2; (For exposition reasons, we

will slightly abuse notation writing [1]{i+1,...,j−1} for MapC[n](i, j) throughout the definition

of C, thus omitting the Yoneda embedding and identifying the set {i + 1, . . . , j − 1} with
its cardinality.)
• the identity morphism is given by the unique element of �−1;
• the composition operation · : Map(i, j)×Map(j, k)→Map(i, k) is given by:

(xi+1, . . . , xj−1) · (yj+1, . . . , yk−1) = (xi+1, . . . , xj−1, 1, yj+1, . . . , yk−1).

One then easily verifies the axioms of an enriched category; for instance, for associativity, we have:

((x · y) · z) = ((x, 1, y) · z) = (x, 1, y, 1, z) = (x · (y, 1, z)) = (x · (y · z)).

Remark 2.1. The category C[n] is obtained by freely adding identity morphisms to a cubical
non-unital category with the same objects where Map(i, i) = ∅.

Given a simplicial operator ϕ : [m]→ [n], we define ϕ∗ : C[m]→ C[n] as follows:

• on objects ϕ∗(i) = ϕ(i);
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• for i, j ∈ {0, 1, . . . ,m}, we have the induced map

ϕ∗ : [1]{i+1,...,j−1} → [1]{ϕ(i)+1,...,ϕ(j)−1}

taking a sequence (xi+1, . . . , xj−1) to (x̄ϕ(i)+1, . . . , x̄ϕ(j)−1) with x̄t := max{xs | s ∈ ϕ−1(t)}.

Lemma 2.2.

(1) For a simplicial operator ϕ : [m]→ [n], the map ϕ∗ : C[m]→ C[n] is a cubical functor.
(2) For a composable pair of simplicial operators ϕ, ψ, we have (ϕ◦ψ)∗ = ϕ∗◦ψ∗ and (id[m])∗ =

idC[m] and thus C : ∆→ cCat is a functor (a cosimplicial object in cCat).

Proof. For (1), given composable strings x = (xi+1, · · · , xj−1) and y = (yj+1, · · · , yk−1), we have:

ϕ(x) · ϕ(y) = (x̄ϕ(i)+1, · · · , x̄ϕ(j)−1) · (ȳϕ(j)+1, · · · , ȳϕ(k)−1)
= (x̄ϕ(i)+1, · · · , x̄ϕ(j)−1, 1, ȳϕ(j)+1, · · · , ȳϕ(k)−1)
= (x̄ϕ(i)+1, · · · , x̄ϕ(j)−1, x̄ϕ(j), ȳϕ(j)+1, · · · , ȳϕ(k)−1)
= ϕ(x · y)

since x̄ϕ(j) = max{xs | s ∈ ϕ−1(ϕ(j))} = xj = 1.

In (2), it is clear that (ϕ◦ψ)∗ and ϕ∗ ◦ψ∗ agree on objects. To see that they also agree on mapping
cubical sets, we must show that for each v:

max
{

max{xs | s ∈ ψ−1(t)}
∣∣∣ t ∈ ϕ−1(v)

}
= max{xs | s ∈ ψ−1(ϕ−1(v))}

This follows from the fact that the maximum of a finite set can be found by taking a partition of
the set, finding the maximum of each element of the partition, and then taking the maximum of
those. �

We define the (cubical) homotopy coherent nerve functor N� : cCat→ sSet by setting:

(N�C)n = cCat(C[n],C).

The category cCat of cubical categories possesses all small colimits (as a category of models for an
essentially algebraic theory), and hence we may extend C : ∆ → cCat (by the left Kan extension
along the Yoneda embedding) to a functor on sSet:

sSet ⊥ cCat

∆

C

N�

C

Remark 2.3. Let us point out that in order for C to be a cosimplicial object, we need at least face
maps, degeneracies, and maximum (a.k.a. negative) connections in �. In particular, without max-
connections we would not be able to define one of the degeneracies s1 : C[3] → C[2]. On the other
hand, all of our theorems of Sections 2 and 3 are true for more restrictive choices of morphisms in
the category � (as long as they contain the three classes described above).

Examples 2.4.

(1) If C is a category, regarded as a cubical category with discrete mapping spaces, then N�C ∼=
NC.

(2) The category cSet is enriched over itself as a presheaf category and one therefore obtains a
simplicial set N�cSet. This simplicial set will play an important role in our considerations
regarding the Grothendieck construction in Section 3.
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Let us try to understand the functor N� : cCat → sSet by writing explicitly the 0-, 1-, 2-, and
3-simplices of N�C for some cubical category C.

Since C[0] consists of a single object 0 and a single map id0, we have that (N�C)0 = ObC.

The category C[1] has two objects: 0 and 1, and MapC[1](0, 1)0 is a single vertex. Thus an element

in (N�C)1 consists of two objects x0, x1 ∈ C, together with a map f01 : x0 → x1.

Similarly, an element of (N�C)2 consists of three objects x0, x1, x2 ∈ ObC, three maps f01 : x0 → x1,
f12 : x1 → x2, and f02 : x0 → x2, and a homotopy (that is, a 1-cube in MapC(x0, x2)) H012 : f02 →
f01 · f12.

Remark 2.5. The direction of the homotopy H012 towards the composite is determined by the fact
that MapC[n](0, 2) = {∅ ⊆ {1}}. The map f02 is then the value assigned to ∅ and the composite

f01 · f12 is assigned to {1}.

A 3-simplex in N�C consists of the following data:

• four objects x0, x1, x2, x3 ∈ ObC;
• for each 0 ≤ i < j ≤ 3, a 0-cube fij : xi → xj ;
• for each triple 0 ≤ i < j < k ≤ 3, a 1-cube Hijk : fik → fij · fjk;
• a 2-cube:

f03 f02 · f23

Θ0123

f01 · f13 f01 · f12 · f23

H023

H013 H012 · (f23σ1)

(f01σ1) ·H123

where s1 is the degeneracy operation.

Intuitively, the n-simplices of N�C encode the coherence in composing a string of n arrows in C.
To see this, let

x0 → x1 → . . .→ xn

be a composable string in C. The corresponding n-simplex in N�C is an (n− 1)-cube whose 2n− 2
faces are accounted for as follows:

• there are (n+1) faces coming from omitting one of the objects i = 0, 1, . . . , n and considering
the possible ways of composing all non-adjacent morphisms;
• there are (n− 3) faces obtained by choosing i ∈ {2, 3, . . . , n− 2} and considering separately

the strings x0 → . . . → xi and xi → . . . → xn. Thus they are composites of degenerate
cells.

In particular, cells of dimension 4 have faces that are composites of degenerate cells of lower
dimensions; and 4 is the lowest dimension in which this occurs. In the notation above, one of the
faces in a 4-cell has the form:

8



f02 · f24 f01 · f12 · f24

f01 · f12 · f24 f01 · f12 · f23 · f34

H012 · (f24σ1)

(f02σ1) ·H234 (f01 · f12)σ1 ·H234

H012 · (f23 · f34)σ1

We next turn our attention to the question: when is N�C a quasicategory? Recall that a quasi-
category is a simplicial set X satisfying the inner horn filling condition; that is for every n ∈ N,
0 < i < n, and every map Λi[n]→ X, there exists a filler

Λi[n] X

∆[n]

We will show that if all mapping cubical sets of C satisfy the Kan condition, then the simplicial
nerve of C is a quasicategory. In our proof, we will only use half of the Kan conditions, namely
existence of fillers for (i, 0)-open boxes, but one can show that if a cubical set X has fillers for
(i, 0)-open boxes, then it must also have fillers for (i, 1)-open boxes.

Theorem 2.6. Let C be a locally Kan cubical category. Then N�C is a quasicategory.

Before giving the proof in full generality, we check the cases n = 2 and n = 3.

When n = 2, we need to solve the following lifting problem:

Λ1[2] N�C

∆[2]

By C a N�, this is equivalent to the lifting problem:

CΛ1[2] C

C[2]

in cCat.

A map CΛ1[2]→ C corresponds to a choice of three objects x0, x1, x2 ∈ ObC along with two maps
f01 : x0 → x1 and f12 : x1 → x2. We seek an extension C[2] → C, that is, a map f02 : x0 → x2

together with a homotopy H012 : f02 → f01 · f12. This can be expressed as a lifting problem in the
category cSet as follows:
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u1
1,0 MapC(x0, x2)

�1

This problem, however, has a solution since C was assumed to be locally Kan.

In fact, we did not have to use any Kan condition to produce the required lift. Indeed, we could
have simply taken f02 := f01 ·f12 and H012 := s1(f01 ·f12). This is because C, as a cubical category,
was equipped with composition.

Next, we shall discuss the case n = 3 and i = 1. The case i = 2 is completely analogous and we
will comment on it later. As before, the lifting problem:

Λ1[3] N�C

∆[3]

is, by adjointness, equivalent to:

CΛ1[3] C

C[3]

Thus, we are given:

• four objects x0, x1, x2, x3 ∈ ObC;
• for each 0 ≤ i < j ≤ 3, a 0-cube fij : xi → xj ;
• three 2-simplices H012 : f02 → f01 · f12, H013 : f03 → f01 · f13, and H123 : f13 → f12 · f23;

and we are seeking H023 : f03 → f02 · f23 together with Θ0123 ∈ MapC(x0, x3)2, i.e. given the solid
arrows in the following open box:

f03 f02 · f23

f01 · f13 f01 · f12 · f23

H023

H013 H012 · (f23σ1)

(f01σ1) ·H123

we need an extension to a 2-cube. In other words, we need to solve the following lifting problem in
cSet:

u2
1,0 MapC(x0, x3)

�2

10



which has a solution since MapC(x0, x3) is a cubical Kan complex.

The above procedure with the inclusion Λ2[3] ↪→ ∆[3] yields:

f03 f02 · f23

f01 · f13 f01 · f12 · f23

H023

H013 H012 · (f23σ1)

(f01σ1) ·H123

that is, we need a lift in:

u2
2,0 MapC(x0, x3)

�2

which exists since MapC(x0, x3) is Kan.

We can now give the proof in the general case.

Proof of Theorem 2.6. By adjointness C a N�, we need to solve a family of lifting problems:

CΛi[n] C

C[n]

where n ≥ 2 and i = 1, 2, . . . , n− 1.

For each such n and i, we note that CΛi[n] has the same vertices as C[n] and the mapping spaces
of CΛi[n] and C[n] agree for all objects, except for CΛi[n](0, n), which is a proper subobject of
C[n](0, n). Indeed, by cocontinuity of C, the former is obtained from the latter by removing the
interior and the (i, 0)-face from the non-degenerate (n− 1)-cube in C[n](0, n).

Thus writing x0 and xn for the value of the horizontal map on 0 and n, respectively, this lifting
problem can be in turn reduced to:

un−1
i,0 MapC(x0, xn)

�n−1

But since C is locally Kan, all of these problems admit the required lifts. �

Example 2.7. The cubical category Kan of universal Kan complexes is locally Kan (Exam-
ples 1.11), and thus N�Kan is a quasicategory.

Theorem 2.8. If C is a locally Kan cubical category in which every morphism is an equivalence,
then the simplicial set N�C is a Kan complex.

11



The proof of Theorem 2.8 will be preceded by a short discussion, in which we recall Joyal’s theorem
on existence of lifts for special horns. We begin with preliminary definitions:

Definition 2.9 (Joyal).

(1) The simplicial set K is the pushout:

∆[1] + ∆[1] ∆[3]

∆[0] + ∆[0] K

[02, 13]

(2) Let C be a quasicategory. A 1-simplex f : ∆[1] → C is an equivalence if f factors through
the inclusion [12] : ∆[1] ↪→ K.

(3) Let C be a quasicategory. A horn u : Λ0[n] → C (respectively, v : Λn[n] → C) is special if

u|∆{0,1} (respectively, v|∆{n−1,n}) is an equivalence.

Theorem 2.10 (Joyal, [Joy02, Thm. 2.2]). Let f : C→ D be an inner fibration between quasicate-
gories and consider the following diagram where i = 0 or i = n:

Λi[n] C

∆[n] D

h

If h is a special horn, then the lifting problem above admits a solution. In particular, for D = ∆[0],
quasicategories have fillers for all special horns.

Proof of Theorem 2.8. In a locally Kan cubical category, a 0-cube is an equivalence if and only if
the corresponding 1-simplex (the image of C[1] → C) is an equivalence in the quasicategory N�C.
Thus if every map in C is an equivalence, every horn is special and hence, by Theorem 2.10, N�C

admits fillers for all horns. �

We conclude this section by relating N� to the homotopy coherent nerve functor. Let us begin
by recalling the construction of the homotopy coherent nerve N4 : sCat → sSet. It arises from a
cosimplicial object in the category sCat of simplicial categories.

Namely, one defines C4 : ∆→ sCat by putting C4[n] to be the simplicial category with:

• objects: 0, 1, . . . , n;
• mapping spaces given by:

MapC4[n](i, j) = N([1]{i+1,...,j−1})

• the composition is given by union of subsets.

One then defines (N4C)n := sCat(C4[n],C) and obtains a pair of adjoint functors:

sSet ⊥ sCat

∆

C4

N4

C4

12



where C4 : sSet → sCat is given, as always, by the left Kan extension of C4 : ∆ → sCat along the
Yoneda embedding.

Theorem 2.11. There is a natural isomorphism of functors N4 ∼= N� ◦U•.

Proof. Since the mapping cubical sets MapC[n](i, j) are representable, T• acts as the nerve functor
N on them and hence T• ◦ C ∼= C4. Thus, by T• a U•, we have the following sequence of natural
isomorphisms:

N4 = sCat(C4,−) ∼= sCat(T• ◦ C,−) ∼= sCat(C,U•(−)) = N� ◦U•,

completing the proof. �

Putting together Theorems 2.6 and 2.11 and Examples 1.11, we obtain the following well-known
corollary.

Corollary 2.12. If C is a locally Kan simplicial category, then N4C is a quasicategory. �

3. The Grothendieck construction

In this section, we consider the construction taking a simplicial map F : S → N�cSet to an object
in the slice category

∫
S F ∈ sSet ↓ S. This is analogous to the Grothendieck construction of the

category of elements. We then show that this assignment is functorial and admits a left adjoint.
Finally, we will relate this construction to Lurie’s (straightening a unstraightening)-adjunction (cf.
[Lur09, Sec. 2.2.1]).

We begin by defining, given F : ∆[n]→ N�cSet, the set

SectF =
{

∆[n+ 1]
G→ N�cSet

∣∣∣ G|∆{0} = �0 and G|∆{1,...,n+1} = F
}
.

Here, we write F |∆{i,...,j} for the restriction of F to the simplicial subset of ∆[n] spanned by the
vertices i, . . . , j. A map F : ∆[n]→ N�cSet should be thought of as a homotopy coherent family of
cubical sets, indexed by ∆[n], and the set SectF as the set of its homotopy coherent sections. Let
us illustrate these intuitions with examples of such families and their sections for small values of n.

Examples 3.1.

(1) If n = 0, a simplex F : ∆[0] → N�cSet corresponds to a choice of a cubical set X, and the
set SectF is simply the set X0 of 0-cubes of X.

(2) For n = 1, a map F : ∆[1] → N�cSet gives a pair of cubical sets X0 and X1, along with a
map f01 : X0 → X1. The set SectF consists then of triples:

(x0 ∈ X0, x1 ∈ X1, p01 ∈ (X1)1),

where p01 : x1 → f01(x0) ∈ X1.
(3) For n = 2, a map F : ∆[2] → N�cSet corresponds to a choice of three cubical sets X0,

X1, and X2, together with maps f01 : X0 → X1, f12 : X1 → X2, and f02 : X0 → X2, and a
homotopy α012 : f02 → f12 · f01. An element in SectF is a septuple:

(x0 ∈ X0, x1 ∈ X1, x2 ∈ X2, p01 ∈ (X1)1, p12 ∈ (X2)1, p02 ∈ (X2)1, H012 ∈ (X2)2)

where p01 : x1 → f01(x0), p12 : x2 → f12(x1), p02 : x2 → f02(x0), and H012 is a 2-cube:

x2 f02(x0)

f12(x1) f12f01(x0)

p02

p12 α012(x0)

f12(p01)
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Definition 3.2. Let S be a simplicial set and F : S → N�cSet a simplicial map. Define the
Grothendieck construction of F to be the simplicial set

∫
S F whose n-simplices are given by:(∫

S
F

)
n

=
{

(s : ∆[n]→ S,G ∈ Sect(Fs))
}
.

The simplicial set
∫
S F is equipped with a canonical projection PF :

∫
S F → S, given by PF (s,G) =

s. Let us now establish the universal case of this construction. We will write (N�cSet)∗ for the
simplicial set

∫
N�cSet

id and P for the associated projection Pid : (N�cSet)∗ → N�cSet. Given a

simplicial set S and a map F : S → N�cSet, define QF :
∫
S F → (N�cSet)∗ by QF (s,G) = (Fs,G).

Proposition 3.3. For any simplicial map F : S → N�cSet, the square:

∫
S F (N�cSet)∗

S N�cSet

QF

PF P

F

is a pullback.

Proof. The square is easily seen to commute. Consider a simplicial set K with maps f1 : K → S
and f2 : K → (N�cSet)∗ with F ◦ f1 = P ◦ f2. Define f : K →

∫
S F by putting for x : ∆[n] → K,

f(x) = (f1 ◦ x,pr2(f2 ◦ x)). �

In the situation of Proposition 3.3, given a map f : S′ → S, by the universal property of the
pullback, we obtain a map QF,f :

∫
S′ F ◦ f →

∫
S F . Explicitly, this map is given by:

QF,f (s′, G) = (fs′, G).

Combining the previous proposition with the standard lemma about pasting pullback squares, we
obtain:

Corollary 3.4. Given any map f : S′ → S of simplicial set, the following square:

∫
S′ F

∫
S F

S′ S

QF,f

PF◦f PF

f

is a pullback. �

So far, we have defined an assignment taking a simplicial map F : S → N�cSet, or equivalently
a cubical functor F : CS → cSet, to a map

∫
S F → S. We now wish to extend it to a functor∫

S : cSetCS → sSet↓S, where cSetCS is the category of cubical functors CS → cSet. To this end let

F, F ′ : CS → cSet and let ϕ be a morphism from F to F ′ in (N�cSet)
S .

Given an n-simplex (s : ∆[n] → S,G : ∆[1 + n] → N�cSet) in
∫
S F , define

∫
S ϕ(s,G) := (s,G′),

where G′ : C[1 + n]→ cSet is defined:

• on objects G′0 = �0 and G′1+i = F ′i for i = 0, 1, . . . , n;

• on mapping cubical sets G′i,j : MapC[1+n](i, j) → F ′j
F ′i is given by: G′1+i,1+j = F ′i,j for

i, j = 0, . . . n and G′0,j = ϕj ◦G0,j .
14



It follows, by naturality of ϕ, that G′ : C[1 + n] → cSet is a cubical functor and moreover, by
construction of G′, we obtain the following:

Proposition 3.5. With the definition above
∫
S defines a functor cSetCS → sSet↓S. �

One can also look at
∫
S as a functor defined on a slightly different (but isomorphic, not only

equivalent!) category which we describe below.

The cosimplicial object C : ∆ → cCat defines the simplicial enrichment on the category cCat of
cubical categories where the simplicial set Map∆(C,D) is defined by

Map∆(C,D)n = cCat(C× C[n],D).

In particular, with this definition N�C ∼= Map∆([0],C) for any cubical category C. Moreover,

we may define the morphism part
−→
N� of N� by putting

−→
N�C = Map∆([1],C), which yields the

following description of its n-simplices:

(
−→
N�C)n = cCat([1]× C[n],C).

The diagram δ0, δ1 : [0] ⇒ [1] defines a cocategory object in Cat and hence for any cubical category
C, we obtain a category object in sSet:

−→
N�C

δ∗0
⇒
δ∗1

N�C.

Given a cubical category C and a simplicial set S, we define a category (N�C)S as follows:

• the objects are simplicial maps S → N�C;

• the morphisms are simplicial maps S →
−→
N�C;

• the domain and codomain operations are given by postcomposition with δ∗0 and δ∗1 .

Let C and S be as above and let CCS denote the category whose objects are given by cubical functors
CS → C and whose maps are cubical natural transformation.

Cubical natural transformations between functors CS → C correspond naturally to cubical functors
[1]× CS → C. Thus, given such a natural transformation and an n-simplex of S, we obtain a map

[1]× C[n]→ C, hence an n-simplex in
−→
N�C. This defines a functor CCS → (N�C)S , which is easily

seen to be an equivalence (and, in fact, an isomorphism) of categories.

Note that in particular the morphisms of (N�C)S are given by cubical maps [1]× CS → C, rather
than by C([1]×S)→ C, i.e., they are strict cubical transformation rather than “homotopy coherent”
transformations.

The classical version of the Grothendieck construction (i.e. for functors C → Set) admits a left

adjoint. The same is true in our setting and we next show that the functor
∫
S : cSetCS → sSet↓S

constructed above also admits a left adjoint LS : sSet↓S → cSetCS .

Recall that the join is a functor ? : sSet × sSet → sSet together with two natural transformations
X → X ? Y ← Y such that ∆[m] ? ∆[n] ∼= ∆[m + n + 1], naturally in both m and n, and for all
X,Y ∈ sSet the functors X ? − : sSet → X ↓ sSet and − ? Y : sSet → Y ↓ sSet preserve colimits.
Explicitly, X ? Y is given by:

(X ? Y )n =
∐

i+j=n−1

Xi × Yj ,

where X−1 = Y−1 = {∗}. We will write X/ for the join {∗} ? X.

To construct LS , take p : X → S and consider the pushout:
15



X X/

S X/ +X S

p

We define LSp : CS → cSet as LSp := MapC(X/+XS)(∗,−).

Theorem 3.6. For any simplicial set S, the functors LS : sSet ↓S � cSetCS :
∫
S form an adjoint

pair.

Proof. The functor LS preserves colimits, thus it suffices to construct a natural bijection between
maps s → PF in sSet ↓ S and LSs → F in cSetC[n], where s : ∆[n] → S is a simplicial map and
F : CS → cSet is a cubical functor.

A map s→
∫
S F corresponds naturally to an n-simplex in

∫
S F whose first component is s and the

second component is G : ∆[1 + n]→ N�cSet such that G|∆{0} = �0 and G|∆{1,...,1+n} = Fs.

Such a map determines therefore an extension F : ∆[1 + n] +∆[n] S → N�cSet of F :

∆[n] ∆[1 + n]

S ∆[1 + n] +∆[n] S

N�cSet

G

F

F

which, by adjointness, gives F : C[1 + n] +C[n] CS → cSet. But since F (0) = G(0) = �0, by the

Enriched Yoneda Lemma, this gives a unique map MapC[1+n]+C[n]CS
(0,−)→ F in cSetC[1+n]+C[n]CS ,

whose restriction to CS gives the required natural transformation.

Conversely, given a cubical natural transformation ϕ : MapC[1+n]+C[n]CS
(0,−)→ F we extend F to

F : C[1 + n] +C[n] CS → cSet by putting F (0) = �0 and defining F 0,i : MapC[1+n](0, 1) → F (i) by

F 0,i = ϕi. Such an F determines an n-simplex in
∫
S F whose first component is s.

Both of these maps are natural since all the steps involved in the construction were natural. It
is moreover immediate to see that these maps are mutual inverses, thus yielding the required
bijection. �

We next consider a relative version of this construction. Fix a simplicial set S, cubical category C,
and a cubical functor φ : CS → C. Associated with φ, there is an adjoint pair:

cSetCS ⊥ cSetC.

φ!

φ∗

where φ∗ is given by precomposition with φ and φ! is the left Kan extensions along φ.

Thus, we define
∫
φ =

∫
S φ
∗ and Lφ = φ!LS . The following proposition is immediate by construction.
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Proposition 3.7. For any cubical functor φ : CS → C, the functors

Lφ : sSet↓S � cSetC :

∫
φ

form an adjoint pair. �

Unwinding the definitions, we see that the n-simplices of
∫
φ F (where F : C → cSet is a cubical

functor) are given by:

(∫
φ
F

)
n

=
{

(s : ∆[n]→ S,G ∈ Sect(Fφs)
}
.

Here, Fφ : S → N�cSet denotes the adjoint transpose of Fφ : CS → cSet.

Conversely, Lφp arises as a restriction of the functor MapC[X/]+CXC(∗,−) on the pushout:

CX C(X/)

CS

C C(X/) +CX C

C[p]

φ

The analogous version of the Grothendieck construction, but for maps S → N4sSet is described in
[Lur09, Sec. 2.2.1] and referred to as the unstraightening functor. We now show how to relate this
construction to ours.

To begin, let us recall the construction of Lurie’s (straightening a unstraightening)-adjunction. For
the remainder of the section, fix a simplicial set S, a simplicial category C, and a simplicial functor
φ : C4[S]→ C (or equivalently, a simplicial map S → N4C).

Given a map p : X → S of simplicial sets, one first forms the following pushout in sCat:

C4X C4(X/)

C4S

C C4(X/) +C4X C

C4p

φ

and then defines Stφ(p) := MapC4(X/)+C4XC(∗,−). This gives the straightening functor

Stϕ : sSet↓S → sSetC

(where sSetC denotes the category of simplicial functors C → sSet and simplicial natural transfor-
mations). It can be shown, either by the Adjoint Functor Theorem or an explicit construction, that

Stφ admits a right adjoint, called the unstraightening, Unφ : sCatC → sSet↓S.

The category sSet is a simplicial category (as a presheaf category), and hence we may use the functor
U•, applying the right adjoint to triangulation on mapping spaces, cf. Section 1, to obtain U•sSet,
a cubical category whose objects are simplicial sets and the mapping cubical set MapU•sSet(X,Y )
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is given by U(Y X), where Y X is the internal exponential object. Moreover, the adjunction T a U

yields a pair of cSet-enriched functors T̃ : cSet � U•sSet : Ũ, which are adjoint since U preserves
exponentials.

Returning to the question of expressing the (Stφ a Unφ)-adjunction, we have the following:

Theorem 3.8. Let φ : C4S → C be a simplicial functor and let φ : CS → U•C be its adjoint
transpose (under the T• a U• adjunction). Then Stφ and Unφ arise as respectively the upper and
the lower composites in the diagram:

sSet↓S ⊥ cSetU•C ⊥ (U•sSet)
U•C

Lφ

∫
φ

T̃ ◦ −

Ũ ◦ −

via (U•sSet)
U•C ' sSetC.

Before proving this theorem, we state a corollary of Theorem 2.11 describing the relation between
mapping spaces in C∆[S] and those of CS. This result indicates that the mapping spaces of CS
may admit a simpler description in terms of necklaces than its simplicial counterpart.

Lemma 3.9. For a simplicial set S, the mapping spaces of C∆S are computed by triangulating
those of CS.

Proof. By Theorem 2.11, N�U• = N4, so we obtain an isomorphism of left adjoints C∆ = T•C. At
a simplicial set S, this tells us that the hom-categories of C∆S are computed by triangulating the
hom-categories of CS. �

Proof of Theorem 3.8. Since U is full and faithful, we obtain the equivalence (U•sSet)
U•C ' sSetC.

Lemma 3.9 then implies that the upper composite is Stφ and the result follows by uniqueness of
adjoints. �
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[Joy02] André Joyal, Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175 (2002), no. 1-3, 207–
222, Special volume celebrating the 70th birthday of Professor Max Kelly, doi:10.1016/S0022-4049(02)
00135-4.

[JT08] André Joyal and Myles Tierney, Notes on simplicial homotopy theory, unpublished manuscript, 2008,
http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern47.pdf.

[Kan55] Daniel M. Kan, Abstract homotopy. I, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 1092–1096.
[Kan56] , Abstract homotopy. II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 255–258.
[KLW19] Krzysztof Kapulkin, Zachery Lindsey, and Liang Ze Wong, A co-reflection of cubical sets into simplicial

sets with applications to model structures, New York J. Math. 25 (2019), 627–641.
[Lur09] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press,

Princeton, NJ, 2009.
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