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1 Introduction
In these notes we will give an overview of the concept of local presentability as it
arises in the theory of categories, model categories and quasicategories. Locally
presentable categories are well-known and extremely useful. In the homotopy
theoretic context we will consider, the analogues of locally presentable categories
are combinatorial model categories and locally presentable quasicategories. In
this introduction, we will refer to all three simply as locally presentable cate-
gories.

The essential idea of local presentability is the same in all three settings:
locally presentable categories are generated under certain colimits by a small
subcategory. This means that many properties of locally presentable categories
are formally determined by this small subcategory.

Since objects in locally presentable categories all can be written as colimits
of certain objects, we will investigate the process of formally adjoining colimits
to a category. Theorems 3, 20 and 38 show that, in all three settings, given a
category A we can construct its free cocompletion as a category of (simplicial)
presheaves.

Intuitively, since locally presentable categories C are generated under colimits
by a small subcategory A, we might hope to recapture C by formally adjoining
colimits to A, and then quotienting by some set of relations to recover C. We will
see that versions of this plan can be put into practice to obtain representation
theorems characterising locally presentable categories: these are Theorems 16,
25 and 48.

Both locally presentable quasicategories and combinatorial model categories
are attempts to extend the idea of local presentability from categories to (∞, 1)-
categories. Using the representation theorems, we will see in Theorem 49 that
these two approaches agree: a quasicategory is locally presentable if and only if
it can be obtained from a combinatorial model category. This improves on the
results we have already seen comparing models of homotopy theories: not only
do quasicategories capture models such as relative categories - meaning that

1



they capture the most general (and least usable) notions of a homotopy theory
- but, for important model categories we are interested in studying, we get an
explicit, usable correspondence. The notes will give a taste of the fact that,
although they agree in the sense of Theorem 49, working with model categories
and their underlying quasicategory can require relatively dissimilar technical
methods.

The overall structure of these notes follows [Gro10, Section 3]. The material
in Section 2 can be found in [AR94], Section 3 follows [Dug01b, Dug01a], and
Section 4 follows [Lur09].

1.1 Notation and Terminology
We will denote the category of simplicial sets by sSet and the category of
simplicially enriched categories by SCat. For a category A, the category of
presheaves will be denoted Pre (A) = SetA

op

, and simplicial presheaves
will be denoted sPre (A) = sSetA

op

.
Given objects a, b ∈ A in a simplicial category, we will denote their mapping

space by A (a, b), and the underlying set of 0-simplices by A (a, b). Simplicial
sets with the Quillen model structure will be denoted sSetQ and the weak
equivalences will be called Kan equivalences; simplicial sets with the Joyal
model structure will be denoted sSetJ and the weak equivalences called Joyal
equivalences. The internal hom in sSet will be denoted Fun (X,Y ). We will
denote the rigidification functor by C : sSet → SCat, and its right adjoint
the coherent nerve by N : SCat→ sSet.

For any model categoryM, its category of bifibrant objects will be denoted
M◦.

2 Locally Presentable Categories
Definition 1. Let C be a category and A ⊆ C a full subcategory. For any
object x ∈ C the canonical diagram of x with respect to A is the projection
functor:

A ↓ x −→ C
(a→ x) 7→ a

We call the colimit of this diagram the canonical colimit of x with respect
to A. We will write Colim (A ↓ x) for this colimit.

Example 2. We may consider any category A as a full subcategory of Pre (A)
via the Yoneda embedding. Any functor X ∈ Pre (A) is isomorphic to its
canonical colimit:

Colim (A ↓ X) = Colim
A(−,a)→X

A (−, a) ∼= X

A full subcategory A ⊆ C for which every x ∈ C is isomorphic to its canonical
colimit relative to A is called dense in C.
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Example 2 allows us to show that the Yoneda embedding y : A → Pre (A)
is the free cocompletion of any category A:

Theorem 3. Let A be a category. Given any cocomplete category E and any
functor F : A → E, there is a cocontinuous functor F̃ : Pre (A) → E and
a natural isomorphism F̃ ◦ y ∼= F . Moreover, this extension is unique up to
isomorphism.

Proof. Given any functor F : A → E , we take F̃ to be its left Kan extension
along the Yoneda embedding:

F̃ = y!F : Pre (A)→ E

Because y is fully faithful, there is a natural isomorphism y!F ◦ y ∼= F , so y!F is
an honest extension of F to Pre (A). Since E is cocomplete we have a pointwise
formula for y!F :

y!F (X) = Colim
(

(A ↓ X) −→ A F−→ E
)

Using this formula, and the description in Example 2 of any presheaf as a colimit
of representables, we can show that the following functor is a right adjoint for
y!F :

R : E −→ Pre (A)

e 7→ E (F (−) , e)

This shows that y!F is cocontinuous.
Finally, by Example 2, A is dense in Pre (A). Thus, cocontinuous functors

from Pre (A) which agree on representables must agree on the whole of Pre (A).
It follows that y!F is the essentially unique cocontinuous extension of F to
Pre (A).

Remark 4. The proof of Theorem 3 shows that precomposition with the Yoneda
embedding induces an equivalence of categories:

y∗ : Cocts (Pre (A) , E) ' Fun (A, E)

where Cocts (Pre (A) , E) denotes the category of cocontinuous functors from
Pre (A) to E .

Given an infinite cardinal λ, a diagram J → C is called λ-small if |Mor (J)| <
λ. Recall that an infinite cardinal λ is regular if the category Set<λ of sets
with cardinality less than λ is closed under λ-small colimits. Equivalently, a
regular cardinal λ cannot be expressed as a sum λ =

∑
i<α

γi where γi < λ and

α < λ.
From now on, λ will always denote a regular cardinal.

Definition 5. A category J is λ-filtered if any λ-small diagram in J has a
cocone. That is, any λ-small diagram D → J extends to a diagram D. → J ,
where D. is obtained by freely adjoining a terminal object to D.
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Definition 6. An object c ∈ C is called λ-presentable if the corepresented
functor

C (c,−) : C → Set

preserves λ-filtered colimits. An object is called finitely presentable if it is
ℵ0-presentable.

Example 7. A set is λ-presentable in Set if and only if it has cardinality less
than λ.

Example 8. A group is finitely presentable in Grp in the sense of Definition
6 if and only if it has a finite presentation in the group theoretic sense.

Definition 9. A category C is locally λ-presentable if it is cocomplete and
there is a set A ⊆ Ob (C) consisting of λ-presentable objects, such that every
object in C can be expressed as a λ-filtered colimit of objects from A. We call
a category locally presentable if it is locally λ-presentable for some λ.

Example 10 ([AR94, Example 1.12]). For any small category A, we can use the
Yoneda lemma to show that all representable functors are finitely presentable
in Pre (A). This can be used to show that Pre (A) is locally finitely presentable.

A locally λ-presentable category C has only a set of isomorphism classes of
λ-presentable objects. Picking representatives for each isomorphism class we
obtain a set Cλ ⊆ Ob (C). We will also write Cλ for the full subcategory on these
objects.

Remark 11 ([AR94, Prop 1.22]). If C is locally λ-presentable, then Cλ ⊆ C is
dense. Moreover, for any c ∈ C, the slice category (Cλ ↓ c) is λ-filtered. Thus,
any object in a locally λ-presentable category can be written in a canonical way
as a λ-filtered colimit of λ-presentable objects.

Definition 12. Let C and D be categories admitting λ-filtered colimits. A
functor F : C → D is called λ-accessible if it preserves all λ-filtered colimits.

2.1 Reflective Localisation of Categories
Definition 13. Let C be a category and let S be a class of maps in C.

1. An object z ∈ C is called S-local if, for every map s : a → b in S,
precomposition with s induces an isomorphism:

s∗ : C (b, z)→ C (a, z)

2. A map f : a → b is called an S-equivalence if, for any S-local object z,
precomposition with f induces an isomorphism:

f∗ : C (b, z)→ C (a, z)
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Exercise 14 ([Gro10, Prop 3.8]). LetA ⊆ C be a reflective subcategory. Denote
the inclusion by R : A → C and its left adjoint by L : C → A. Let S be the set
of all maps f in C for which L (f) is an isomorphism. Then:

1. The essential image of R : A → C consists precisely of the S-local objects.

2. The S-equivalences are exactly the maps in S.

In the situation of Exercise 14, we claim that A is a localisation of C with
respect to S. Since the right adjoint R : A → C is fully faithful, the counit of
the adjunction ε : L ◦ R ⇒ idA is an isomorphism. Thus, if we write η for the
unit, the triangle identities for the adjunction imply that L ◦ η : L⇒ L ◦R ◦ L
is also an isomorphism. That is, for any c ∈ C, the map

Lηc : L (c)→ LRL (c)

is an isomorphism. That is, ηc is in S.
Let F : C → E be a functor taking every map in S to an isomorphism, and

consider the functor:
F̃ := F ◦R : A → E

For any c ∈ C, since ηc is in S, applying F gives an isomorphism:

Fηc : F (c)→ F̃L (c)

These give a natural isomorphism F ∼= F̃ ◦ L.
Given any two functors H,G : A → E with H ◦ L ∼= G ◦ L, using the

isomorphism ε we obtain:

H ∼= H ◦ L ◦R ∼= G ◦ L ◦R ∼= G

This shows that the functor L : C → A has the universal property of a lo-
calisation at S. With this in mind, we will refer to reflective subcategories as
localisations:

Definition 15. Let L : C � A : R be an adjunction. We call L a reflective
localisation if R is fully faithful, and accessible if in addition R is an accessible
functor.

Theorem 16 ([AR94, Thm 1.46]). A category C is locally λ-presentable if and
only if it is equivalent to a reflective, λ-accessible localisation of Pre (A) for
some small category A.

We will omit the proof of Theorem 16. Note, however, that if we start with
a locally λ-presentable category C, we may take A = Cλ.
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3 Combinatorial Model Categories
Recall that a model categoryM is called combinatorial if it is both cofibrantly
generated and locally presentable. Given any category A, we may consider
simplicial presheaves sPre (A) with the projective model structure, for which
fibrations are given by pointwise Kan fibrations, and weak equivalences are
pointwise Kan equivalences. This forms a combinatorial model category, with
generating cofibrations given by maps of the form:

A (−, a)× ∂∆n → A (−, a)×∆n

for all a ∈ A and n ≥ 0. Here the simplicial sets ∂∆n and ∆n induce constant
simplicial presheaves, and the presheaf A (−, a) is thought of as a discrete sim-
plicial presheaf. Note that, taking n = 0, we see that all representable functors
are cofibrant.

Composing the Yoneda embedding with the discrete simplicial presheaf func-
tor, we can see A as a full subcategory of sPre (A):

A y−→ Pre (A) −→ sPre (A)

We will denote this composite simply by y : A → sPre (A).
Given any X ∈ sPre (A), we can consider the canonical diagram of X with

respect to two different full subcategories:

A ↓ X −→ sPre (A) A×∆ ↓ X −→ sPre (A)
(A (−, a)→ X) 7→ A (−, a) (A (−, a)×∆n → X) 7→ A (−, a)×∆n

We call the homotopy colimit of the second diagram the canonical homotopy
colimit of X with respect to A. We will denote it by Hocolim (A×∆ ↓ X).

Remark 17. When we write Hocolim (A×∆ ↓ X), we will always mean the
Bousfield-Kan presentation of the homotopy colimit, which is available because
sPre (A) is a simplicial model category. For a description of the Bousfield-Kan
formula see [Dug01b].

Theorem 18 ([Dug01b, Prop 2.9]). For any X ∈ sPre (A) the canonical ho-
motopy colimit Hocolim (A×∆ ↓ X) is cofibrant, and the natural map:

Hocolim (A×∆ ↓ X) −→ Colim (A×∆ ↓ X)
∼=−→ X

is a weak equivalence. Thus, Hocolim (A×∆ ↓ X) is a cofibrant replacement
for X in the projective model structure on sPre (A).

Note that the second map in Theorem 18 is an isomorphism by Example
2. In fact, Theorem 18 can be seen as an analogue of Example 2 for simplicial
presheaves. We will now work towards the analogue of Theorem 3 in this setting,
which will be Theorem 20:
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Definition 19. Let A be a category and let M and N be model categories.
Given functors F : A → M and G : A → N , a factorisation of F through
G consists of a left Quillen functor L : N →M, together with a natural weak
equivalence θ : L ◦G⇒̃F .

Given two factorisations (L, θ) and (L′, θ′), a map of factorisations con-
sists of a natural transformation α : L ⇒ L′ making the diagram below com-
mute:

L ◦G α◦G +3

θ �&

L′ ◦G

θ′x�
F

Factorisations and the maps betweeen them form a category FactG (F ).

Theorem 20 ([Dug01b, Prop 1.1]). Let A be a category and letM be a model
category. Given any functor F : A →M, there is a factorisation of F through
y : A → sPre (A). Moreover, the nerve of the category Facty (F ) is contractible.

Although we won’t construct it here, if M is a simplicial model category
there is a canonical choice for such a factorisation: we can find a left Quillen
functor L : sPre (A)→M, whose right adjoint is given by:

R :M −→ sPre (A)

x 7→ M
(

(F (−))
cof

, x
)

Here (−)
cof denotes cofibrant replacement inM.

3.1 Bousfield Localisation of Combinatorial Model Cate-
gories

Definition 21. Let M be a simplicial model category, and let S be a set of
cofibrations between cofibrant objects inM.

1. An object z ∈ M is called S-local if it is fibrant and, for every map
s : a→ b in S, precomposition with s induces a Kan equivalence:

s∗ :M (b, z)→M (a, z)

2. A map f : a → b is called an S-equivalence if, for any S-local object z,
precomposition with a cofibrant replacement of f induces a Kan equiva-
lence:

f∗ :M (b, z)→M (a, z)

The conditions on the set S are only there for technical reasons: if we start with
a general set of maps, we can take cofibrant replacements to obtain a set which
meets these requirements. Thus, we can make sense of localisation at any set of
maps S. Note that, since each S-local object is fibrant, any weak equivalence
inM is an S-equivalence.
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Definition 22. Let M be a simplicial model category and let S be a class of
maps in M. A left Bousfield localisation of M at S is a model structure
M/S on the same underlying category such that:

1. The cofibrations ofM/S are the same as those ofM.

2. The weak equivalences are the S-equivalences.

Since all weak equivalences in M are S-equivalences, M/S has more weak
equivalences than the original model structure; since it has the same cofibrations,
it follows that M/S has fewer fibrations than M. The S-local objects will
become the fibrant objects in the new model structure M/S, but it is often
difficult to give a complete characterisation of which fibrations in M remain
fibrations inM/S.

Lemma 23 shows that M/S has the universal property we expect from a
localisation:

Lemma 23. Let M be a simplicial model category and let S be a set of cofi-
brations between cofibrant objects. Let L : M → N be a left Quillen functor
which takes maps in S to weak equivalences. Then L descends to a left Quillen
functor L :M/S → N .

Definition 24. Let M be a model category. A small presentation for M
consists of a small category A, a left Quillen functor L : sPre (A)→M, and a
set of cofibrations S between cofibrant objects in sPre (A), such that:

1. L : sPre (A)→M takes maps in S to weak equivalences.

2. The induced left Quillen functor of Lemma 23, L : sPre (A) /S →M, is a
Quillen equivalence.

The following theorem can be seen as the analogue of Theorem 16 for combina-
torial model categories:

Theorem 25 ([Dug01a, Thm 1.1]). Every combinatorial model categoryM has
a small presentation.

For a generalM, the proof of Theorem 25 is relatively involved, but in the
case where M is a simplicial model category we can give a description of the
category A that is clearly analogous to Theorem 16. To do this, we need the
following:

Lemma 26 ([Dug01a, Prop 4.7]). Let M be a combinatorial model category,
and letMcof

λ be the full subcategory ofMλ on cofibrant objects. For sufficiently
large regular cardinals λ the canonical map

Hocolim
(
Mcof

λ ↓ x
)
→ x

is a weak equivalence for any x ∈M.
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SupposeM is a combinatorial simplicial model category, and choose a reg-
ular cardinal λ large enough that Lemma 26 holds. Then we can obtain a
presentation for M, taking A = Mcof

λ . As in Theorem 20, we obtain a left
Quillen functor L : sPre

(
Mcof

λ

)
→M whose right adjoint is given by:

R :M −→ sPre
(
Mcof

λ

)
x 7→ M (−, x)

As in [Dug01a, Prop 3.2], we can find a set of maps S in sPre
(
Mcof

λ

)
such that

L descends to a Quillen equivalence:

L : sPre
(
Mcof

λ

)
/S →M

4 Locally Presentable Quasicategories
Definition 27. Let M be combinatorial simplicial model category. A chunk
ofM is a full subcategory U ⊆M satisfying:

1. For any a ∈ U and any finite set of maps φi : a → bi in U , we have a
factorisation:

ā

q

&&
a

j

99

(φi)
// ∏
i

bi

with j a trivial cofibration, q a fibration, and a ∈ U . Moreover, this
factorisation gives a simplicial functor in φi.

2. For any a ∈ U and any finite set of maps ϕi : bi → a in U , we have a
factorisation:

ā

q

%%∐
i

bi

j

88

(ϕi)
// a

with j a cofibration, q a trivial fibration, and a ∈ U . Moreover, this
factorisation gives a simplicial functor in ϕi.

Given a chunk U ⊆M, we will write U◦ :=M◦ ∩ U .
For a simplicial category A and a combinatorial simplicial model category

M, we can form the simplicial category of simplicial functors MA. Just as in
the unenriched setting, we have the projective model structure on MA: the
weak equivalences are the pointwise Kan equivalences, and the fibrations the
pointwise Kan fibrations. See [Lur09, Section A.3.3] for a discussion of model
structures on enriched functor categories.
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Definition 28. Given a simplicial model category A, a chunk U ⊆M is called
an A-chunk if the full subcategory UA ⊆ MA is a chunk, where we consider
MA with the projective model structure.

Example 29. For any simplicial categoryA, any combinatorial simplicial model
category M is an A-chunk of itself. The factorisations we require can be ob-
tained using the small object argument.

Theorem 30 ([Lur09, Cor A.3.4.14]). Let M be a combinatorial simplicial
model category and let A be a small simplicial category. Let U ⊆ M be an
A-chunk. For any small simplicial category D, the evaluation map

ev : A×
(
UA
)◦ → U◦

induces a bijection:

Ho (SCat)
(
D,
(
UA
)◦) ∼=−→ Ho (SCat) (A×D,U◦)

Theorem 31 ([Lur09, Prop 4.2.4.4]). Let M be a combinatorial simplicial
model category, and let X be a small simplicial set. Let φ : CX → A be a
DK-equivalence with A a small simplicial category, and let U ⊆ M be an A-
chunk.

Then there is a Joyal equivalence:

N
((
UA
)◦)→ Fun (X,N (U◦))

Proof. Although we won’t prove it, we can reduce to the case where U is small;
this is possible using the proof of [Lur09, A.3.4.15]. For any simplicial set K we
have the following chain of natural isomorphisms:

Ho (sSetJ)
(
K,N

((
UA
)◦)) ∼= Ho (SCat)

(
CK,

(
UA
)◦)

∼= Ho (SCat) (A× CK,U◦)
∼= Ho (SCat) (CX × CK,U◦)
∼= Ho (SCat) (C (X ×K) ,U◦)
∼= Ho (sSetJ) (X ×K,N (U◦))
∼= Ho (sSetJ) (K,Fun (X,N (U◦)))

Most of these isomorphisms are self-explanatory. The second follows from The-
orem 30, the fourth from the fact that C preserves finite products up to weak
equivalence, and the final isomorphism follows from the fact that the Joyal
model structure on sSet is cartesian. The Yoneda lemma implies that we have
an isomorphism:

N
((
UA
)◦) ∼=−→ Fun (X,N (U◦))

is Ho (sSetJ). Since both objects are bifibrant, this must be induced by a Joyal
equivalence in sSet.
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Recall that the quasicategory of spaces is given by:

S := N (Kan) = N
(
sSet◦Q

)
Definition 32. Given any X ∈ sSet, the quasicategory of presheaves on X
is given by:

P (X) := Fun (Xop,S)

Corollary 33. For any small simplicial set X we have a canonical Joyal equiv-
alence:

N
((

sSetCX
op
)◦)
−̃→P (X)

Proof. This follows immediately from Theorem 31.

Theorem 31 is an important step in proving the following result:

Theorem 34 ([Lur09, Cor 4.2.4.8]). If M is a combinatorial simplicial model
category then the associated quasicategory N (M◦) admits all small limits and
colimits.

We will omit the proof of Theorem 34, since it would take us too far out
of our way. However, Theorem 34 and Corollary 33 imply immediately that
presheaf quasicategories have all small limits and colimits. Moreover, limits
and colimits can be computed pointwise:

Theorem 35 ([Lur09, Cor 5.1.2.3]). Let X be a simplicial set. A map

p : K. → P (X)

is a colimit diagram if and only if, for each vertex x ∈ X, the induced map

px : K. → S

is a colimit diagram.

Given a simplicial category C, we can form a fibrant replacement for C in
SCat by applying Ex∞ to each mapping space. Taking mapping spaces in this
fibrant replacement induces a simplicial functor:

Cop × C −→ Kan
(a, b) 7→ Ex∞ (C (a, b))

Given any X ∈ sSet we can consider this map for CX:

C (Xop ×X)→ CXop × CX → Kan

Under the adjunction C a N this corresponds to:

Xop ×X → S

This, in turn, corresponds under the internal hom adjunction to a map which
we call the Yoneda embedding:

y : X → P (X)
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Theorem 36 (Yoneda Lemma for Quasicategories). For any X ∈ sSet, the
Yoneda embedding y : X → P (X) is fully faithful.

Proof. Let C be a fibrant replacement for CXop in SCat. We can factor y as
follows:

X
j−→ N

((
sSetC

)◦)
−̃→Fun (Xop,N (Kan))

The second map is the Joyal equivalence of Theorem 31, so we need only show
that j is fully faithful. However, j may be written as the composite:

X → N (CX)→ N (Cop)→ N
((

sSetC
)◦)

The map X → N (Cop) is the derived unit of the Quillen equivalence C a N, so
it is a Joyal equivalence. The final map is obtained by applying the homotopy
coherent nerve to the simplicially enriched Yoneda embedding:

y : Cop → sSetC

Note that, since C is fibrant, the Yoneda embedding does indeed factor through
the bifibrant objects of sSetC . By the simplicially enriched Yoneda lemma, this
map induces isomorphisms on mapping spaces.

We now give the analogue of Example 2 for quasicategories:

Lemma 37 ([Lur09, Lemma 5.1.5.3]). Let X be a small simplicial set, and
identify it with its image in P (X) under the Yoneda embedding. For any vertex
F ∈ P (X) the map

(X ↓ F )
. → P (X)

which takes the cone point to F , is a colimit diagram.

This leads to the quasicategorical analogue of Theorem 3:

Theorem 38 ([Lur09, Thm 5.1.5.6]). Let X be a small simplicial set and let C be
a quasicategory admitting all small colimits. Composition with y : X → P (X)
induces a Joyal equivalence:

y∗ : Cocts (P (X) , C) −̃→Fun (X, C)

Here Cocts (P (X) , C) denotes the full subcategory of Fun (P (X) , C) on the
functors that preserve small colimits.

Definition 39. Let X be a simplicial set and consider a vertex x ∈ X. We
have the following composite:

X
y×x−→ P (X)×Xop −→ S

Denote this map by yx : X → S. We call this the functor corepresented by x.

Fix a regulat cardinal λ. We can now make quasicategorical versions of
Definitions 5, 6 and 9:
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Definition 40. A quasicategory C is called λ-filtered if, for every λ-small
simplicial set K and every map f : K → C, there is an extension of f to a
diagram:

f : K. −→ C

We call an arbitrary simplicial set λ-filtered if it is Joyal equivalent to a λ-filtered
quasicategory.

Definition 41. Let C be a quasicategory. An object x ∈ C is λ-presentable if
the corepresented functor yx : C → S preserves λ-filtered colimits.

In [Lur09], λ-presentable objects are called λ-compact.

Definition 42. A locally small quasicategory C is called locally λ-presentable
if C admits all small colimits and contains an essentially small, full subcategory
A ⊆ C, consisting of objects that are λ-presentable, such that A generates C
under λ-filtered colimits.

In [Lur09], locally λ-presentable quasicategories are simply called λ-presentable.

Definition 43. Let C and D be quasicategories admitting λ-filtered colimits.
A functor f : C → D is called λ-accessible if it preserves all λ-filtered colimits.

4.1 Reflective Localisation of Quasicategories
We start with the quasicategorical analogue of Definitions 13 and 21:

Definition 44. Let C be a quasicategory, and let S be a collection of maps in
C.

1. An object z ∈ C is called S-local if, for every map s : a → b in S,
precomposition with s induces a Kan equivalence:

s∗ : MapC (b, z)→ MapC (a, z)

2. A map f : a → b is called an S-equivalence if, for any S-local object z,
precomposition with f induces a Kan equivalence:

f∗ : MapC (b, z)→ MapC (a, z)

Definition 45. Let L : C � A : R be an adjunction between quasicategories.
We call L a reflective localisation if R is fully faithful, and accessible if in
addition R is an accessible functor.

Exercise 46 ([Lur09, Prop 5.5.4.2]). Let C be a quasicategory, and let L : C →
A be a reflective localisation. Denote the inclusion by R : A → C. Let S be the
set of all maps f in C for which L (f) is an equivalence. Then:

1. The essential image of R : A → C consists precisely of the S-local objects.
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2. Every S-equivalence in C belongs to S.

The proof of Exercise 46 is formally the same as Exercise 14.
Exercise 46 shows that any reflective localisation of a quasicategory can be

understood as a localisation at a collection of maps S. If we assume C is a
locally presentable quasicategory, then we can show that localising at any set of
maps S gives a reflective, accessible localisation:

Theorem 47 ([Lur09, Prop 5.5.4.15]). Let C be a locally presentable quasicat-
egory and let S be a set of maps in C. Let A ⊆ C be the full subcategory on the
S-local objects. Then the inclusion R : A → C is accessible, and it has a left
adjoint L : C → A. Moreover, a map f in C is an S-equivalence if and only if
L (f) is an equivalence.

Theorem 47 gives us a great deal of control over reflective, accessible locali-
sations of locally presentable quasicategories. We will now state the quasicate-
gorical analogue of Theorems 16 and 25:

Theorem 48 ([Lur09, Thm 5.5.1.1]). A quasicategory C is locally presentable
if and only if it is a reflective, accessible localisation of P (A) for some small
quasicategory A.

Finally, we can use Theorem 48 to sketch a proof of the result mentioned in
the introduction:

Theorem 49 ([Lur09, Prop A.3.7.6]). Let C be a quasicategory. Then C is lo-
cally presentable if and only if there is a combinatorial simplicial model category
M and an equivalence:

C ' N (M◦)

Proof. By Theorem 48, C is locally presentable if and only if it is a reflective,
accessible localisation of P (A) for some small quasicategory A. By Theorem
47, every such localisation has the form P (A) /S for a set of maps S.

By Corollary 33, we have an equivalence:

P (A) ' N
((

sSetCA
op
)◦)

Moreover, reflective accessible localisations of P (A) correspond to left Bous-
field localisations of sSetCA

op

. This gives a correspondence between locally
presentable quasicategories and the combinatorial simplicial model categories
that arise as a localisation of simplicial presheaves. But by Theorem 25, every
combinatorial simplicial model category is equivalent to one of this form.
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