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ABSTRACT. This talk introduces oco-topoi and Giraud’s axiomatic characterization of them. The
oo-categorical generalizations of sheaves on a site will also be discussed.

NOTATIONS

We will use the following notations and terminology.

e By an co-category, we mean a quasi-category.

e §is the (large) co-category given by the homotopy coherent nerve of the simplicial category
Kan of small Kan complexes.

e S is the (very large) oco-category given by the homotopy coherent nerve of the simplicial
category KAN of all Kan complexes.

e Caty, is the (large) oo-category given by the homotopy coherent nerve of the simplicial
category QCat®® having small quasi-categories as objects and mapping spaces given by
core(Fun(C, D)) for small oco-categories C,D. Here, for € an oo-category, core(C) is the
maximal sub-Kan complex of C.

° GOO is the (very large) oo-category given by the homotopy coherent nerve of the simpli-
cial category QCAT " having all quasi-categories as objects and defined analogously to

Qcatcore'
e For a simplicial set X, PrSh(X) is the co-category Fun(X°P,§) of functors X°P — 8.
e For an oo-category C, y: € — PrSh(C) denotes the Yoneda embedding.

1. PRELIMINARIES

1.1. Ordinary Giraud’s Theorem. We start from the 1-categorical characterization of (Grothendieck)
topoi.

Theorem 1.1 ([SGA4]|, Exposé IV, Thm 1.2). For an ordinary category X, the following are
equivalent.

(1) X is equivalent to Sh(C), the category of sheaves on a small Grothendieck site C.

(2) X is a left exact localization of PrSh(€) = Set®”, for a small category @, i.e. X is equivalent
to a (full, replete) reflective subcategory of PrSh(C) for which the left adjoint to the inclusion
functor preserves finite limits.

(8) X satisfies Giraud’s axiom:
(a) X is a locally presentable category;

(b) colimits in X are universal;
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(c) coproducts in X are disjoint;

(d) every equivalence relation in X is effective.

We do not spell out the meaning of conditions (b)-(d) above, since we will redefine them in the
oo-categorical setting.

Remark 1.2. Our goal is to illustrate to what extent the above result generalizes to co-categories.
We will see that, in the context of co-categories, one only has

1) = (2) = )

Indeed, in order to obtain the equivalence between (1) and (2), we will have to restrict to a subclass
of left exact localization of PrSh(C) (for an oco-category C) — the topological localizations.

1.2. Locally presentable co-categories and adjoints. We recall some preliminary results on
locally presentable co-categories.

Theorem 1.3 ([Lur09], Prop 5.5.2.2). Let X be a locally presentable oo-category and let F': X°P — §
be a presheaf on X. Then F' is representable if and only if it preserves small limits.

Theorem 1.4 ([Lur09], Cor 5.5.2.9). (Adjoint Functor Theorem). Let F': X — Y be a functor
between locally presentable oo-categories. Then:

(1) F is a left adjoint if and only if it preserves small colimits;

(2) F is a right adjoint if and only if it is accessible and preserves small limits.

The above result makes the following notations sensible.

Notation 1.5. We define subcategories Prt, PrR C 6a\tOo as follows:

e the objects of both Prt and PrR are the locally presentable co-categories;
e the morphisms in Prt are the functors between oo-categories preserving small colimits;

e the morphisms in PrR are the functors between oco-categories preserving small limits.

1.3. Truncated objects. Recall that a Kan complex X is (—2)-truncated if it is contractible,
whereas it is k-truncated, for an integer k > —1, if m;(X, x) is trivial for all ¢ > k and all vertices =
of X. A map f: X — Y is k-truncated, for k > —2, if all of its homotopy fibers are k-truncated.

Definition 1.6. Let C be an oco-category and k£ > —2 an integer.

(1) An object C of C is k-truncated if, for every object D of €, Mape(D, C) is k-truncated.

(2) A morphism f: C — D of C is k-truncated if, for all objects Z of €, Mape(f,Z) is k-
truncated.

(3) A morphism f: C — D of € is a monomorphism if it is (—1)-truncated.
Remark 1.7. A morphism f: C' — D is k-truncated in C if and only if it is k-truncated when seen
as an object of C/D.

If X is a locally presentable oo-category and X is an object in X, we let Sub(X) be the collection
of isomorphism classes of objects for 7<_;(X/X) — the full subcategory of X/X spanned by the
monomorphisms in X with codomain X. Then Sub(X) is a (small) poset (see [Lur09], Prop 6.2.1.4).

2. GROTHENDIECK TOPOLOGIES ON 00-CATEGORIES

We start by generalizing Grothendieck sites and sheaves on them to the setting of co-categories.

Definition 2.1. Let C be an co-category.



(1) A sieve on C is a full subcategory € C @ such that, if D is an object of €(©) and there is

a morphism f: C' — D in @, then C is also in @),

et e an object of C. steve on C 1s a sieve on .
2) Let C'b bj fC. A si Ci i c/C
(3) Let (€/C)© be a sieve on the object C and f: D — C be a morphism in €. We let
e the full subcategory o spanned by those g: — D 1n € such that fg
*(€/C)O) be the full sub fC/D d by th D’ — D in C such that f
is equivalent to an object of (€/C)©.
efinition 2.2. rothendieck topology on an oo-category € is an assignment, for every
Definiti 1) A Grothendieck l Ci i f
object C of C, of a collection of sieves on C — the covering sieves — such that:
(i) €/C is a covering sieve, for every object C of C;

(i) if (€/C)©) is a covering sieve on C' and f: D — C is a morphism in €, f*(€/C)©) is
a covering sieve of D;

(ii1) if (€/C)@ is a covering sieve on C' and (C/C)™) is any sieve on C such that, for all
f:D— Cin (C/C)O), f*(€/C) is a covering sieve on D, then (€/C)W) is a covering
sieve.

2 rothendieck site is an oo-category C equipped with a Grothendieck topology.

A Grothendieck site i € equipped with a Grothendieck topol

Note that, when € is the nerve of an ordinary category, the above Definition coincides with the
usual one for 1-categories. In effect, more generally we have the following

Remark 2.3. For an oo-category €, there is a bijection between the collection of Grothendieck
topologies on € and the collection of Grothendieck topologies on Ho(C) (see [Lur09], Remark
6.2.2.3).

As in ordinary category theory, sieves on objects of an oo-category coincide with subobjects of the
associated representable presheaf.

Proposition 2.4 ([Lur09], Prop 6.2.2.5). Let C be an co-category and y: € — PrSh(C) the Yoneda
embedding. For an object C' in C and a monomorphism i: U — y(C), let (C/C)(i) be the full
subcategory of C/C given by those morphisms f: D — C such that y(f) factors through i. Then
the assignment i — (C/C)(i) gives a bijection

Sub(y(C)) «— {sieves on C'}

With the above characterization in hand, the oco-categorical generalization of ordinary sheaves is
straightforward.

Definition 2.5. Let C be a (small) Grothendieck site and let S be the collection of all monomor-
phisms U — y(€) corresponding to covering sieves in C. A presheaf F' € PrSh(C) is a C-sheaf (or

just a sheaf for short) if it is S-local. The full subcategory of PrSh(C) spanned by the sheaves is
denoted by Sh(C).

By definition, Sh(C) is a localization of PrSh(C), hence we obtain a localization functor
L: PrSh(C) — Sh(C),

given by the left adjoint to the inclusion Sh(€) C PrSh(€). Localizations PrSh(C)g of PrSh(C)
that are sheaves on a Grothendieck sites can be characterized in terms of a certain property of the
collection S of morphisms in PrSh(€). Recall first the following

Definition 2.6 ([Lur09], Def 5.5.4.5). Let X be a cocomplete oco-category. A collection S of
morphisms in X is strongly saturated if:

(1) pushouts of morphisms in S along arbitrary morphisms of X belong to S;
(2) the full subcategory of Fun(A[1], X) spanned by S is closed under small colimits;
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(3) S has the two-out-of-three property.
Definition 2.7. Let X be an oco-category with finite limits.

(1) A strongly saturated class of morphisms SinX is called left ezact if pullbacks of morphisms
in S along arbitrary morphisms of X belong to S.

(2) If X is a locally presentable co-category, a left exact collection S of morphisms in X is called
topological if there is a set S of monomorphisms in X such that S is the smallest strongly
saturated class containing S.

(3) A localization functor F': X — Y is called a left exact localization (resp. a topological
localization) if the class of all morphisms f in X such that Lf is an equivalence in Y is left
exact (resp. topological).

Proposition 2.8 ([Lur09], Prop 6.2.1.1). Let X be a category with finite limits. Then a functor
F: X —Y is aleft exact localization if and only if it preserves finite limits.
Here is the result we were looking for.

Theorem 2.9 ([Lur09], Lemma 6.2.2.7 & Prop 6.2.2.9). (1) Let C be a (small) Grothendieck
site. Then L: PrSh(€) — Sh(C@) is a topological localization.

(2) There is a bijection between Grothendieck topologies on C and equivalence classes of topo-
logical localizations of PrSh(C).
In general, we give the following
Definition 2.10. A locally presentable category is an co-topos if there is a left exact localization

functor L: PrSh(€) — X, for some small co-category C.

Thus, Theorem 2.9 says that the co-topoi which are sheaves on a Grothendieck sites are exactly
those for which there exists a topological localization L: PrSh(€C) — X.

3. CODOMAIN FIBRATION AND UNIVERSAL COLIMITS

Definition 3.1. Let X be an oco-category. The functor
cody: Fun(A[1],X) — X
induced by the right anodyne map {1} C A[1] is called the codomain fibration.

The usage of the term “fibration” is justified by the following

Proposition 3.2. For an oo-category X, cody is a coCartesian fibration.

Proof. [Lur09], Cor 2.4.7.12 applied to the identity functor on X gives that
Fun({0} € X): Fun(A[1],X) — Fun({0}, X)

is a Cartesian fibration. Taking duals we conclude. O

As a coCartesian fibration, cody is coclassified, by the dual of the straightening-unstraightening
construction that we saw in Aji’s talk, by the functor

X—>63\too
X — X/X, (f: X—=Y)—=(fi: X/X = X/Y),

where fi can be thought of as postcomposition with f.
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Proposition 3.3 ([Lur09], Lemma 6.1.1.1). Let X be an oo-category and let
X’ Y’

X Y

be a commutative square in X, corresponding to a functor A[l] — Fun(A[l],X). Such a square is a
codx-Cartesian edge if and only if it is a pullback square in X.

Corollary 3.4. Let X be an oo-category admitting pullbacks. Then cody is a Cartesian fibration
classified by

XP — @oo
X —X/X, ([ X=Y)— (" XY - X/X),
where f* can be thought of as pullback along f.
Remark 3.5. If X has pullbacks, we get, for all morphisms f: X — Y, a pair of adjoint functors:

i
~—
X/ X il XY
\_/
f*
Definition 3.6. Let X be a cocomplete co-category with pullbacks. We say that colimits in X are
universal if, for any morphism f: X — Y, f*: X/Y — X/X preserves small colimits.

Remark 3.7 ([Lur09], Prop 6.1.1.4). By Theorem 1.4, in a locally presentable oco-category X

colimits are universal if and only if the functor X°P — 63\too classifying the Cartesian fibration
cody factors through Prb.

We record here a little consequence of universality of colimits that we will need later.

Lemma 3.8. Let X be a locally presentable co-category in which colimits are universal. If X is an
object of X and there is a morphism f: X — () in X, then X is initial.

Proof. The object idy is both initial and terminal in X /0. By hypothesis, f*: X/ — X/X preserves
both limits and colimits, so f*(idg) is both initial and terminal in X/X. It follows that idx, being
another terminal object in X /X, is also initial. This means that X is initial in X, by [Lur09], Prop
1.2.13.8. ]

Before continuing with the formulation of the co-categorical version of Giraud’s axioms, we describe
how pushouts and pullbacks diagrams interact in an oo-topos. We start with the following

Definition 3.9. Let X be an co-category and K a simplicial set. A natural transformation a: p —
q between functors p,q: K — X is Cartesian if, for every l-simplex ¢: z — y in K, the induced
diagram
p(»)
p(z)

=
N\

is a Cartesian square in X.



Let now S be a collection of morphisms in an co-category X and denote by X° the full subcategory
of Fun(A[1], X) spanned by S. If X has pullbacks, we let Carty be the subcategory of Fun(A[1], X)
having the same objects of Fun(A[1], X) but with morphisms given by Cartesian squares in X. Note
that, if S is stable under pullback (i.e. pullbacks of morphisms in S along arbitrary morphisms of
X are still in S), we have
Cart5- = Cartyc N X5.

Furthermore, by [Lur09], Cor 2.4.2.5, cody restricts to a Cartesian fibration X* — X and to a right
fibration Carts. — X.

Proposition 3.10 ([Lur09], Lemma 6.1.3.7). Let X be a locally presentable oo-category in which
colimits are universal and let S be a class of morphisms in X which is stable under pullbacks. The
following are equivalent:

(1) the Cartesian fibration codx: X° — X is classified by a colimit-preserving functor X°P —
Catyo;
(2) the right fibration cody: Cart*gc — X s classified by a colimit-preserving functor X°P — §;

(3) S is stable under small coproducts and, for every pushout diagram
f o« o g
B B
! — q
in Fun(A[1],X), if o, 8 are Cartesian and f, f',g € S, then o/, 3" are also Cartesian and

g es.

Definition 3.11. Let S be a class of morphisms in a locally presentable co-category X in which
colimits are universal. We say that S is local if it is stable under pullbacks and satisfies one of the
equivalent conditions of Proposition 3.10.

Proposition 3.12 ([Lur09], Thm 6.1.3.9). For a locally presentable oco-category X, the following
are equivalent:

(1) colimits in X are universal and the collection of all morphisms in X is local;

(2) the Cartesian fibration cody: Fun(A[1],X) — X is classified by a limit-preserving functor
X — Prt.

Proposition 3.13 ([Lur09], Prop 6.1.3.10). If X is an co-topos, then colimits in X are universal
and the collection X1 of all morphisms in X is local.

4. GIRAUD’S AXIOMS

Definition 4.1. Let X be an co-category with finite coproducts. We say that coproducts in X are
disjoint if, for all objects X,Y of X, the pushout diagram

0 Y

X—X]]Y
is also a pullback.
For oco-categories, the properties required by Giraud’s axioms of relations being effective is substi-

tuted with the same sort of requirement for groupoid objects.
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Definition 4.2. Let X be an oco-category. A groupoid object in X is a simplicial object G: A°? — X
with the following property. For all n € N and all I, J C [n] such that TUJ = [n] and I N J = {i},
the square

G([n]) — G(I)

-

G(J) — G({i})
is Cartesian in X.
We let A be the category of finite ordinals and set [—1] := () € A;. Observe that A, = A[0] x A.
A functor Ay — X is called an augmented simplicial object in the co—category X.

Definition 4.3. An augmented simplicial object U: A, — X in an oo-category X is a Cech nerve
if the restriction of U along A C A, is a groupoid object in X and

Ux Uo

Uo ——= U

is a Cartesian square in X.

Note that, up to equivalence, a Cech nerve is determined by the map u: Uy — Uity

Definition 4.4. Let X be an oco-category and let G: A°P — X be a groupoid object in X.

(1) A colimit diagram of G is denoted by |G|: A" — X and called a geometric realization of
G.

(2) The groupoid G is called effective if |G| is a Cech nerve.

We can then finally give the following
Definition 4.5. Let X be an oco-category. We say that X satisfies Giraud’s axioms if

(a) X is locally presentable;
(b)
()

(d) every groupoid object in X is effective.

colimits in X are universal;

coproducts in X are disjoint;

Proposition 4.6 ([Lur09], Prop 6.1.3.19). Let X be a locally presentable oo-category verifying one
of the equivalent conditions of Proposition 3.12. Then X satisfies Giraud’s axioms.

Proof. Axioms (a) and (b) are given by hypothesis. We will only show that coproducts in X are
disjoint. Consider X,Y objects in X and let f: ) — X. Form the following pushout diagram in
Fun(A[1], X)

idy —*—idy
3 3

f———y
o
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Here « = (0 — Y, 0 — Y) is clearly Cartesian and the same is true of 5 = (idy, f) thanks to
Lemma 3.8. By Proposition 3.12, we can then deduce that o’ is Cartesian and, by applying the
codomain fibration to the above pushout diagram, o can be identified with the pushout square

0 Y

X —X]]Y
which is therefore also a pullback. ]
The above Proposition together with Proposition 3.13 implies that every co-topos satisfies Giraud’s
axioms. In effect, we get the
Theorem 4.7 ([Lur09], Prop 6.1.5.3). For an co-category X, the following are equivalent:

(1) X is an co-topos;
(2) X satisfies Giraud’s axioms.

5. SMALL OBJECT CLASSIFIER

We conclude with a discussion about object classifiers in an oo-topos.

Definition 5.1. Let X be an co-category admitting pullbacks and let S be a collection of morphisms
in X which is stable under pullbacks.

(1) A morphism 7: X — Y in X is said to classify S if it is a final object in Cartaqc. If this holds,
we also say that Y is a classifying object for S and that « is the universal morphism with
property S.

(2) If S is the collection of all monomorphisms in X, a classifying object for S is called a
subobject classifier for X.

Remark 5.2. The universality of the morphism 7: X — Y classifying S is explained by the
existence of a zig-zag of trivial fibrations

Carty <~ (Cart§) /71 — = X/Y

The leftmost trivial fibration is just the statement that 7 is initial in Cart5qc, whereas the rightmost
one is saying that every Y’ — Y (seen as an object in X/Y) can be lifted to a Cartesian square

X —X

Y’ Y

where the left vertical map is in S.

Definition 5.3. Let X be an oco-category and x an uncountable regular cardinal. We say that X
is essentially k-small if it is a x-compact object in Cats,. We say X is essentially small if it is
essentially x-small for some uncountable regular cardinal .

Here is a sufficient and necessary criterion for the existence of a classifying object for a collection
S of morphisms in a locally presentable co-category.
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Proposition 5.4 ([Lur09], Prop 6.1.6.3). Let X be a locally presentable co-category in which col-
imits are universal. Let S be a class of morphisms in X which is stable under pullback. Then there
is a classifying morphism for S if and only if:

(i) S is local;
and

(ii) for all objects X in X, X/X is essentially small.

Proof. If S%: X°P — S classifies cody: Cart% — X as a Cartesian fibration, then there is a classifying
morphism for S if and only if S is representable. This, in turn, is equivalent to S* preserving small
limits and factoring through 8, i.e. to (i) and (ii) being verified. O

Definition 5.5. Let k be an uncountable regular cardinal. A morphism f: X — Y in X is relatively
k-compact if, for all pullback squares

X' X
! f
Y’ Y

whenever Y’ is k-small, then so is X'.

Proposition 5.6 ([Lur09], Prop 6.1.6.7). Let X be a locally presentable co-category in which col-
imits are universal and suppose S is a local class of morphisms in X. For an uncountable reqular
cardinal k, let Sy denote the subclass of relatively k-compact morphisms in S. Then, for k large
enough, Sy has a classifying morphism.

The above two Propositions imply the following characterizations of co-topoi in terms of classifying
objects.

Theorem 5.7 ([Lur09], Thm 6.1.6.8). The following are equivalent, for a locally presentable oo-
category X:

(1) X is an co-topos;
(2) colimits in X are universal and, for all sufficiently large reqular cardinals k, there is a
classifying object in X for the class of relatively k-compact maps in X.
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