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Abstract. This talk introduces ∞-topoi and Giraud’s axiomatic characterization of them. The
∞-categorical generalizations of sheaves on a site will also be discussed.

Notations

We will use the following notations and terminology.

• By an ∞-category, we mean a quasi-category.
• S is the (large)∞-category given by the homotopy coherent nerve of the simplicial category

Kan of small Kan complexes.

• Ŝ is the (very large) ∞-category given by the homotopy coherent nerve of the simplicial
category KAN of all Kan complexes.
• Cat∞ is the (large) ∞-category given by the homotopy coherent nerve of the simplicial

category QCatcore having small quasi-categories as objects and mapping spaces given by
core(Fun(C,D)) for small ∞-categories C,D. Here, for C an ∞-category, core(C) is the
maximal sub-Kan complex of C.

• Ĉat∞ is the (very large) ∞-category given by the homotopy coherent nerve of the simpli-
cial category QCATcore having all quasi-categories as objects and defined analogously to
QCatcore.
• For a simplicial set X, PrSh(X) is the ∞-category Fun(Xop, S) of functors Xop → S.
• For an ∞-category C, y : C→ PrSh(C) denotes the Yoneda embedding.

1. Preliminaries

1.1. Ordinary Giraud’s Theorem. We start from the 1-categorical characterization of (Grothendieck)
topoi.

Theorem 1.1 ([SGA4], Exposé IV, Thm 1.2). For an ordinary category X, the following are
equivalent.

(1) X is equivalent to Sh(C), the category of sheaves on a small Grothendieck site C.
(2) X is a left exact localization of PrSh(C) = SetC

op
, for a small category C, i.e. X is equivalent

to a (full, replete) reflective subcategory of PrSh(C) for which the left adjoint to the inclusion
functor preserves finite limits.

(3) X satisfies Giraud’s axiom:
(a) X is a locally presentable category;
(b) colimits in X are universal;
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(c) coproducts in X are disjoint;
(d) every equivalence relation in X is effective.

We do not spell out the meaning of conditions (b)-(d) above, since we will redefine them in the
∞-categorical setting.

Remark 1.2. Our goal is to illustrate to what extent the above result generalizes to∞-categories.
We will see that, in the context of ∞-categories, one only has

(1) =⇒ (2) ⇐⇒ (3)

Indeed, in order to obtain the equivalence between (1) and (2), we will have to restrict to a subclass
of left exact localization of PrSh(C) (for an ∞-category C) – the topological localizations.

1.2. Locally presentable ∞-categories and adjoints. We recall some preliminary results on
locally presentable ∞-categories.

Theorem 1.3 ([Lur09], Prop 5.5.2.2). Let X be a locally presentable∞-category and let F : Xop → S

be a presheaf on X. Then F is representable if and only if it preserves small limits.

Theorem 1.4 ([Lur09], Cor 5.5.2.9). (Adjoint Functor Theorem). Let F : X −→ Y be a functor
between locally presentable ∞-categories. Then:

(1) F is a left adjoint if and only if it preserves small colimits;
(2) F is a right adjoint if and only if it is accessible and preserves small limits.

The above result makes the following notations sensible.

Notation 1.5. We define subcategories PrL,PrR ⊆ Ĉat∞ as follows:

• the objects of both PrL and PrR are the locally presentable ∞-categories;
• the morphisms in PrL are the functors between ∞-categories preserving small colimits;
• the morphisms in PrR are the functors between ∞-categories preserving small limits.

1.3. Truncated objects. Recall that a Kan complex X is (−2)-truncated if it is contractible,
whereas it is k-truncated, for an integer k ≥ −1, if πi(X,x) is trivial for all i > k and all vertices x
of X. A map f : X → Y is k-truncated, for k ≥ −2, if all of its homotopy fibers are k-truncated.

Definition 1.6. Let C be an ∞-category and k ≥ −2 an integer.

(1) An object C of C is k-truncated if, for every object D of C, MapC(D,C) is k-truncated.
(2) A morphism f : C → D of C is k-truncated if, for all objects Z of C, MapC(f, Z) is k-

truncated.
(3) A morphism f : C → D of C is a monomorphism if it is (−1)-truncated.

Remark 1.7. A morphism f : C → D is k-truncated in C if and only if it is k-truncated when seen
as an object of C/D.

If X is a locally presentable ∞-category and X is an object in X, we let Sub(X) be the collection
of isomorphism classes of objects for τ≤−1(X/X) – the full subcategory of X/X spanned by the
monomorphisms in X with codomain X. Then Sub(X) is a (small) poset (see [Lur09], Prop 6.2.1.4).

2. Grothendieck topologies on ∞-categories

We start by generalizing Grothendieck sites and sheaves on them to the setting of ∞-categories.

Definition 2.1. Let C be an ∞-category.
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(1) A sieve on C is a full subcategory C(0) ⊆ C such that, if D is an object of C(0) and there is
a morphism f : C → D in C, then C is also in C(0).

(2) Let C be an object of C. A sieve on C is a sieve on C/C.
(3) Let (C/C)(0) be a sieve on the object C and f : D → C be a morphism in C. We let

f∗(C/C)(0) be the full subcategory of C/D spanned by those g : D′ → D in C such that fg
is equivalent to an object of (C/C)(0).

Definition 2.2. (1) A Grothendieck topology on an ∞-category C is an assignment, for every
object C of C, of a collection of sieves on C – the covering sieves – such that:
(i) C/C is a covering sieve, for every object C of C;
(ii) if (C/C)(0) is a covering sieve on C and f : D → C is a morphism in C, f∗(C/C)(0) is

a covering sieve of D;
(iii) if (C/C)(0) is a covering sieve on C and (C/C)(1) is any sieve on C such that, for all

f : D → C in (C/C)(0), f∗(C/C)(0) is a covering sieve on D, then (C/C)(1) is a covering
sieve.

(2) A Grothendieck site is an ∞-category C equipped with a Grothendieck topology.

Note that, when C is the nerve of an ordinary category, the above Definition coincides with the
usual one for 1-categories. In effect, more generally we have the following

Remark 2.3. For an ∞-category C, there is a bijection between the collection of Grothendieck
topologies on C and the collection of Grothendieck topologies on Ho(C) (see [Lur09], Remark
6.2.2.3).

As in ordinary category theory, sieves on objects of an ∞-category coincide with subobjects of the
associated representable presheaf.

Proposition 2.4 ([Lur09], Prop 6.2.2.5). Let C be an ∞-category and y : C→ PrSh(C) the Yoneda
embedding. For an object C in C and a monomorphism i : U → y(C), let (C/C)(i) be the full
subcategory of C/C given by those morphisms f : D → C such that y(f) factors through i. Then
the assignment i 7→ (C/C)(i) gives a bijection

Sub(y(C))←→ {sieves on C}

With the above characterization in hand, the ∞-categorical generalization of ordinary sheaves is
straightforward.

Definition 2.5. Let C be a (small) Grothendieck site and let S be the collection of all monomor-
phisms U → y(C) corresponding to covering sieves in C. A presheaf F ∈ PrSh(C) is a C-sheaf (or
just a sheaf for short) if it is S-local. The full subcategory of PrSh(C) spanned by the sheaves is
denoted by Sh(C).

By definition, Sh(C) is a localization of PrSh(C), hence we obtain a localization functor

L : PrSh(C)→ Sh(C),

given by the left adjoint to the inclusion Sh(C) ⊆ PrSh(C). Localizations PrSh(C)S of PrSh(C)
that are sheaves on a Grothendieck sites can be characterized in terms of a certain property of the
collection S of morphisms in PrSh(C). Recall first the following

Definition 2.6 ([Lur09], Def 5.5.4.5). Let X be a cocomplete ∞-category. A collection S of
morphisms in X is strongly saturated if:

(1) pushouts of morphisms in S along arbitrary morphisms of X belong to S;
(2) the full subcategory of Fun(∆[1],X) spanned by S is closed under small colimits;
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(3) S has the two-out-of-three property.

Definition 2.7. Let X be an ∞-category with finite limits.

(1) A strongly saturated class of morphisms S in X is called left exact if pullbacks of morphisms
in S along arbitrary morphisms of X belong to S.

(2) If X is a locally presentable∞-category, a left exact collection S of morphisms in X is called
topological if there is a set S of monomorphisms in X such that S is the smallest strongly
saturated class containing S.

(3) A localization functor F : X → Y is called a left exact localization (resp. a topological
localization) if the class of all morphisms f in X such that Lf is an equivalence in Y is left
exact (resp. topological).

Proposition 2.8 ([Lur09], Prop 6.2.1.1). Let X be a category with finite limits. Then a functor
F : X→ Y is a left exact localization if and only if it preserves finite limits.

Here is the result we were looking for.

Theorem 2.9 ([Lur09], Lemma 6.2.2.7 & Prop 6.2.2.9). (1) Let C be a (small) Grothendieck
site. Then L : PrSh(C)→ Sh(C) is a topological localization.

(2) There is a bijection between Grothendieck topologies on C and equivalence classes of topo-
logical localizations of PrSh(C).

In general, we give the following

Definition 2.10. A locally presentable category is an ∞-topos if there is a left exact localization
functor L : PrSh(C)→ X, for some small ∞-category C.

Thus, Theorem 2.9 says that the ∞-topoi which are sheaves on a Grothendieck sites are exactly
those for which there exists a topological localization L : PrSh(C)→ X.

3. Codomain fibration and universal colimits

Definition 3.1. Let X be an ∞-category. The functor

codX : Fun(∆[1],X)→ X

induced by the right anodyne map {1} ⊆ ∆[1] is called the codomain fibration.

The usage of the term “fibration” is justified by the following

Proposition 3.2. For an ∞-category X, codX is a coCartesian fibration.

Proof. [Lur09], Cor 2.4.7.12 applied to the identity functor on X gives that

Fun({0} ⊆ X) : Fun(∆[1],X)→ Fun({0},X)

is a Cartesian fibration. Taking duals we conclude. �

As a coCartesian fibration, codX is coclassified, by the dual of the straightening-unstraightening
construction that we saw in Aji’s talk, by the functor

X→ Ĉat∞

X 7→ X/X, (f : X → Y ) 7→ (f! : X/X → X/Y ),

where f! can be thought of as postcomposition with f .
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Proposition 3.3 ([Lur09], Lemma 6.1.1.1). Let X be an ∞-category and let

X Y//

X ′

X
��

X ′ Y ′// Y ′

Y
��

be a commutative square in X, corresponding to a functor ∆[1]→ Fun(∆[1],X). Such a square is a
codX-Cartesian edge if and only if it is a pullback square in X.

Corollary 3.4. Let X be an ∞-category admitting pullbacks. Then codX is a Cartesian fibration
classified by

Xop → Ĉat∞

X 7→ X/X, (f : X → Y ) 7→ (f∗ : X/Y → X/X),

where f∗ can be thought of as pullback along f .

Remark 3.5. If X has pullbacks, we get, for all morphisms f : X → Y , a pair of adjoint functors:

X/X X/Y

f!

''
X/X X/Y

gg

f∗

⊥

Definition 3.6. Let X be a cocomplete ∞-category with pullbacks. We say that colimits in X are
universal if, for any morphism f : X → Y , f∗ : X/Y → X/X preserves small colimits.

Remark 3.7 ([Lur09], Prop 6.1.1.4). By Theorem 1.4, in a locally presentable ∞-category X

colimits are universal if and only if the functor Xop → Ĉat∞ classifying the Cartesian fibration
codX factors through PrL.

We record here a little consequence of universality of colimits that we will need later.

Lemma 3.8. Let X be a locally presentable ∞-category in which colimits are universal. If X is an
object of X and there is a morphism f : X → ∅ in X, then X is initial.

Proof. The object id∅ is both initial and terminal in X/∅. By hypothesis, f∗ : X/∅ → X/X preserves
both limits and colimits, so f∗(id∅) is both initial and terminal in X/X. It follows that idX , being
another terminal object in X/X, is also initial. This means that X is initial in X, by [Lur09], Prop
1.2.13.8. �

Before continuing with the formulation of the∞-categorical version of Giraud’s axioms, we describe
how pushouts and pullbacks diagrams interact in an ∞-topos. We start with the following

Definition 3.9. Let X be an∞-category and K a simplicial set. A natural transformation α : p→
q between functors p, q : K → X is Cartesian if, for every 1-simplex ϕ : x → y in K, the induced
diagram

q(x) q(y)
q(ϕ)

//

p(x)

q(x)

α(x)

��

p(x) p(y)
p(ϕ) // p(y)

q(y)

α(y)

��

is a Cartesian square in X.
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Let now S be a collection of morphisms in an∞-category X and denote by XS the full subcategory
of Fun(∆[1],X) spanned by S. If X has pullbacks, we let CartX be the subcategory of Fun(∆[1],X)
having the same objects of Fun(∆[1], X) but with morphisms given by Cartesian squares in X. Note
that, if S is stable under pullback (i.e. pullbacks of morphisms in S along arbitrary morphisms of
X are still in S), we have

CartSX = CartX ∩ XS .

Furthermore, by [Lur09], Cor 2.4.2.5, codX restricts to a Cartesian fibration XS → X and to a right
fibration CartSX → X.

Proposition 3.10 ([Lur09], Lemma 6.1.3.7). Let X be a locally presentable ∞-category in which
colimits are universal and let S be a class of morphisms in X which is stable under pullbacks. The
following are equivalent:

(1) the Cartesian fibration codX : XS → X is classified by a colimit-preserving functor Xop →
Ĉat∞;

(2) the right fibration codX : CartSX → X is classified by a colimit-preserving functor Xop → S;
(3) S is stable under small coproducts and, for every pushout diagram

f ′ g′α
//

f

f ′

β

��

f g
α // g

g′

β′

��

in Fun(∆[1],X), if α, β are Cartesian and f, f ′, g ∈ S, then α′, β′ are also Cartesian and
g′ ∈ S.

Definition 3.11. Let S be a class of morphisms in a locally presentable ∞-category X in which
colimits are universal. We say that S is local if it is stable under pullbacks and satisfies one of the
equivalent conditions of Proposition 3.10.

Proposition 3.12 ([Lur09], Thm 6.1.3.9). For a locally presentable ∞-category X, the following
are equivalent:

(1) colimits in X are universal and the collection of all morphisms in X is local;
(2) the Cartesian fibration codX : Fun(∆[1],X) → X is classified by a limit-preserving functor

Xop → PrL.

Proposition 3.13 ([Lur09], Prop 6.1.3.10). If X is an ∞-topos, then colimits in X are universal
and the collection X1 of all morphisms in X is local.

4. Giraud’s Axioms

Definition 4.1. Let X be an ∞-category with finite coproducts. We say that coproducts in X are
disjoint if, for all objects X,Y of X, the pushout diagram

X X
∐
Y//

∅

X
��

∅ Y// Y

X
∐
Y

��

is also a pullback.

For ∞-categories, the properties required by Giraud’s axioms of relations being effective is substi-
tuted with the same sort of requirement for groupoid objects.
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Definition 4.2. Let X be an∞-category. A groupoid object in X is a simplicial object G : ∆op → X

with the following property. For all n ∈ N and all I, J ⊆ [n] such that I ∪ J = [n] and I ∩ J = {i},
the square

G(J) G({i})//

G([n])

G(J)
��

G([n]) G(I)// G(I)

G({i})
��

is Cartesian in X.

We let ∆+ be the category of finite ordinals and set [−1] := ∅ ∈ ∆+. Observe that ∆+
∼= ∆[0] ∗∆.

A functor ∆+ → X is called an augmented simplicial object in the ∞−category X.

Definition 4.3. An augmented simplicial object U : ∆+ → X in an ∞-category X is a Čech nerve
if the restriction of U along ∆ ⊆ ∆+ is a groupoid object in X and

U0 U(−1)
//

U1

U0

��

U1 U0
// U0

U(−1)

��

is a Cartesian square in X.

Note that, up to equivalence, a Čech nerve is determined by the map u : U0 → U(−1).

Definition 4.4. Let X be an ∞-category and let G : ∆op → X be a groupoid object in X.

(1) A colimit diagram of G is denoted by |G| : ∆op
+ → X and called a geometric realization of

G.
(2) The groupoid G is called effective if |G| is a Čech nerve.

We can then finally give the following

Definition 4.5. Let X be an ∞-category. We say that X satisfies Giraud’s axioms if

(a) X is locally presentable;
(b) colimits in X are universal;
(c) coproducts in X are disjoint;
(d) every groupoid object in X is effective.

Proposition 4.6 ([Lur09], Prop 6.1.3.19). Let X be a locally presentable ∞-category verifying one
of the equivalent conditions of Proposition 3.12. Then X satisfies Giraud’s axioms.

Proof. Axioms (a) and (b) are given by hypothesis. We will only show that coproducts in X are
disjoint. Consider X,Y objects in X and let f : ∅ → X. Form the following pushout diagram in
Fun(∆[1],X)

f g
α′

//

id∅

f

β

��

id∅ idY
α // idY

g

β′

��
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Here α = (∅ → Y, ∅ → Y ) is clearly Cartesian and the same is true of β = (id∅, f) thanks to
Lemma 3.8. By Proposition 3.12, we can then deduce that α′ is Cartesian and, by applying the
codomain fibration to the above pushout diagram, α′ can be identified with the pushout square

X X
∐
Y//

∅

X
��

∅ Y// Y

X
∐
Y

��

which is therefore also a pullback. �

The above Proposition together with Proposition 3.13 implies that every∞-topos satisfies Giraud’s
axioms. In effect, we get the

Theorem 4.7 ([Lur09], Prop 6.1.5.3). For an ∞-category X, the following are equivalent:

(1) X is an ∞-topos;
(2) X satisfies Giraud’s axioms.

5. Small Object Classifier

We conclude with a discussion about object classifiers in an ∞-topos.

Definition 5.1. Let X be an∞-category admitting pullbacks and let S be a collection of morphisms
in X which is stable under pullbacks.

(1) A morphism π : X → Y in X is said to classify S if it is a final object in CartSX. If this holds,
we also say that Y is a classifying object for S and that π is the universal morphism with
property S.

(2) If S is the collection of all monomorphisms in X, a classifying object for S is called a
subobject classifier for X.

Remark 5.2. The universality of the morphism π : X → Y classifying S is explained by the
existence of a zig-zag of trivial fibrations

CartSX (CartSX)/πoooo ∼ (CartSX)/π X/Y
∼ // //

The leftmost trivial fibration is just the statement that π is initial in CartSX, whereas the rightmost
one is saying that every Y ′ → Y (seen as an object in X/Y ) can be lifted to a Cartesian square

Y ′ Y//

X ′

Y ′
��

X ′ X// X

Y

π

��

where the left vertical map is in S.

Definition 5.3. Let X be an ∞-category and κ an uncountable regular cardinal. We say that X

is essentially κ-small if it is a κ-compact object in Cat∞. We say X is essentially small if it is
essentially κ-small for some uncountable regular cardinal κ.

Here is a sufficient and necessary criterion for the existence of a classifying object for a collection
S of morphisms in a locally presentable ∞-category.
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Proposition 5.4 ([Lur09], Prop 6.1.6.3). Let X be a locally presentable ∞-category in which col-
imits are universal. Let S be a class of morphisms in X which is stable under pullback. Then there
is a classifying morphism for S if and only if:

(i) S is local;

and

(ii) for all objects X in X, X/X is essentially small.

Proof. If S] : Xop → Ŝ classifies codX : CartSX → X as a Cartesian fibration, then there is a classifying
morphism for S if and only if S] is representable. This, in turn, is equivalent to S] preserving small
limits and factoring through S, i.e. to (i) and (ii) being verified. �

Definition 5.5. Let κ be an uncountable regular cardinal. A morphism f : X → Y in X is relatively
κ-compact if, for all pullback squares

Y ′ Y//

X ′

Y ′

f ′

��

X ′ X// X

Y

f

��

whenever Y ′ is κ-small, then so is X ′.

Proposition 5.6 ([Lur09], Prop 6.1.6.7). Let X be a locally presentable ∞-category in which col-
imits are universal and suppose S is a local class of morphisms in X. For an uncountable regular
cardinal κ, let Sκ denote the subclass of relatively κ-compact morphisms in S. Then, for κ large
enough, Sκ has a classifying morphism.

The above two Propositions imply the following characterizations of∞-topoi in terms of classifying
objects.

Theorem 5.7 ([Lur09], Thm 6.1.6.8). The following are equivalent, for a locally presentable ∞-
category X:

(1) X is an ∞-topos;
(2) colimits in X are universal and, for all sufficiently large regular cardinals κ, there is a

classifying object in X for the class of relatively κ-compact maps in X.
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