Multiverse models

Martin E. Bidlingmaier

Aarhus University

Motivation

Universe model: Fixed lcc category ("universe") C as model. Multiverse model: *Category of* lcc (infinity) categories as model.

Proposition

Let

- \blacktriangleright \mathcal{T} be a dependent type theory
- $\cdot \vdash \sigma$ be a type in the empty context

•
$$\mathcal{T}' \supseteq \mathcal{T}$$
 be extension with constant $\cdot \vdash c : \sigma$

Then:

$$\{\tau \mid (\mathsf{v}:\sigma) \vdash \tau \text{ in } \mathcal{T}\} \cong \{\tau' \mid \cdot \vdash \tau' \text{ in } \mathcal{T}'\}$$

(Similarly for terms.)

 \implies Contexts parametrize extensions of base type theory $\mathcal{T}.$

Seely: Dependent type theories \sim lcc categories. So: Contexts \sim lcc categories?

From universe to multiverse models

	Universe model ${\cal C}$	equivalently	Multiverse model
Сtx Г	obj $\Gamma\inOb\mathcal{C}$	slice cat $\mathcal{C}_{/\Gamma}$	lcc cat Г
Mor $\Delta \to \Gamma$	$f:\Delta ightarrow \Gamma$	$f^*:\mathcal{C}_{/\Gamma} o \mathcal{C}_{/\Delta}$ lcc over $\mathcal C$	$f: \Gamma o \Delta$ lcc
$Ty\; \Gamma \vdash \sigma$	$\sigma: \operatorname{dom} \sigma \to \Gamma$	$\sigma\inOb\mathcal{C}_{/\Gamma}$	$\sigma\in Ob\Gamma$
$Tm\; \Gamma \vdash \mathbf{s} : \sigma$	$\sigma \circ \boldsymbol{s} = \mathrm{id}$	$s: \mathrm{id}_{\Gamma} ightarrow \sigma$ in $\mathcal{C}_{/\Gamma}$	$s:1 ightarrow\sigma$
Subst	$\begin{array}{c} \cdot & \longrightarrow & \cdot \\ & \downarrow \sigma[f] & \downarrow \sigma \\ \Delta & \longrightarrow & \Gamma \end{array}$	$\mathcal{C}_{/\Delta} \vdash f^*(s) : f^*(\sigma)$	$\Delta \vdash f(s) : f(\sigma)$
Ext	$\Gamma.\sigma = \operatorname{dom} \sigma$	$(\mathcal{C}_{/\Gamma})_{/\sigma}\cong \mathcal{C}_{/\operatorname{dom}\sigma}$	$\Gamma.\sigma = \Gamma_{/\sigma}$
$\Gamma\vdash \Sigma_{\sigma}\tau$	$ \begin{array}{c} \Gamma.\sigma.\tau \\ \downarrow^{\tau} \qquad \Sigma_{\sigma}\tau = \sigma \circ \tau \\ \Gamma.\sigma \xrightarrow{\sigma} \Gamma \end{array} $	$\Sigma_{\sigma} \dashv \sigma^* \rightsquigarrow \Sigma_{\sigma} \tau = \Sigma_{\sigma}(\tau)$	same
$\Gamma \vdash \Pi_{\sigma} \tau$	$ \begin{array}{ccc} \Gamma.\sigma.\tau & \Gamma.\Pi_{\sigma}\tau \\ \downarrow^{\tau} & \downarrow^{\Pi_{\sigma}\tau} \\ \Gamma.\sigma & \stackrel{\sigma}{\longrightarrow} \Gamma \end{array} $	$\sigma^*\dashv\Pi_{\sigma}\rightsquigarrow\Pi_{\sigma}\tau=\Pi_{\sigma}(\tau)$	same

3/12

Coherence problems

Substitution does not commute *strictly* with type formers:

 $f(\operatorname{Eq} s_1 s_2) \cong \operatorname{Eq} f(s_1) f(s_2)$

▶ For ∞-categories also term substitution:

```
f(\text{pair } s_1 s_2) \simeq \text{pair } f(s_1) f(s_2)
```

Context extension has higher categorical universal property:

Mismatch: 1-categorical syntax vs higher categorical semantics.

Model categories of lcc categories

Idea: Find higher equivalence $\mathcal{M} \simeq Lcc$ such that $\mathcal{M}_0 \not\simeq Lcc_0$ 1-categorically using model category theory.

- 1. Model category Lcc of sketches for lcc (infinity) categories.
- Model category sLcc = Alg(Lcc) of algebraically fibrant lcc sketches/strict lcc categories: Makes substitution and type/term formers commute.
- 3. Model category Coa(sLcc) of *algebraically cofibrant strict lcc categories*: Context extensions are equivalent to slice categories.

Lcc 1-categories: Solves coherence problem completely, model of extensional dependent type theory.

 ∞ -categories: Step 3 breaks context extensions, only exist for *base* types and terms.

Lcc sketches

- 1. Choose base model category $\ensuremath{\mathcal{C}}.$
 - ▶ 1-categories: Cat
 - $\blacktriangleright~\infty\text{-}\mathsf{categories:~sSet}$ with Joyal model structure or sSet^+
- 2. Define set of cofibrant shape objects for markings:

Model category C^{I} of *marked objects* (Isaev):

- $\blacktriangleright X \in \mathsf{Ob}\,\mathsf{C}$
- for $K \in I$ some $k : K \to X$ are distinguished/marked
- 3. Localize C^{I} (left Bousfield)

 \implies fibrant objects reduced to lcc (infinity) categories

Algebraically fibrant objects

Definition

Let

- \mathcal{M} model category
- J generating set of trivial cofibrations.

An algebraically fibrant object consists of

- ► $X \in \operatorname{Ob} \mathcal{M}$
- ► Operator ℓ_X :

$$\begin{array}{c} A \xrightarrow{a} X \\ \downarrow_{j} \\ \downarrow^{\sigma} \ell_{X}(j,a) \\ B \end{array}$$

Morphisms are maps $X \to Y$ commuting with ℓ_X and ℓ_Y .

Theorem (Nikolaus, Bourke)

Let \mathcal{M} be a combinatorial model category. Then $G : \operatorname{Alg}(\mathcal{M}) \to \mathcal{M}$ is monadic, the induced model structure on $\operatorname{Alg}(\mathcal{M})$ exists, and G is a Quillen equivalence. Better: Use (e.g. simplicially) enriched lifting operator.

Strict lcc (infinity) categories

- Existence of universal objects (e.g. pullbacks) in fibrant objects of Lcc is encoded via right lifting property against trivial cofibrations
- Objects X of sLcc = Alg(Lcc) are lcc categories equipped with canonical choice of universal objects
- Morphisms $X \rightarrow Y$ preserve canonical choice on the nose: strict lcc functors

Theorem (1-categorical)

 ${\rm sLcc}$ carries cwf structure supporting extensional equality types and finite product types.

Theorem (∞ -categorical)

sLcc carries cwf structure supporting weak identity types and weak finite product types. "Weak" types: Computation rule holds up to term of identity type.

Context extension in sLcc

Context extension vs slice category:

$$\blacktriangleright \ \mathsf{\Gamma} \ \mathsf{cofibrant} \ \implies \mathsf{\Gamma}.\sigma \simeq \mathsf{\Gamma}_{/\sigma}$$

▶ If so and
$$\Gamma.\sigma \vdash \tau$$
 then

$$\tau \in \Gamma.\sigma \xrightarrow{\simeq} \Gamma_{/\sigma} \xrightarrow{\Pi_{\sigma}} \Gamma$$

defines $\Gamma \vdash \Pi_{\sigma} \tau$

- ▶ Depends on choice of $\Gamma.\sigma \simeq \Gamma_{/\sigma}$: Not substitution stable
- Thus: Make cofibrancy part of structure

Algebraically cofibrant objects

Definition

An *algebraically cofibrant object* in a model category \mathcal{M} is a coalgebra for a cofibrant replacement monad.

Intuition for $\mathcal{M} = \operatorname{sLcc}$: Every non-strict lcc functor $f : G(\Gamma) \to G(\Delta)$ has a *canonical* isomorphic/homotopic strictification $f^s : \Gamma \to \Delta$.

Theorem (Ching & Riehl)

Let \mathcal{M} be a suitable model category. Then the induced model structure on $\operatorname{Coa}(\mathcal{M})$ exists, and $\operatorname{Coa}(\mathcal{M}) \to \mathcal{M}$ is a left Quillen equivalence.

Theorem (1-categorical)

Coa(sLcc) carries cwf structure supporting extensional dependent type theory.

Theorem (∞ -categorical)

Coa(sLcc) carries cwf structure supporting weak dependent products along base types. Problem: Coa(sLcc) not closed under context extensions in sLcc, only if type is detected by map in Coa(sLcc).

Outlook

Problem

Solve context extension issue for ∞ -categories.

Problem

Show that multiverse models interpret type classifiers.

- Context extension by type variable.
- Not classified by type in base context, avoids Girard's paradox.
- Parametricity?
- ▶ 1-categorically: Exists in sLcc, not in Coa(sLcc).
- Without Π -types: τ -categories as in *Categories, Allegories*.

Problem

General coherence constructions using model category theory:

• $sSet = Alg_J(ssSet^+)$ modulo coherence?

Consider sLex' = {C ∈ sLex | C has strict pullbacks along both legs}. Is sLex' ⊆ sLex a right Quillen equivalence?

References

- [Bid21] Martin E. Bidlingmaier, An interpretation of dependent type theory in a model category of locally cartesian closed categories, Mathematical Structures in Computer Science (2021), 1–26.
- [Bou19] John Bourke, *Equipping weak equivalences with algebraic structure*, Mathematische Zeitschrift (2019).
- [CR14] Michael Ching and Emily Riehl, *Coalgebraic models for combinatorial model categories*, Homology, Homotopy and Applications **16** (2014), no. 2, 171–184.
- [FS90] Peter J Freyd and Andre Scedrov, Categories, allegories, Elsevier, 1990.
- [Isa16] Valery Isaev, Model category of marked objects, 2016.
- [Lac07] Stephen Lack, Homotopy-theoretic aspects of 2-monads., Journal of Homotopy and Related Structures 2 (2007), no. 2, 229–260.
- [Nik11] Thomas Nikolaus, Algebraic models for higher categories, Indagationes Mathematicae 21 (2011), no. 1-2, 52–75.
- [Vic16] Steven Vickers, *Sketches for arithmetic universes*, Journal of Logic and Analysis (2016).