Coherence of definitional equality in type theory

Rafaël Bocquet
HoTTEST, September 23, 2021
Problem

In type theory we have typal equalities,

\[0 + n \simeq n \quad n + m \simeq m + n \quad \text{refl} \cdot p \simeq p \]

some of them are definitional equalities

\[n + 0 = n \quad p \cdot \text{refl} = p \]

Can we add new definitional equalities?

- Constructing (higher-dimensional) paths and fillers becomes easier. (We avoid coherence hell.)
- The new definitional equalities may not hold in known models.

We need conservativity/strictification/coherence theorems.
We can replace the computation rules of Id-, Σ-, Π-types by weak computation rules.

$$
\begin{array}{c}
a : A \\
b : B(a)
\end{array} \quad \Rightarrow \\
\pi_1-\beta : \pi_1(\text{pair}(a, b)) \simeq_A a
$$

The path types of cubical type theory satisfy the weak computation rule of Id-types.

Are the usual computation rules conservative over the weak computation rules?
Examples: composition of paths

Can identity types satisfy the groupoid laws definitionally?

\[p \cdot \text{refl} = p \quad \text{refl} \cdot p = p \quad p \cdot (q \cdot r) = (p \cdot q) \cdot r \]

\[p^{-1} \cdot p = \text{refl} \quad (p^{-1})^{-1} = p \]

\[\ldots \]

\[\text{ap}(f, \text{refl}) = \text{refl} \quad \text{ap}(f, p \cdot q) = \text{ap}(f, p) \cdot \text{ap}(f, q) \]

\[\text{ap}(f, p^{-1}) = \text{ap}(f, p)^{-1} \quad \ldots \]
Can we extend HoTT with a universe StrProp of “strict” propositions and an equivalence $\text{StrProp} \simeq \text{Prop}$?

$A : \text{StrProp} \quad x, y : A$

$x = y$

Can we also have a universe StrMonoid of strictly associative and unital monoids?

What about “strict” rings, “strict” categories, etc.?

Can we also equip StrProp with operations?

$[a : A] \quad B(a) : \text{StrProp}$

$\forall (A, B) : \text{StrProp}$
A Category with Families (CwF) consists of:

- a category \(\mathcal{C} \) with a terminal object;
- a presheaf of types \(\mathcal{T}_\mathcal{C} : \text{Psh}(\mathcal{C}) \);
- a (locally representable) presheaf of terms \(\mathcal{T}_\mathcal{m}_\mathcal{C} : \mathcal{T}_\mathcal{C} \to \text{RepPsh}(\mathcal{C}) \);

A model of a type theory \(\mathbb{T} \) is a CwF equipped with additional structure.

\[
\text{A type } [a : A] B(a) \text{ type } \quad \Pi : (A : \mathcal{T}_\mathcal{C})(B : \mathcal{T}_\mathcal{m}_\mathcal{C}(A) \to \mathcal{T}_\mathcal{C}) \to \mathcal{T}_\mathcal{C}
\]

Locally finitely presentable 1-category \(\mathbf{Mod}_\mathbb{T} \) of models of \(\mathbb{T} \).

Syntax: initial object \(0_\mathbb{T} : \mathbf{Mod}_\mathbb{T} \).

Freely generated models \(0_\mathbb{T}[\cdots] \).
Hofmann’s conservativity theorem

Uniqueness of Identity Proofs

\[p : \text{Id}(x, x) \]
\[\text{uip}(p) : \text{Id}(p, \text{refl}) \]

Equality reflection

\[p : \text{Id}(x, y) \]
\[x = y \]

Theorem (Hofmann, 1995)

Equality reflection is conservative over intensional type theory with UIP (and function extensionality).

If \((\Gamma \vdash \text{ITT} A \text{ type}) \) and \((|\Gamma| \vdash \text{ETT} a : |A|) \), then there exists some \((\Gamma \vdash \text{ITT} a_0 : A) \) such that \(|a_0| = a \).

The map \(|\cdot| : \text{ITT} \to \text{ETT} \) is surjective on types and terms.
Proof of Hofmann’s conservativity theorem

Equivalence relations (∼) on types and terms of ITT:

\[(A \sim B) \iff \exists p : \text{Tm}_{\text{ITT}}(\text{Id}(U, A, B))\]
\[((a : A) \sim (b : B)) \iff \exists p : \text{Tm}_{\text{ITT}}(\text{Id}((X : U) \times X, (A, a), (B, b)))\]

By UIP, if \((a : A) \sim (b : A)\), then there exists \(p : \text{Tm}_{\text{ITT}}(\text{Id}(A, a, b))\).

Furthermore, \((\text{Tm}_{\text{ITT}}, \sim) \to (\text{Ty}_{\text{ITT}}, \sim)\) is a setoid fibration:
If \((A \sim B)\), then for \(a : \text{Tm}_{\text{ITT}}(A)\), there exists \(b : \text{Tm}_{\text{ITT}}(B)\) such that \((a \sim b)\).

All type- and term- formers respect (∼). For λ(−) (and other binders) this requires function extensionality.
Proof of Hofmann’s conservativity theorem

Quotients \((Ty_{\text{ITT}}/\sim)\) and \((Tm_{\text{ITT}}/\sim)\).

We can construct a quotient model \((0_{\text{ITT}}/\sim)\).

Since \(|-|\) is a retract of \(q\), \(|-|\) is surjective on types and terms.

(Alternative: Use the relative induction principle for \(\mathcal{R}en(0_{\text{ITT}}) \rightarrow 0_{\text{ETT}}\))
Mac Lane’s coherence theorem for monoidal categories

\[\alpha_{x,y,z} : (x \otimes y) \otimes z \simeq x \otimes (y \otimes z) \]
\[\lambda_x : (I \otimes x) \simeq x \]
\[\rho_x : (x \otimes I) \simeq x \]

\[\alpha_{x,y,z} = \text{id} \]
\[\lambda_x = \text{id} \]
\[\rho_x = \text{id} \]

(\textbf{strictification}) For every monoidal category \(C \), the unit \(\eta : C \to R(L(C)) \) is an equivalence.

(\textbf{coherence}) Every formal composition of associators and unitors commutes.

Formal compositions of associators and unitors form a groupoid.
Main theorem

Let T_s be an extension of T_w in which a collection E of type equivalences and typal equalities are replaced by definitional equalities.

Theorem

Assume that the following two conditions hold:

1. The type theory T_w satisfies external univalence;
2. Any formal composition of equalities in E is trivial.

Then T_s is conservative over T_w.
Equivalences between models of type theory

Isaev, *Model Structures on Categories of Models of Type Theories* (2016).

Definition

A morphism $F : C \to D$ in CwF_{Id} is a weak equivalence if it is essentially surjective on types and terms:

(weak type lifting) for every $A : \text{Ty}_D(F(\Gamma))$, there exists $A_0 : \text{Ty}_C(\Gamma)$ and a type equivalence $\alpha : F(A_0) \simeq A$;

(weak term lifting) for every $a : \text{Tm}_D(F(\Gamma), F(A))$, there exists $a_0 : \text{Tm}_C(\Gamma, A)$ and a typal equality $p : F(a_0) \simeq a$.

We also have (Cofibrations, Trivial fibrations) and (Trivial cofibration, Fibrations) weak factorization systems.

Hofmann’s conservativity theorem: $0_{\text{ITT}} \to 0_{\text{ETT}}$ is a trivial fibration.
Morita equivalences

![Diagram](image)

Definition

The extension $T_w \to T_s$ is a **Morita equivalence** if for every cofibrant $C : Mod_{T_w}^{cxl}$, the unit $\eta : C \to R(L(C))$ is a weak equivalence.

In particular $0_{T_w} \to 0_{T_s}$ is a weak equivalence.
Type-theoretic 1-categories

We have biequivalences:

\[\mathbf{CwF}^{\text{dem}}_{\Sigma, \Pi, \text{Eq}} \cong \{ \text{finitely complete 1-categories} \} \cong \{ \text{essentially algebraic theories} \} \]

\[\mathbf{CwF}^{\text{dem}}_{\Sigma, \text{Eq}} \cong \{ \text{locally cartesian closed 1-categories} \} \]

\[\mathbf{CwF}^{\text{dem}}_{\Sigma} \cong \{ \text{display map 1-categories} \} \cong \{ \text{generalized algebraic theories} \} \]

\[\text{CwF}^{\text{dem}}_{\Sigma, \Pi, \text{Eq}} \overset{?}{\cong} \{ \text{representable map 1-categories} \} \cong \{ \text{(essentially algebraic) type theories} \} \]

Where \(\overline{\Pi} \)-types are \(\Pi \)-types with arities in a subfamily of *representable types*.

\[
\begin{array}{c}
\text{A rep type} \\
\overline{\Pi}(A, B) \text{ type}
\end{array}
\]

\[
\begin{array}{c}
A \text{ type} \\
[\text{A rep type}] [a : A] B(a) \text{ type}
\end{array}
\]
Internal models

Take $C : \mathbf{CwF}_{\Sigma, \Pi}$. It is a CwF $(C, \text{Sort}, \text{Elem})$ with 1, Σ- and Π- type structures. Elements of Sort are called sorts (or outer types). Elements of RepSort are called representable sorts (or outer representable types).

Definition

An internal model of \mathcal{T} in C consists of:

- a sort $\mathbf{ty} : \text{Sort}$ of (inner) types;
 \[\mathbf{Ty} \triangleq \text{Elem}(\mathbf{ty}); \]
- a representable sort family $\mathbf{tm} : \mathbf{Ty} \to \text{RepSort}$ of (inner) terms;
 \[\mathbf{Tm}(A) \triangleq \text{Elem}(\mathbf{tm}(A)); \]
- the structure of a model of \mathcal{T} over the CwF $(C, \mathbf{Ty}, \mathbf{Tm})$.

\[\text{Id} : (A : \mathbf{Ty})(x, y : \mathbf{Tm}(A)) \to \mathbf{Ty} \quad \Pi : (A : \mathbf{Tm})(B : \text{Elem}(\Pi(\mathbf{tm}(A), \mathbf{ty}))) \to \mathbf{Ty} \]

\[\ldots \]
The walking model

Definition

The walking model $0_{\Sigma, \Pi}[\mathbb{T}]$ is the initial type-theoretic representable map category equipped with an internal model of \mathbb{T}.

Some contexts of $0_{\Sigma, \Pi}[\mathbb{T}]$:

- $()$
- $(A : ty)$
- $(A : ty, x : tm(A))$
- $(A : ty, B : tm(A) \rightarrow ty, b : (a : tm(A)) \rightarrow tm(B(a)))$

\[\partial \text{Id} = (A : ty, x : tm(A), y : tm(A)) \]

\[\partial \Pi = (A : ty, B : tm(A) \rightarrow ty) \]

Proposition

*The category $(0_{\Sigma, \Pi}[\mathbb{T}])^{op}$ is equivalent to the category of finitely generated models of \mathbb{T}.***

A context (or closed sort) $\Gamma : 0_{\Sigma, \Pi}[\mathbb{T}]$ generates a model $0_{\mathbb{T}}[\Gamma] : \text{Mod}_{\mathbb{T}}$.
Recall that $T_w \to T_s$ is a Morita equivalence if for every cofibrant $C : \text{Mod}_{T_w}^{cxl}$, the unit $\eta : C \to R(L(C))$ is a weak equivalence.

Proposition

An extension $T_w \to T_s$ is a Morita equivalence if and only if

$$0_{\Sigma, \bar{\Pi}[T_w]} \to 0_{\Sigma, \bar{\Pi}[T_s]}$$

is a weak equivalence (in Mod_{T_w}).
We also have $0_{\Sigma,\Pi[\mathbb{T}]}$, $0_{\Sigma,\Pi,\mathrm{Eq}[\mathbb{T}]}$, $0_{\Sigma,\Pi,\mathrm{Eq}[\mathbb{T}]}$.

Some contexts of $0_{\Sigma,\Pi[\mathbb{T}]}$:

$$(P : \text{ty} \to \text{ty}, A : \text{ty}, a : P(P(A))) \quad (P : \text{ty} \to \text{ty}, A : \text{ty}, B : \text{ty}, \alpha : A \cong B)$$

Proposition

The category $(0_{\Sigma,\Pi,\mathrm{Eq}[\mathbb{T}]})^\text{op}$ is equivalent to the category of finitely presented models of \mathbb{T}.
Type-theoretic ∞-categories

\[
\text{CwF}^{\text{cxl}}_{\Sigma,\Pi,\text{Id}} \cong \{\text{finitely complete } \infty\text{-categories}\}
\]

\[
\text{CwF}^{\text{cxl}}_{\Sigma,\Pi,\text{Id}} \cong \{\text{locally cartesian closed } \infty\text{-categories}\}
\]

\[
\text{CwF}^{\text{cxl}}_{\Sigma,\Pi,\text{Id}} \cong \{\text{representable map } \infty\text{-categories}\}
\]

We have $0_{\Sigma,\Pi,\text{Id}[T]}$ and $0_{\Sigma,\Pi,\text{Id}[T]}$.
We will construct $\mathcal{D} : \text{CwF}_{\Sigma, \Pi, \text{Id}}$ equipped with an internal model of \mathbb{T}_w.

$$
0_{\Sigma, \Pi}[\mathbb{T}_w] \xrightarrow{\eta} 0_{\Sigma, \Pi}[\mathbb{T}_s]
$$

\mathcal{D}

F G

Elements of $\text{Elem}_\mathcal{D}(x \simeq y)$ will be the formal compositions of equalities in E.
Univalent internal models

Take $C : \text{CwF}_{\Sigma, \Pi, \text{Id}}$ with an internal model of \mathbb{T}.

We have comparison maps:

$$\text{coe}_{\text{ty}} : (A \simeq_{\text{ty}} B) \to (A \approx B)$$
$$\text{coe}_{\text{tm}} : (x \simeq_{\text{tm}(A)} y) \to Tm(x \simeq_{A} y)$$

Definition

The internal model of \mathbb{T} is **univalent** if coe_{ty} and coe_{tm} have homotopy sections (equivalently if they are homotopy equivalences).

We also say that C is **saturated**, or that the outer identity types of C satisfy **saturation**.

We have $0_{\Sigma, \Pi, \text{Id}}[\mathbb{T}, \text{univ}]$, etc.
In $0_{\Sigma, \Pi, \text{Id}}[T, \text{univ}]$ we can transport structures over type equivalences:

If $P : Ty \to Ty$ and $\alpha : A \cong B$, then

\[
\begin{align*}
\text{coe}_{ty}^{-1}(\alpha) &: A \cong_{ty} B, \\
ap(P, \text{coe}_{ty}^{-1}(\alpha)) &: P(A) \cong_{ty} P(B), \\
\text{coe}_{ty}(ap(P, \text{coe}_{ty}^{-1}(\alpha))) &: P(A) \cong P(B).
\end{align*}
\]
External univalence

Theorem

The following conditions are equivalent:

1. The map $0_{\Sigma, \Pi}[\mathbb{T}] \to 0_{\Sigma, \Pi, \text{Id}}[\mathbb{T}, \text{univ}]$ is essentially surjective on elements (outer terms).

2. The category $\text{Mod}_{cxl}^{\mathbb{T}}$ satisfies the axioms of a left semi-model category.

If they hold, we say that \mathbb{T} satisfies external univalence.
Partial saturation

Take $\mathcal{C} : \text{CwF}_{\Sigma,\Pi,\text{Id}}$ with an internal model of \mathbb{T}.

A lift $(\hat{p}, \tilde{p}) : \text{lift}(p)$ of $p : \text{Tm}(x \equiv_A y)$ is a witness that p lies in the essential image of coe_{tm}:

$$\hat{p} : (x \equiv_{\text{tm}(A)} y)$$
$$\tilde{p} : (\text{coe}_{\text{tm}}(\hat{p}) \equiv p)$$

Say that \mathcal{C} is partially saturated with respect to E if we have lift of every type equivalence / typal equality in E.
Partial saturation

We have $0_{\Sigma,\Pi,\text{Id}[T,\text{lift}(E)]}$.

An element of $0_{\Sigma,\Pi,\text{Id}[T,\text{lift}(E)]}$ is a formal composition of equalities from E.

Theorem

If T satisfies external univalence, then

$$0_{\Sigma,\Pi}[T] \rightarrow 0_{\Sigma,\Pi,\text{Id}[T,\text{lift}(E)]]$$

is essentially surjective on elements (outer terms).

\[0_{\Sigma,\Pi}[T] \rightarrow 0_{\Sigma,\Pi,\text{Id}[T,\text{univ}]} \]

\[0_{\Sigma,\Pi,\text{Id}[T,\text{lift}(E)]]} \rightarrow \]
Acyclicity

Factorization:

\[
0_{\Sigma, \Pi}[T_w] \xrightarrow{\eta} 0_{\Sigma, \Pi}[T_s] \xrightarrow{F} 0_{\Sigma, \Pi, \text{Id}}[T_w, \text{lift}(E)] \xrightarrow{G}
\]

Definition

We say that \(0_{\Sigma, \Pi, \text{Id}}[T_w, \text{lift}(E)]\) is acyclic in the image of \(F\) if for every \(p : \text{Tm}(F(\Gamma), x \simeq_A x)\), there exists some \(p' : \text{Tm}(F(\Gamma), p \simeq \text{refl})\).

Lemma

If \(0_{\Sigma, \Pi, \text{Id}}[T_w, \text{lift}(E)]\) is acyclic in the image of \(F\), then \(G\) is surjective on types and terms, when restricted to the image of \(F\).
Main theorem

Theorem

Assume that the following two conditions hold:

1. The type theory \(\mathbb{T}_w \) satisfies external univalence;
2. The model \(0_{\Sigma, \bar{\Pi}, \text{Id}}[\mathbb{T}_w, \text{lift}(E)] \) is acyclic in the image of \(F \).

Then \(0_{\Sigma, \bar{\Pi}}[\mathbb{T}_w] \to 0_{\Sigma, \bar{\Pi}}[\mathbb{T}_s] \) is a weak equivalence.
Concluding remarks

- The two conditions of the theorem do not always hold.
- The fact that \mathbb{T}_w satisfies external univalence can usually be proven using homotopical diagram models.
- It remains to prove acyclicity.
 I expect that acyclicity follows from a normalization argument: for every normal form of $0_{\Sigma,\Pi}[\mathbb{T}_s]$ there should be a contractible space of terms of $0_{\Sigma,\Pi,\text{Id}}[\mathbb{T}_w, \text{lift}(E)]$ corresponding to that normal form.