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Definitions

Recall the basic setup:

+ pointed connected types B may be viewed as presenting higher
groups, with carrier QB := (pt =p pt), and group structure induced

from the identity types.

oo-Group := (G : Type) x (BG : Type;to) x (G ~ QBG)
~ (G : Type,,) x (BG : Type;) x (G~ QBG)
~ Type;tO

n-Group := (G : Typey") x (BG : Type;to) X (G ~py QBG)



Stability

The more deloopings the merrier! (Recall that Eckmann-Hilton implies
that double loop spaces are homotopy commutative.)

(n, k)GType := (G : Typegt") x (B*G : Typegtk) x (G~ QFB*G)
>k,<n+k
pt
(n,w)GType := limy, (n, k)GType
~ (B_G i (k:N) — Type>k’§"+k)

Dt

x ((k:N) = B*G ~,, QB"'G).

~ Type

Infinite loop types in this way are precisely connective spectra (n = c0).



Periodic table

Periodic table of k-tuply groupal n-groupoids.

k\ 0 1 2 00
0 pointed set pointed groupoid pointed 2-groupoid pointed co-groupoid
1 group 2-group 3-group oco-group
2 abelian group  braided 2-group braided 3-group braided oco-group
3 —r— symmetric 2-group  sylleptic 3-group sylleptic co-group
4 —— —r— symmetric 3-group ?? co-group

connective spectrum




Lean formalization: Truncatedness
Many aspects have now been formalized in Lean (jww van Doorn, Rijke):

Theorem

Let X : Typegtk be a (k — 1)-connected, pointed type for some k > 0,
andletY : X — Type]i"“C be a fibration of (n + k)-truncated, pointed
types for some n > —1. Then the type of pointed sections,

(x: X) —pt Y 2, is n-truncated.

Corollary

Letk > 0andn > —1. If X is (k — 1)-connected, andY is
(n + k)-truncated, then the type of pointed maps X —; Y is
n-truncated. In particular, hom(,, 1\ (G, H) is an n-type for
G, H : (n,k)GType.

Corollary
The type (n, k)GType is (n + 1)-truncated.



Lean Formalization: Categorical equivalences

Theorem
We have the following equivalences of 1-categories (for k > 2):

(0,0)GType =~ Setpy;
(0,1)GType ~ Group;
(0, k)GType ~ AbGroup.



Lean Formalization: Operations

decategorification Decat : (n, k)GType — (n — 1,k)GType
(G, B*G) = (IGll,—y, IB*G 1)

discrete categorification Disc : (n, k)GType — (n+ 1,k)GType

(G, B*G) — (G, B*G)
looping € : ( k)GType — (n—1,k+1)GType
(G, B*G) = (G, B*G(k))

delooping B : (n,k)GType — (n+ 1,k — 1)GType
(G, B*G) — (QF1B*G, B’“G}
forgetting F : (n k)GType — (n,k — 1)GType
(G, B*G) — (G,QB*qG)
stabilization S : (n, k)GType — (n,k + 1)GType
(G, B*G) = (SG, |EB G|, 41 41);
where SG = ||Q*"'EB*q||,



Lean Formalization: (de)categorification

Decat - Disc with Decat o Disc = id:

k\n 0 1 2 cee oo
0 pointed set <:> pointed groupoid <:> pointed 2-groupoid e pointed co-groupoid
1 group <:> 2-group <:) 3-group S oco-group
2 abelian group  braided 2-group braided 3-group ce- braided oco-group
3 —— symmetric 2-group  sylleptic 3-group e sylleptic co-group
4 —r— —r— symmetric 3-group cee ?? oco-group

w S P P S connective spectrum




Lean Formalization: (de)looping

B A4 QwithQoB =id:

k\n 0 1 2 cee oo
0 pointed set /pointed groupoid /pointed 2-groupoid e pointed co-groupoid
1 group 2-group /S—Qroup S oco-group
2 abelian group/ braided 2-group braided 3-group ce- braided oco-group
3 —— symmetric 2-group  sylleptic 3-group cee sylleptic co-group
4 —r— —r— symmetric 3-group cee ?? oco-group

w S P P S connective spectrum




Lean Formalization: Stabilization

We also have:
- SHF
Lemma (Wedge connectivity)

If A: Type,, is n-connected and B : Type,, is m-connected, then the
map AV B — A x B is (n + m)-connected.

Theorem (Freudenthal)
If A': Type, " withn > 0, then the map A — QXA is 2n-connected.

Theorem (Stabilization)

Ifk >mn+2,then S : (n,k)GType — (n,k + 1)GType is an
equivalence, and any G : (n, k)GType is an infinite loop space.



Examples

« BZ =S*, other free groups on pointed sets, free abelian groups.

+ Automorphism groups Auta := (a = a) for a : A with
BAuta:=im(a:1 = A)=(z: A) x |la=z|_;.

+ Fundamental n-group of (A, a), I1,(A, a), with corresponding
delooping BII,, (A, a) = ||BAutal,,.

+ Symmetric groups S,, := Aut([n]), where BS,, = BAut([n]) is the
type of all (small) n-element sets. Colimit S..

+ Generally, if G : Group, we can take BG to be the type of G-torsors.

+ S' = BZ has delooping B? Z, which we can take to be the type of
oriented circles.

* Gy == Aut(S"") and F, := Aut(S},). Colimits G ~ F. Orientation
preserving versions too.

+ With cohesion, we should get BO(n), BU(n), etc.



Actions
A G-action on a : A is simply a homomorphism G — Aut a.
A G-type is a function X : BG — Type. Here we can form the

invariants X" := (z : BG) — X (), also known as the homotopy
fixed points, and the

coinvariants Xq := (z : BG) x X(z), which is also known as
homotopy orbit space or the homotopy quotient X /| G.

Right and left adjoints to A — A" for A : Type.

Proposition

Let f : H — G be a homomorphism of higher groups with delooping
Bf : BH —, BG, and let o : hom(X,Y) be a map of G-types. By
composing with f we can also view X andY as H -types, in which case
we get a homotopy pullback square:

Xng —— Yam

| |

XhG — th.



Canonical actions

Every group G carries two canonical actions on itself:

the right action G : BG — Type, G(z) = (pt = ), and the

the adjoint action G*! : BG — Type, G*(z) = (z = z) (by
conjugation).

Wehavel /G =BG,G//G=1and G* )G = LBG := (S' - BG),
the free loop space of BG.

Corollary

If f : H— G is a homomorphism of higher groups, then G /| H is
equivalent to the homotopy fiber of the delooping Bf : BH —¢ BG,
where H acts on G via the f-induced right action.



Projective spaces

Consider the sequence of actions GM™ : BG — Type of G given by

GM~(z):=0
GM" Y (z) := (pt = ) * GM"(x) = G(z) * GM" ()

i.e., the iterated joins of the right action with itself (M is for Milnor). The
types GM"(pt) are at least (n + 1)(k + 2) — 2-connected if G is
k-connected. Then the colimit GM*°(pt) = lim GM™ (pt) is contractible,
soGM*™ /G =1/ G=BG.

We define the projective spaces for G to be GP™ := GM™ // G. Thus,
GP ' =0,GP° =1, GP! = XG, etc. (in general, GP" " is the
mapping cone on the inclusion GM™" (pt) — GP").

The real and complex projective spaces are RP" := G, P" and

CP" .= S§G, P".



Orbit Stabilizer Theorem

Let X be a G-type.

Definition

Given z : X, the stabilizer of x is the group H, with delooping
BH, :=im(l - X —- X // G).

The orbitof zis the type G - x := (y : X) x ||(pt, z) = (pt,y)||_;.

Theorem (Orbit Stabilizer Theorem)
Givenz : X,G ) H, ~ G - x.

Proof.

The map BH, —,+ BG is the projection from

(z:BG) x (y: X z) x ||(pt,x) = (2,9)||_, to BG, so the fiber over pt is
G- x. O



Central extensions

The cohomology of a higher group G is simply the cohomology of its
delooping BG. Indeed, for any spectrum A, we define

Hp (G, A) = || BG — B A,

Of course, to define the k’'th cohomology group, we only need the k-fold
delooping B* A.

If A: (c0,2)GType is a braided co-group, then we have the second
cohomology group Hérp(G, A), and an element ¢ : BG —,; B>A gives
rise to a central extension

BA — BH — BG 5 B?A,

Example

The central extension 1 — Z % 7 — 7Z/nZ — 1 is classified by the map
BC,, — B?Z that sends an n-element set with a cyclic ordering to the
canonical oriented circle obtained by gluing.



Outline
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Motivation

From “Open Problems” on the HOTT Wiki

‘Similarly to the torus, consider the projective plane, Klein bottle, ... as
discussed in the book (sec 6.6). Show that the Klein bottle is not
orientable. (This requires defining “orientable™.)’



Motivation

From “Open Problems” on the HOTT Wiki

‘Similarly to the torus, consider the projective plane, Klein bottle, ... as
discussed in the book (sec 6.6). Show that the Klein bottle is not
orientable. (This requires defining “orientable™.)’

Attempted solution

We can define the tangent bundle 7 : KB — BG,. Looking at
cohomology with Z/2Z-coefficients, we see that 7 doesn't lift to BSG.

This is not satisfactory!



Tangent bundle of the Klein bottle




Tangent bundle of the Klein bottle




Tangent bundle of the Klein bottle




Tangent bundle of the Klein bottle

J




Tangent bundle of the Klein bottle




Tangent bundle of the Klein bottle

S\




Tangent bundle of the Klein bottle




Tangent bundle of the Klein bottle

(p—=p)
e

7: KB — BGs




A real solution

Desiderata:
+ Define the type of surfaces, Surf.

+ Define the type of oriented surfaces, OredSurf with a forgetful map
OredSurf — Surf.

+ Then the type of orientable surfaces, ObleSurf, is the image.
+ Prove that OredSurf — ObleSurf is a principal Z/2Z-bundle.

+ Prove the classification of surfaces theorem. (Constructively?).



Some surfaces



Poincaré Duality Surfaces

Definition
A n-dimensional Poincaré duality type is a type X : FinType (i.e., merely
equivalent to a finite complex) together with an orientation class

w: X — BGy, and aclass [X] : H,(X;Z,) called the fundamental
class such that the cap product map

—N[X]: H(X;ZmX) — H,_(X;Zm Xy)
is an isomorphism.

Theorem

For any X, the type of pairs (w, [X]) making X an n-dimensional
Poincaré duality type is contractible.

Theorem (Eckmann-Muller-Linnell)

Every 2-dimensional Poincaré duality type in classical homotopy theory is
equivalent to a closed surface.



Haves and needs
Luckily, we have most of the components already:

+ We have the type FinCell of finite cell complexes with realization
map FinCell — Type with image FinType.

+ We know that (so far: unparametrized) cohomology of a finite
complex can be computed via cellular cohomology (jww Favonia).

+ We have the cup product and thus also cap product maps for
integral coefficients, and hence with a little more work for free
abelian coefficients over a family of finite sets.

We still need:

+ Extend the work on cellular cohomology to parametrized versions
and to homology.

+ Construct the usual surfaces. (Perhaps Hurewicz would be handy to
construct the fundamental classes.)

+ Prove the classification theorem. In particular, we need to go from a
2-dim. PD type X to its Spivak stable normal bundle, and prove
Spivak’s theorem on spherical fibrations and get a tangent bundle.
Prove basic theorems establishing that orientations of the tangent
bundle correspond to orientation of X.



Outlook

Proposal for another big formalization project.
Is it better to define surfaces using spectrum-level PD?

+ Generalize to surfaces with boundary in order to study braid groups
and mapping class groups, and ... homological stability?

+ In smooth/analytic cohesion, relate to smooth/analytic surfaces.

+ Brown’s theorem on computability of homotopy groups of finite
complexes?
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