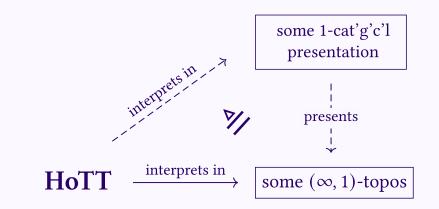
Cubes with one connection and relative elegance

Evan Cavallo Stockholm University

> joint work with Christian Sattler

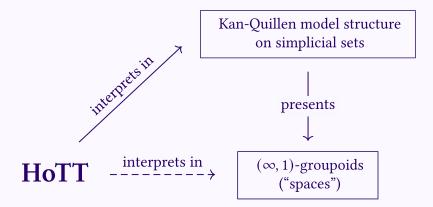
A BIG PICTURE



Shulman '19: HoTT interprets in Grothendieck (∞ ,1)-toposes. What do we mean by **interpret**?

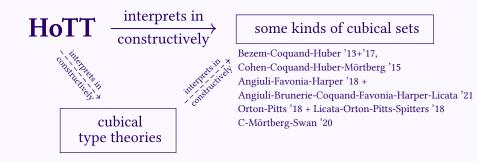
A BIG PICTURE

For example, Voevodsky's simplicial model:



Model structure helps build model of HoTT-but not the same thing

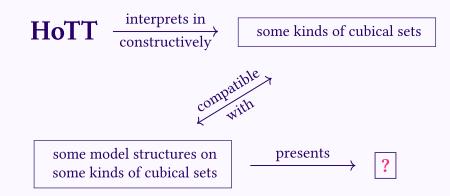
Does HoTT have a constructive interpretation?



Interpretations of HoTT in a direct sense.

CUBICAL MODELS

Gambino-Sattler '17, Sattler '17, C-Mörtberg-Swan '20, Awodey: The cubical interpretations give rise to model structures.



Starter question: do any present (∞ ,1)-groupoids?

Why want this?

- Present (∞,1)-groupoids constructively (see also Henry '19, Gambino-Sattler-Szumiło '19)
- Interpret cubical type theories in (∞,1)-groupoids (and ideally elsewhere, à la Shulman '19)

CUBE CATEGORIES

Objects are monoidal products of an **interval** 1 $\xrightarrow{\delta_0}$ \mathbb{I} .

- For cubical type theorists, products are usually **cartesian**:

$$\mathbb{I} \xrightarrow{\mathcal{E}} 1 \qquad \mathbb{I} \xrightarrow{\Delta} \mathbb{I}^2 \qquad \mathbb{I}^n \xrightarrow{\sigma \in \Sigma_n} \mathbb{I}^n$$

diagonal
(except BCH) gradient symmetries

(unusual from a classical homotopy theory perspective!)

- Extra toppings:

$$\mathbb{I}^2 \xrightarrow{\bigvee} \mathbb{I} \quad \mathbb{I}^2 \xrightarrow{\wedge} \mathbb{I} \quad \mathbb{I} \xrightarrow{\neg} \mathbb{I}$$

max- and min-connections reversal etc.

Which cube categories lead to model structures presenting spaces? Ulrik Buchholtz and Christian Sattler investigated in 2018:

Affine (BCH)	$\delta, \varepsilon, \sigma$	X
Cartesian (AFH+ABCFHL)	$\delta, \varepsilon, \Delta, \sigma$	X
Dedekind (CCHM)	$\delta, \varepsilon, \Delta, \sigma, \lor, \land$?
De Morgan (CCHM)	$\delta, \varepsilon, \Delta, \sigma, \lor, \land, \neg$	X

In 2019, Awodey-C-Coquand-Riehl-Sattler present a new model:

Cartesian	$\delta, \varepsilon, \Delta, \sigma$	
with equivariant fibrations		

Same cube category, stronger lifting condition on types

CUBE CATEGORIES

Our result:

Disjunctive

 $\delta, \varepsilon, \Delta, \sigma, \lor$

✓

Compared to equivariant model...

- Easier to describe:
 - in a cartesian cube category with a connection, all fibrations are equivariant
- Proof it presents (∞ ,1)-groupoids is more direct

Fill out general understanding of cubical models!

No time to give full picture of proof. (See Sattler '19, Streicher-Weinberger '21 for similar setup.)

What properties of disjunctive cubes matter?

- **bad news:** \square_{\lor} is not an elegant Reedy category.
- good news: it's close to one!

REEDY CATEGORIES

- Thinking of presheaves on C as "spaces built from cells shaped like objects of C", useful if:
 - \cdot objects are stratified by "dimension"
 - \cdot maps factor into basic "degeneracy"-like and "face"-like maps

$$\Delta^n \xrightarrow[]{} \Delta^k \xrightarrow[]{} \Delta^m$$

Def (~Berger-Moerdijk '11):

A **(generalized) Reedy category** is a category **R** equipped with a function |-|: Ob $\mathbf{R} \to \mathbb{N}$ and orthogonal factorization system $(\mathbf{R}^-, \mathbf{R}^+)$ compatible in the sense that...

- e.g.: simplex category, some cube categories, many more...

HoTTEST 22/11/03

REEDY CATEGORIES

 Any presheaf X over a Reedy category **R** can be built by iteratively attaching *n*-cells via colimits

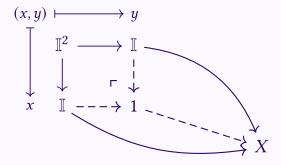
- If **R** is **elegant**, then cell maps are monos

 \Rightarrow If cofibrations=monos, these are also **homotopy colimits**

Def (~Berger-Moerdijk '11, ~Bergner-Rezk '13): A Reedy category **R** is **elegant** when (a) any span of degeneracy maps has a pushout; (b) any $X \in PSh(\mathbf{R})$ sends these to pullbacks. $\Leftrightarrow \mathbf{y} \colon \mathbf{R} \to PSh(\mathbf{R})$ preserves them.

ELEGANT REEDY CATEGORIES

- For example with cubes:

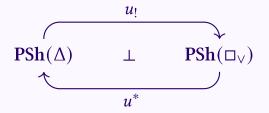


· degeneracies with same domain can be "combined"

 \cdot a cell is degenerate in two ways iff degenerate in their combination

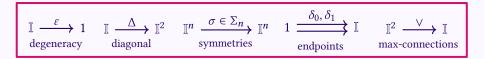
ELEGANT REEDY CATEGORIES

Want a Quillen equivalence with the Kan-Quillen model structure:



These are left Quillen adjoints

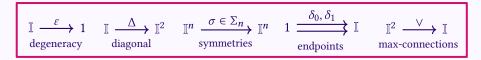
— So they commute with those colimits only need to check they're inverse on "basic cells"?



 Like other cartesian cube cats, it's a finite product (i.e. Lawvere) theory, the **theory of 01-semilattices**

$$(x \lor y) \lor z = x \lor (y \lor z) \qquad x \lor y = y \lor x$$
$$x \lor x = x \qquad x \lor 0 = x \qquad x \lor 1 = 1$$

Maps $\mathbb{I}^m \to \mathbb{I}^n$ are *n*-tuples of terms in *m* variables in this language



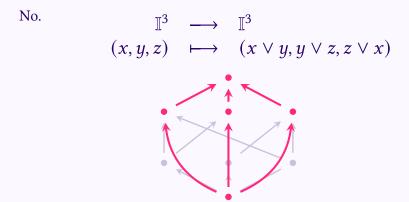
- Also embeds in the **category of semilattices**:

$$\Box_{\vee} \longrightarrow SLat$$
$$\mathbb{I}^n \longmapsto \{0 < 1\}^n$$

Follows from duality between finite 01-semilattices and finite semilattices:

$$\Box_{\vee} \stackrel{\mathfrak{k}}{\longleftrightarrow} \mathbf{01SLat}_{\mathrm{fin}}^{\mathrm{op}} \stackrel{\simeq}{\longrightarrow} \mathrm{SLat}_{\mathrm{fin}} \longleftrightarrow \mathrm{SLat}_{\mathrm{fin}}$$

ARE DISJUNCTIVE CUBES REEDY?



Not an iso, but doesn't factor through a lower-degree cube.

(Also doesn't factor in the idempotent completion of \Box_{v} .)

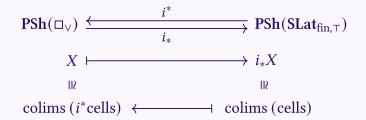
RELATIVE ELEGANCE

– But know that \square_{\lor} **embeds** in a Reedy category

 $i: \Box_{\vee} \longrightarrow \operatorname{SLat}_{\operatorname{fin},\top}$

by general properties of algebraic categories.

- So can borrow cellular decomposition:



RELATIVE ELEGANCE

- To use the decomposition, need cell maps to be monos
- **SLat**_{fin, \top} is **not** elegant;

not all preheaves in $\textbf{PSh}(\textbf{SLat}_{\text{fin}, T})$ have good decompositions.

- But it's "elegant relative to $i: \Box_{\vee} \hookrightarrow \text{SLat}_{\text{fin},\top}$ ": presheaves in the image of i_* have good decompositions

```
Def (C-Sattler):
A fully faithful i: \mathbb{C} \to \mathbb{R} with \mathbb{R} a Reedy category is
relatively elegant when
(a) any span of degeneracy maps in \mathbb{R} has a pushout;
(b) i_*X sends these to pullbacks for X \in PSh(\mathbb{C}).
\Leftrightarrow N_i: \mathbb{R} \to PSh(\mathbb{C}) preserves them.
```

Thm (C-Sattler): If $i: \mathbb{C} \to \mathbb{R}$ is relatively elegant, then any presheaf over \mathbb{C} has a "good" decomposition where the basic cells are $N_i r / N_i G$ for $r \in \mathbb{R}$ and $G \subseteq \operatorname{Aut}_{\mathbb{R}}(r)$.

- Relative elegance of $i: \Box_{\vee} \hookrightarrow SLat_{fin,\top}$ also follows from general properties of algebraic categories.
- Easy to check basic cells are contractible in this case.
- Have what we need to finish our proof!

EQUIVALENCES

In the end:



- Both of these adjunctions are Quillen equivalences.
- In particular, model structure presents (∞ ,1)-groupoids!
- Corollary: coincides with the test model structure on PSh(□_∨) (compare Streicher-Weinberger '21)

 Sad truth: the Dedekind cubes do not embed elegantly in **any** Reedy category.

Some ponderables:

- Comparison with constructive simplicial model structure?
- Other applications for relative elegance or this cube category?
- For cubical-type model structures that don't present spaces,(a) can we "fix" them? or
 - (b) can we describe what they **do** present?