
Modalities and (weak) dependent right adjoints

Daniel Gratzer

Thursday 23rd March, 2023

Aarhus University

0



What’s the goal of type theories?

Type theories do a very good job working with families of objects

• All of proofs in type theory are relative to a context

• All connectives are natural in the context, making it invisible

• A family of widgets is equivalent to a widget (in a different context)

The second point is crucial to this story!
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Why does it matter that connectives are natural?

Fix some term:

Φ :
∏

n:N

∑
m:N

P(n,m)

If we instantiate Φ with some number, result has the following type:

Φ(2) :
∑

m:N
P(2,m)

If instead Φ(2) :
∑

m:Bool P(2,m), this would be a problem!
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Why does it matter that connectives are natural? II

This sort of oddity does not happen precisely because Σ is natural:

(ΣAB)[γ] = ΣA[γ]B[(γ ◦ p).v]

• We must have this rule for every connective

• Explicit substitutions are one possible formulation

• What matters: substitutions flow past connectives and to variables
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What’s the goal of modal type theories

The goal of modal type theories:

1. Add a connective—a modality—which is not stable under all substitutions

2. Produce a usable system out of what remains

The last goal is squishy, but ideally...

• should be implementable

• should be able to use it for formalization
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Example 1: using modalities to capture global behavior

Modalities can help us construct models of cubical type theory:

• Orton and Pitts [OP18]: the internal language helps to model various types

• We need the tininess of I to model the universe:

ι : (−)I ⊣ (−)I

• Two issues: neither (−)I nor ι internalize well!

• (−)I doesn’t descend to each slice

Solution: use the global sections comonad 2 [Lic+18]:

(−)I : 2U → U

NB: 2/(−)I cannot be naively added to type theory [Shu18].
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Example 2: using modalities to model features of a model

Guarded recursion gives us access to a powerful form of synthetic domain theory:

• The key primitives (▶, loeb : (▶A→ A)→ A) can be axiomatized [Bir+12]

• On their own, insufficient to define certain operations (e.g., adequacy,

termination)

Solution: add another 2 modality along with the following equivalence:

2▶A ≃ 2A
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How do we actually include a modality?

Including a modality is causes a lot of problems, but it’s useful as well..

Q. How do we actually go about including a modality?

A. Alter contexts and substitutions to make the modality natural.

The result is an odd type theory, but with a modality and some substitution lemma.

We now have 25 years worth of different alterations for different types of modalities.
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The goal of this talk

Our goal is threefold:

• Discuss a few of the more common alterations to make to type theory

• Consider the semantics of the resultant theories

• Argue that they can be seen as alterations on one specific form of alteration

(wDRAs)

The takeaway: wDRAs are ubiquitous.
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Non-goals of this talk

We have some non-goals as well:

• We won’t consider substructural theories

• We’ll assume that our modalities are (suitably) lex

• We will not assume that they’re fibered
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Primordial rules for modalities

All our example modalities are lex functors. Can we capitalize on this?

Γ ⊢ A

F (Γ) ⊢ F (A)
F (A)[F (γ)] = F (A[γ])

ϵ : F (Γ.A) ∼= F (Γ).F (A) F (p) = p ◦ ϵ τ : F (1) = 1

Pros: easy to interpret!

Theorem

Given a display map category and a functor preserving display maps and pullbacks

along them as well as 1, we may interpret the above using local universes [LW15].
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Deriving the introduction rule

Notice that with these primitives we can derive a functorial introduction rule:

Γ ⊢ M : A

F (Γ) ⊢ F (M) : F (A)

• Consider the substitution F (Γ) ⊢ F (id.M) : F (Γ.A)

• Post-compose with ϵ to obtain F (Γ) F (Γ).F (A) over F (Γ)

• Use the variable rule

In total:

F (M) = v[ϵ ◦ F (id.M)]
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Primordial modalities and substitution

The downside of this approach: no good substitution lemma.

• Fix a type Γ ⊢ A and substitution ∆ ⊢ γ : F (Γ)

• Cannot “push” γ inside F (A); don’t have γ = F (γ′)

• Result: no clear equation to associate with in general F (A)[γ]

Not as bad as N becoming Bool, but still prevents us from working context-agnostically.
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Solution 1: Delayed substitutions

We can just accept this and move on. Obtain delayed substitutions [Bd00]

Γ ⊢ δ : F (∆) ∆ ⊢ A

Γ ⊢ Fδ(A)

• Relatively simple, scales to many modalities

• Sometimes can give delayed substitutions slighter nicer syntax [Biz+16]

• Normalization fails; type-checking cannot be decided

• Still have to reason about substitutions directly so not very usable
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Why does normalization fail?

The failure of normalization is intimately connected with the substitution law

F (Γ) ⊢ F (A)∆

F (∆0)

γ

δ F (γ′)

Too many possible choices of ∆0; each choice yields a different reduction:

F (A)[γ] = F (A[γ′])[δ0]

Uniqueness is unreasonable.
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A possible way out: a universal delay

F (Γ) ⊢ F (A)∆
γ

• We can’t get a unique factorization, but perhaps there’s a best choice?

• In fact, we are interested in the initial factorization

Requiring this for all ∆ and all ∆ ⊢ γ : Γ is equivalent to asking for L ⊣ F .

15



A possible way out: a universal delay

F (Γ) ⊢ F (A)∆

F (L(∆))

γ

η F (L(γ))

• We can’t get a unique factorization, but perhaps there’s a best choice?

• In fact, we are interested in the initial factorization

Requiring this for all ∆ and all ∆ ⊢ γ : Γ is equivalent to asking for L ⊣ F .
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A universal delay II

This is good enough! Can replace our delayed substitution with η; the universal delay:

L(Γ) ⊢ A

Γ ⊢ Fη(A)

Fη(A)[γ] = Fη◦γ(A)

= FF (L(γ))◦η(A)

= Fη(A[L(γ)])

16



A universal delay III

What about introduction and elimination?

Note that adjunctions descend to slices: Cx/Γ ⇆ Cx/F (Γ):

Tm(L(Γ),A) ∼= HomCx/L(Γ)(L(Γ), L(Γ).A)

∼= HomCx/F (L(Γ))(Γ,F (L(Γ).A))

∼= HomCx/F (L(Γ))(Γ,F (L(Γ)).F (A))

∼= HomCx/Γ(Γ, Γ.Fη(A))

∼= Tm(Γ,Fη(A))

Rendered as rules:

L(Γ) ⊢ M : A

Γ ⊢ Fη(M) : Fη(A)

Γ ⊢ M : Fη(A)

L(Γ) ⊢ unmod(M) : A
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Solution 2: dependent adjunctions

Small observation: we no longer need F to act on contexts, just types.

Definition (Birkedal et al. [Bir+20])

A dependent adjunction L,F consists of a functor from contexts to contexts L and a

map of types F : Ty(L(Γ)) Ty(Γ) equipped with a natural bijection of terms:

Tm(L(Γ),A) ∼= Tm(Γ,F (A))

DRATT: type theory extended with a dependent adjunction.
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Models of DRATT

It’s still relatively easy to cook up models of DRATT:

Theorem

Given a display map category and an endo-adjunction whose right adjoint preserves

display maps, we may interpret DRATT.

• The second requirement often automatic (e.g. with presentable categories)

• All our earlier examples are DRAs
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What about the elimination rule?

Returning to the elimination rule, we have the same problem as we started with!

Γ ⊢ M : F (A)

L(Γ) ⊢ unmod(M) : A

Given a substitution ∆ ⊢ γ : L(Γ), we still don’t have γ = L(γ′).
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An ad-hoc solution

Workaround: there aren’t many definable substitutions into L(Γ).

• Scrutinize the definable substitutions and manually close the rule under them

• For instance, with just a dependent adjunction it suffices to close under weakening

Γ ⊢ M : F (A)

L(Γ).A0.A1.A2 . . .An ⊢ unmod(M) : A

This “works”, but you have to redo this for any tweak you make to F .
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Analyzing DRATT

• This calculus is usable and implementable [GSB19; BGM17]

• Cooking up these elimination rules is hard work (some improvements [HP23])

• It’s unclear that this can be done for more than one modality at time

• It’s also unsatisfying to depend on a particular property of the syntactic model
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Taming the elimination rule

Can we play the same game as we did with the formation rule?

• We ask that any substitution ∆ L(Γ) admits an initial factorization

• Unlike before, not every ∆ necessarily has a map to L(−)
• We only require this factorization when we have a map ∆ L(1)

Rephrasing: L should be a PRA:

Definition

A functor G : C D is a parametric right adjoint if the induced functor

C D/G (1) is a right adjoint.
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A new elimination rule

As before, we may now rephrase the elimination rule to use this generic case:

Γ ⊢ ρ : L(1) U(Γ, ρ) ⊢ M : F (A)

Γ ⊢ unmod(M, ρ) : A[η]

NB: η is the unit of the parametric adjunction, it also depends on ρ.
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Rationalizing PRAs

Definition

An exceptional dependent adjunction is a dependent adjunction whose left adjoint is

a PRA.

• We should regard an exceptional dependent adjunction as a sort of product.

• The substitution Γ ⊢ ρ : L(1) is the “argument”

Theorem

For any closed type C, the dependent product
∏

C− is an exceptional DRA
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Rationalizing PRAs II

Revisiting the earlier rule with F (A) =
∏

C A

Γ ⊢ ρ : 1.C Γ ⊢ M :
∏

C
A

Γ ⊢ unmod(M, ρ) : A[η]

ρ is equivalent to a term Γ ⊢ N : C.

ticks: fancy syntax inspired out of this intuition [BGM17].

26



Relating PRAs to DRATT

In fact, this machinery gives us a way to restate our earlier adhoc results:

Theorem

The left adjoint on the syntactic model of DRATT is a PRA.

In fact, the adhoc rules exist because the necessary factorizations exist.

The lemmas we must prove correspond precisely to the theorem above.
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Solution 3: FitchTT

All of this discussion leads us to our third modal type theory: FitchTT [Gra+22].

• Essentially, extend type theory with exceptional dependent adjunctions

• No issues incorporating multiple modalities and no messy syntactic arguments

• Conjecturally, normalization and type-checking are possible

The semantics of FitchTT are a straightforward extension of those of DRATT:

Theorem

A model of FitchTT is precisely a model of DRATT with a parametric adjunction.

Corollary

FitchTT is a conservative extension of DRATT.
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The downsides of FitchTT

The downside of FitchTT is not difficult to spot:

• How many modalities of interest are right adjoints?

• Of that subset, how many are part of an exceptional DRA?

• A non-zero amount (2 and ▶, for instance), but it’s a big ask

It’s not ideal that we are able to include roughly one of the three functors in play here!
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An intermezzo with notation

Before proceeding further, it’s helpful to fix some notation for multiple modalities.

• Fix a 2-categoryM of modes, modalities, and transformations between them

• The modes are less important; safe to assume there is just one

• µ, ν, ξ for modalities and α, β for 2-cells

• We’ll always have composites of modalities and an identity

• We’ll use ⟨µ | −⟩1 and −.{µ} for modal types and left adjoints.

We require that −.{µ} is a 2-functorMcoop Cat:

Γ.{id} = Γ Γ.{µ}.{ν} = Γ.{µ ◦ ν}

1My proposed notation of regular n-gons and simply increasing n to generalize 2 has not yet taken off.
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Retreating from dependent adjunctions

Can we instead weaken dependent adjunctions to arrive at a workable syntax instead?

We’ll split things up into two halves:

1. a judgmental structure representing the right adjoint

2. a type which weakly internalizes this structure

We term the resulting structure a weak dependent adjunction
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Towards weak dependent adjunctions

A judgmental structure representing the right adjoint

Modify context extension as follows:

Γ.{µ} ⊢ A

⊢ Γ.(µ | A) cx
Hom(∆, Γ.(µ | A)) ∼=

∑
γ:Hom(∆,Γ)

Tm(∆.{µ},A[γ.{µ}])

In particular, we have Γ.(µ | A) ⊢ p : Γ and Γ.(µ | A).{µ} ⊢ v : A[p.{µ}].
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Towards weak dependent adjunctions II

Restricting to sections, this gives back a dependent adjunction-esque isomorphism:

Tm(Γ.{µ},A) ∼= Sec
(
p : Γ.(µ | A) Γ

)
Since Γ.{id} = Γ, we recover normal context extension:

Hom(∆, Γ.(id | A)) ∼=
∑

γ:Hom(∆,Γ)
Tm(Γ,A[γ])
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Towards weak dependent adjunctions III

A type weakly internalizing this structure

The formation and introduction rules will be familiar, but we’ll have a much weaker

elimination rule:

Γ.{µ} ⊢ A type

Γ ⊢ ⟨µ | A⟩ type

Γ.{µ} ⊢ M : A

Γ ⊢ mod(M) : ⟨µ | A⟩

Γ.(id | ⟨µ | A⟩) ⊢ B type Γ ⊢ M0 : ⟨µ | A⟩ Γ.(µ | A) ⊢ M1 : B[p.mod(v)]

Γ ⊢ let mod(−)← M0 in M1 : B[id.M0]

NB: the elimination rule forces Γ.(µ | A) ⊢ p.mod(v) : Γ.(id | ⟨µ | A⟩) to be anodyne.
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Towards weak dependent adjunctions IV

There is a slight wrinkle in this story: what about ⟨µ | ⟨µ | A⟩⟩?

• Cannot apply our elimination rule to the inner modality.

• In fact, this type “stuck”; we can’t manipulate Γ.(µ | ⟨µ | A⟩)

A solution: crisp induction principles. We’ll ask that the following is anodyne:

Γ.(ν ◦ µ | A) ⊢ p.modµ(v) : Γ.(ν | ⟨µ | A⟩)
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Towards weak dependent adjunctions V

We can render this crisp induction principle like the original elimination rule:

Γ.(ν | ⟨µ | A⟩) ⊢ B type Γ ⊢ M0 : ⟨µ | A⟩ Γ.(ν ◦ µ | A) ⊢ M1 : B[p.mod(v)]

Γ ⊢ letν mod(−)← M0 in M1 : B[id.M0]

We refer to ν as the framing modality.

We require this rule to prove, e.g.:

⟨ν ◦ µ | A⟩ ≃ ⟨ν | ⟨µ | A⟩⟩
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Solution 4: MTT

Our next proposed theory is MTT [Gra+20]

• We can consider type theory with a series of weak dependent adjunctions

• Include all possible crisp induction principles for modalities

• The resulting theory admits normalization [Gra22]

• It can also be implemented [SGB22]

• There is a cubical variant, allowing for some homotopical models [Aag+22].

• It includes our two motivating examples.
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Models of MTT

What does a model of MTT look like?

• Typically, models of MTT use DRAs.

• Automatically have all crisp induction principles

Theorem

Given a 2-functor F :M Cat assigning objects to categories with display maps

and morphisms to right adjoints preserving display maps, F induces a model of MTT.

Various improvements are possible using e.g., the coherence result for pseudofunctors.

Corollary

Any model of DRATT is a model of MTT
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From weak to strong dependent adjunctions

Under what assumptions is a weak dependent adjunction equivalent to a strong one?

• The answer isn’t just “up to equality reflection”:

Γ.(id | ⟨µ | A⟩).{µ} ⊢ ? : A[p.{µ}]

• Open question: is any closed term in DRATT definable in extensional MTT?

False for type theory with infinitary products. Similar to Davies and Pfenning [DP01].
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Internal right adjoints

OK if our modality µ has a left adjoint inM:

Theorem (Nuyts and Devriese [ND21])

In extensional MTT, internal right adjoints are dependent right adjoints.

The proof hinges on the fact that −.{−} preserves adjoints and so

Γ.(ξ | A).{µ} ∼= Γ.{µ}.(ν ◦ ξ | A[· · · ])

Allows us to “get behind” −.{µ} again.
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FitchTT versus MTT

We now have two possible fixes to DRATT. The following relates them:

Corollary

The following are equivalent

1. A nice model of extensional FitchTT whose left adjoints preserve terminal objects

2. A model of extensional MTT internalizing both the left and right adjoints.

• If the left adjoint preserves terminal objects: go with MTT.

• If not: Cavallo [Cav21] has mixed the two. Shulman [Shu23] carries this further.
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Solution 5: Left-division

We could hope that all modalities behave like these internal right adjoints.

• This is too strong, but it suffices to argue that µ ◦ − is a right adjoint.

• A very strong but not vacuous requirement [ND18]

• The result: annotating everything in a context has a left adjoint in Cx.

• Unfolding this left adjoint, it corresponds to division of modalities.

Modalities are still weak DRAs but we have a stronger characterization of −.{µ}.
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From weak dependent right adjoints to dual-contexts

Where should we find an actual weak dependent adjunction?

• Slightly unlikely source: dual-contexts [PD01; dR15; Kav17; Shu18; Zwa19].

• The syntax of dual-contexts is based around a weak DRA

• The standard model gives a weak DRA which is not a DRA.
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Solution 5: Dual-context type theory

We follow Zwanziger [Zwa19].

• Core idea: rather than a universal map Γ F (∆), provide a chosen one.

• Crucially, substitutions must also respect this chosen map!

• We represent this chosen map by splitting the context ∆; Γ.

The end result is a new family of judgments over dual-contexts: ∆; Γ ⊢ M : A, etc.
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Substitutions in dual-contexts

What sort of objects are substitutions between dual-contexts?

• The category of dual-contexts and substitutions is fibered over ordinary contexts.

• In particular, given ∆; Γ we can form ∆.A; Γ[p∗].

• Each fiber has a terminal object (∆; 1)

• Dual-contexts also have their own notion context extension (∆; Γ.A)

All of this can be crystallized in an algebraic style.
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Modalities in dual-context type theory

We split the usual comonad into an adjunction:

∆; 1 ⊢ A

∆ ⊢ ⟨r | A⟩

∆ ⊢ A

∆; Γ ⊢ ⟨l | A⟩

In particular:

∆; 1 ⊢ A

∆; Γ ⊢ 2A ≜ ⟨l | ⟨r | A⟩⟩
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Modalities in dual-context type theory II

We have an adjunction between contexts and dual-contexts:

∆.{r} = ∆; 1 (∆; Γ).{l} = ∆

We’ve assumed ∆; 1 is terminal in the fiber over ∆.

∆.A; Γ[p] can now be given another name: ∆; Γ.(l | A)
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Modalities in dual-context type theory III

Summary of the remaining rules: ⟨l | −⟩ is a weak DRA and ⟨r | −⟩ is a DRA.

∆; 1 ⊢ M : A

∆ ⊢ modr (M) : ⟨r | A⟩

∆ ⊢ M : ⟨r | A⟩

∆; 1 ⊢ unmodr (M) : A

∆ ⊢ M : A

∆; Γ ⊢ modl(M) : ⟨l | A⟩

∆; Γ ⊢ M0 : ⟨l | A⟩ ∆.A; Γ[p] ⊢ M1 : B[p
∗.modr (v)]

∆; Γ ⊢ let mod(−)← M0 in M1 : B[id.M0]

We don’t include the crisp induction principles for ⟨l | −⟩.

The result is AdjTT [Zwa19].
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Modalities in dual-context type theory IV

Q Why doesn’t AdjTT suffer from the same issues as DRATT?

A ⟨r | −⟩ is an internal right adjoint, so −.{r} is a (P)RA.

We can rephrase the elimination rule to something interderivable:

∆ ⊢ M : ⟨r | A⟩

∆; Γ ⊢ unmodr (M) : A

49



MTT in dual-context type theory

Theorem

MTT with adjoint modalities but without crisp induction principles has an

interpretation in AdjTT.

We can strengthen the result from Nuyts and Devriese [ND21] to apply:

Theorem

In the above situation, the right adjoint modality is a DRA without the η law.

The difference between this version of MTT and AdjTT comes from the fibration

structure of dual-contexts over single contexts.
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The standard model of AdjTT

The standard model of AdjTT [Zwa19] comes through gluing.

• Start with two finitely complete categories and a lex left adjoint F : C D
• Dual-contexts are objects of Gl(F ), single contexts are objects of C
• Crucial point, display maps of Gl(F ) are closed étale maps

• The interpretation of ⟨l | −⟩ is merely a weak DRA.

Combining our interpretation of MTT into AdjTT...

Corollary

MTT without crisp induction can be modeled by an arbitrary geometric morphism.

Corollary

MTT can be modeled by . . . if the induced comonad is idempotent.
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Stepping back

Thus far we’ve looked at 6 different modal type theories

• All except delayed substitutions use some form of (w)DRA for their modalities.

• As a consequence, MTT∗ can be interpreted into all of them.

• This doesn’t imply MTT should always be used, of course!

• It does, however, place some limits on what modalities can be easily

accommodated.

Still leaves certain questions frustratingly unanswered; not everything is a wDRA!

Shulman [Shu23] offers one approach by generalizing the gluing model for AdjTT.

52



Conclusions

Several open questions, several loose ends.

• Are interpretations of MTT into DRATT and idempotent AdjTT conservative?

• Plenty of metatheory left (cubical MTT, FitchTT, etc.)

• Can we include modalities which do not satisfy axiom K in this manner?

• Homotopical models? Some are alright (parametrized spectra over spaces)

• Left completely unexplored: substructural theories.
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