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Motivation

I Can we use HoTT to reason about ∞-categories which are
not toposes?

I We need Hom-spaces to define certain constructions and
properties.

I Even if we have internal Hom-spaces, sometimes the internal
version of some construction is too strong.

I We might also want to reason about non-elementary
constructions such as infinite (co)limits.
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Indexed unary type theory

I An indexed category is a functor Bop → Cat.

I Indexed unary type theory has four judgements:

Γ ` A Γ ` a : A Γ | · ` B Γ | x : B ` b′ : B ′

I The first two judgements correspond to the base theory and
we can have all ordinary constructions at this level.

I We have the following substitution rules:
I of base terms in base terms and types
I of indexed terms in indexed terms
I of base terms in indexed terms and types
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Local smallness

I We will always assume that the following rules are derivable:

Γ | · ` A Γ | · ` B

Γ ` Hom(A,B)

Γ | x : A ` b : B

Γ ` λx . b : Hom(A,B)

Γ ` f : Hom(A,B) Γ | ∆ ` a : A

Γ | ∆ ` f a : B

(λx . b) a ≡ b[a/x ]

λx . f x ≡ f

I This corresponds to the condition that the indexed category is
locally small.
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Constructions on maps

I A homotopy between maps f , g : Hom(A,B) is an element of
IdHom(A,B)(f , g).

I Vertical and horizontal composition of homotopies can be
defined as usual by path induction.

I The type of equivalences can be defined as either the type of
bi-equivalences or half-adjoint equivalences.
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Initial and terminal types

I An indexed type T is terminal if the base type Hom(X ,T ) is
contractible for every indexed type X .

I It is initial if Hom(T ,X ) is contractible for every X .

I It is zero if it is both initial and terminal.
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Pullbacks and pushouts

I A pullback of maps f : Hom(A,C ) and g : Hom(B,C )
consists of an object D, maps π1 : Hom(D,A) and
π2 : Hom(D,B) and a homotopy π3 : f ◦ π1 = g ◦ π2
satisfying the usual universal property.

I All standard properties of pullbacks hold in this setting.

I In particular, various kinds of finite limits can be defined in
terms of pullbacks and terminal objects.

I Pushouts can be defined dually.
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Products

The product of a family of indexed types is defined as follows:

Γ, i : I | · ` Bi

Γ | · `
∏

i :I Bi

Γ, i : I | · ` Bi

Γ, i : I ` πi : Hom(
∏

i :I Bi ,Bi )

Γ | · ` P Γ, i : I ` f : Hom(P,Bi )

Γ ` 〈f 〉i :I : Hom(P,
∏

i :I Bi )

together with homotopies

Γ, i : I ` β(f ) : πi ◦ 〈f 〉i :I = f ,

Γ ` η(g) : 〈πi ◦ g〉i :I = g .
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Strict products

There is a strict version of products:

Γ, i : I | · ` B

Γ | · `
∏

i :I B

Γ, i : I | ∆ ` b : B
, i /∈ FV(∆)

Γ | ∆ ` λi . b :
∏

i :I B

Γ | ∆ ` f :
∏

i :I B Γ ` j : I

Γ | ∆ ` f j : B[j/i ]

(λi . b) j ≡ b[j/i ]

λi . f i ≡ f
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Coproducts

The coproduct of a family of indexed types is defined dually:

Γ, i : I | · ` Bi

Γ | · `
∐

i :I Bi

Γ, i : I | · ` Bi

Γ, i : I ` ini : Hom(Bi ,
∐

i :I Bi )

Γ | · ` C Γ, i : I ` f : Hom(Bi ,C )

Γ ` [f ]i :I : Hom(
∐

i :I Bi ,C )

together with homotopies

Γ, i : I ` β(f ) : [f ]i :I ◦ ini = f ,

Γ ` η(g) : [g ◦ ini ]i :I = g .
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Copowers

Copowers are coproducts of constant families (X · A =
∐

x :X A).
We have the following identities:

⊥ · X ' 0

(I qK J) · X ' I · X qK ·X J · X
> · X ' X

(
∑
i :I

J) · X '
∐
i :I

J · X

(ΣI ) · 1 ' Σ(I · 1)

Sn · 1 ' Sn
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Self-indexing

I Every finitely complete (∞-)category gives rise to an indexed
(∞)-category over itself.

I This can be reformulated as follows: indexed type theory can
be interpreted in (homotopy) type theory.

I Hom-types correspond to function types, products correspond
to Π-types, coproducts correspond to Σ-types.

I This means that indexed type theory is weaker than type
theory.
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Quasicategories

I We can interpret base contexts as Kan complexes and indexed
types over Γ as categorical fibrations E → B together with a
map Γ→ B.

I To prove that this model is Cartesian closed, we need to show
that the exponent of a pair of fibrations in sSet/B is a
fibration, but this is false.

I To fix this, we can replace B with its ”core” before taking the
exponent.

I These ”cores” have several nice properties of Kan complexes:
evevy categorical fibration with such a codomain is Cartesian
fibration and the ”core” functor maps categorical fibrations to
Kan fibrations,

I These facts imply that the theory is Cartesian closed and
locally small.
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Localizations of presheaves

I For every small category J and every nice enough model of
the base theory C, the functor category CJ is a model of the
indexed type theory.

I In particular, we have a model in which base types are
simplicial sets / Kan fibrations and indexed types are
bisimplicial sets / injective fibrations.

I Localization often preserves models.

I In particular, we have a model in which base types are the
same, but indexed types are bisimplicial sets satisfying either
Segal (or Rezk) condition.
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Pointed types

I Suppose that we have zero types and a fixed indexed type S0.

I Then every indexed type A has underlying base type
Hom(S0,A). This type is based with base point S0 → 0→ A.

I Every map of indxed types A and B induces a map of pointed
base types Hom(S0,A) and Hom(S0,B).

I We can add an axiom assering that

Hom(A,B)→ (Hom(S0,A)→∗ Hom(S0,B))

is an equivalence.

I Moreover, we can add an indexed type R(X , ∗) for every
pointed base type (X , ∗) together with a pointed equivalence
between Hom(S0,R(X , ∗)) and (X , ∗).

I This theory is ”complete” in some sense.
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Spectra

I We can also define a theory of spectra.

I We will say that a theory is stable if it has zero types,
pullback and pushout and canonical maps A→ ΩΣA and
ΣΩA→ A are equivalences.

I If S is a fixed indexed type in a stable theory, then, for every
indexed type A, we can define a spectrum
US(A)n = Hom(S ,Σn(A)).

I This is an Ω-spectrum:

Ω(Hom(S ,Σn+1(A))) ' Hom(S ,ΩΣn+1(A) ' Hom(S ,Σn(A)

I Every map between indexed types induces a map of the
underlying spectra.

I We can make this theory ”complete” as before.
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Synthetic higher category theory

I We can use indexed type theory to work with ∞-categories
synthetically.

I We need to add an indexed type ∆1 together with terms
l , r : ∆1 and require that every indexed type is a (complete)
Segal type.

I This is similar to Riehl, Shulman approach, but we can define
the core of an ∞-category.

I Can we make this theory complete?
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Rules

I Indexed dependent type theory is a version of the theory in
which the second level is also dependent. It has the following
judgements:

Γ ` A Γ ` a : A Γ | ∆ ` B Γ | ∆ ` b : B

I We add usual identity types, Σ-types, and unit types to the
second level.

I We add ”Hom-extensionality”, which requires the following
canonical function to be an equivalence:

IdHom(A,B)(f , g)→ Sec(π1 : Hom(Σx :AIdB(f x , g x),A))
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Finite (co)limits

I The pullback of maps f : Hom(A,C ) and g : Hom(B,C ) can
be defined as usual: ∑

x :A

∑
y :B

IdC (f x , g y)

I Hom-extensionality implies that this map is a pullback in the
sense we defined before.

I The unit type is a terminal type.

I We can add the usual type-theoretic definition of the empty
type, coproducts, and pushouts, which will give us
corresponding categorical structures as we defined them
before.
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Dependent products

Dependent products generalize (strict) products.

Γ, i : I | ∆ ` B
, i /∈ FV(∆)

Γ | ∆ `
∏

i :I B

Γ, i : I | ∆ ` b : B
, i /∈ FV(∆)

Γ | ∆ ` λi . b :
∏

i :I B

Γ | ∆ ` f :
∏

i :I B Γ ` j : I

Γ | ∆ ` f j : B[j/i ]

(λi . b) j ≡ b[j/i ]

λi . f i ≡ f



Basic theory (Co)limits Examples Dependent version Initial object theorem

Stable dependent coproducts

Γ, i : I | ∆ ` Bi
, i /∈ FV(∆)

Γ | ∆ `
∐

i :I Bi

Γ ` j : I Γ | ∆ ` b : Bj

Γ | ∆ ` (j , b) :
∐

i :I Bi

Γ | ∆, z :
∐

i :I Bi ` D

Γ, i : I | ∆, x : Bi ` d : D[(i , x)/z ] Γ | ∆ ` e :
∐

i :I Bi

Γ | ∆ `
∐

-elim(z .D, ix .d , e) : D[e/z ]

∐
-elim(z .D, ix .d , (j , b)) ≡ d [j/i , b/x ]
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Dependent coproducts

If we don’t want coproducts to be stable under pullbacks, we need
to modify the rules as follows:

Γ, i : I | · ` Bi
, i /∈ FV(∆)

Γ | ∆ `
∐

i :I Bi

Γ ` j : I Γ | ∆ ` b : Bj

Γ | ∆ ` (j , b) :
∐

i :I Bi

Γ | z :
∐

i :I Bi ` D

Γ, i : I | x : Bi ` d : D[(i , x)/z ] Γ | ∆ ` e :
∐

i :I Bi

Γ | ∆ `
∐

-elim(z .D, ix .d , e) : D[e/z ]

∐
-elim(z .D, ix .d , (j , b)) ≡ d [j/i , b/x ]
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Cohesive type theory

I A cohesive ∞-topos is an ∞-topos E with an adjoint
quadruple of functors between E and sSet (one of which is
Hom(1,−) : E → sSet) satisfying some conditions.

I Shulman proposed a type theory that formalizes this setup.

I We can extend indexed type theory with additional rules
corresponding to functors in the quadruple.

I The left adjoint to Hom(1,−) is given by the copower functor
(− · 1). It is fully faithful if these copowers are disjoint.

I We can formalize the other two functors in a way similar to
Shulman’s theory.
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Linear dependent type theory

I Instead of unary or dependent type theory, we can use linear
type theory at the second level.

I This is useful for theories of pointed types and spectra.

I We can add smash product, linear function types, and wedge
sums with nice computational rules.
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Initial object theorem

I Adjoint functor theorem holds for indexed categories.

I We cannot formulate it in the settings of indexed type theory
because we cannot talk about functors, but we can formulate
and prove its special case:

Theorem
If the base theory has natural numbers, the indexed theory has
small limits, and there is a weakly initial family of indexed types,
then there is an initial indexed type.
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Proof of 1-categorical initial object theorem

I The product W of the weakly initial family is weakly initial.

I Let e : Z →W be the equalizer of all endomaps on W .

I Consider a pair of maps Z ⇒ X . Let E → Z be the equalizer
of these maps and let r be the composite of E → Z and any
map W → E :

Z
e //W //

r

77E // Z

����

e //W
e◦r //
id
//W

X

I Since e equalizes e ◦ r and id and e is a mono, r ◦ e = id.
Since E → Z equalizes the maps Z ⇒ X , it follows that they
are equal.



Basic theory (Co)limits Examples Dependent version Initial object theorem

Proof of ∞-categorical initial object theorem

I Let r ′ : W → Z be any map and assume that r ′ ◦ e is a split
idempotent.

I Let p : Z → 0 and q : 0→ Z be its splitting.

I Consider a pair of maps 0⇒ X .

0
q // Z

e //

p
  

W
r ′ // Z

p
  

e //W
e◦r ′ //
id
//W

0

q

>>

0 //// X

I If we define r as before, we can show that p ◦ r ◦ e = p ◦ r ′ ◦ e.

I Since p ◦ r equalizes the maps Z ⇒ X and p ◦ q = id, it
follows that they are equal.
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Splitting of idempotents

I Lurie showed that idempotents split in any ∞-category with
countable colimits.

I Shulman proved this in HoTT using exponential natural
numbers.

I We can repeat his argument in indexed type theory, but using
the external version of these assumptions:

Theorem
If the base theory has natural numbers and the indexed theory has
finite limits and countable products, then idempotents between
indexed types split.
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Coherence of idempotents

I To split an idempotent h, we need to know it is coherent (i.e.,
there are homotopies I : h ◦ h = h and J : I ∗ h = h ∗ I ).

I The original definition of Z gives us only I

Z =
∑
x :W

∏
f :Hom(W ,W )

f x = x

I To get J, we need to modify the definition of Z :∑
(x :W )

∑
(t:

∏
f :Hom(W ,W ) fx=x)

∏
(f :Hom(W ,W ))

∏
(s:f ◦f=f )

hap(s, x) = ap(f , t f )
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