(Co)limits	Dependent version	Initial object theorem

Indexed Type Theories

Valery Isaev

JetBrains Research, Higher School of Economics

June 16, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Basic theory

(Co)limits

Examples

Dependent version

Initial object theorem

Basic theory (C			Dependent version	Initial object theorem
00000 0	00000	000000	0000000	000000

Motivation

- ► Can we use HoTT to reason about ∞-categories which are not toposes?
- We need Hom-spaces to define certain constructions and properties.
- Even if we have internal Hom-spaces, sometimes the internal version of some construction is too strong.

We might also want to reason about non-elementary constructions such as infinite (co)limits.

Basic theory	(Co)limits	Dependent version	Initial object theorem
00000			

Indexed unary type theory

- An indexed category is a functor $\mathcal{B}^{\mathrm{op}} \to \mathrm{Cat.}$
- Indexed unary type theory has four judgements:

 $\Gamma \vdash A$ $\Gamma \vdash a : A$ $\Gamma \mid \cdot \vdash B$ $\Gamma \mid x : B \vdash b' : B'$

- The first two judgements correspond to the base theory and we can have all ordinary constructions at this level.
- We have the following substitution rules:
 - of base terms in base terms and types
 - of indexed terms in indexed terms
 - of base terms in indexed terms and types

Basic theory	(Co)limits	Dependent version	Initial object theorem
00000			

Local smallness

We will always assume that the following rules are derivable: $\frac{\Gamma \mid \cdot \vdash A \qquad \Gamma \mid \cdot \vdash B}{\Gamma \vdash \operatorname{Hom}(A, B)} \qquad \frac{\Gamma \mid x : A \vdash b : B}{\Gamma \vdash \lambda x. \ b : \operatorname{Hom}(A, B)}$ $\frac{\Gamma \vdash f : \operatorname{Hom}(A, B) \qquad \Gamma \mid \Delta \vdash a : A}{\Gamma \mid \Delta \vdash f a : B}$ $(\lambda x. b) a \equiv b[a/x]$ $\lambda x. \ f x \equiv f$

This corresponds to the condition that the indexed category is locally small.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Basic theory	(Co)limits	Dependent version	Initial object theorem
00000			

Constructions on maps

- A homotopy between maps f, g : Hom(A, B) is an element of Id_{Hom(A,B)}(f,g).
- Vertical and horizontal composition of homotopies can be defined as usual by path induction.
- The type of equivalences can be defined as either the type of bi-equivalences or half-adjoint equivalences.

Basic theory

(Co)limits

Examples

Dependent version

Initial object theorem

	(Co)limits		Dependent version	Initial object theorem
00000	000000	0000000	0000000	000000

Initial and terminal types

An indexed type T is terminal if the base type Hom(X, T) is contractible for every indexed type X.

- ▶ It is *initial* if Hom(*T*, *X*) is contractible for every *X*.
- It is zero if it is both initial and terminal.

Pullbacks and pushouts

- A pullback of maps f : Hom(A, C) and g : Hom(B, C) consists of an object D, maps π₁ : Hom(D, A) and π₂ : Hom(D, B) and a homotopy π₃ : f ∘ π₁ = g ∘ π₂ satisfying the usual universal property.
- All standard properties of pullbacks hold in this setting.
- In particular, various kinds of finite limits can be defined in terms of pullbacks and terminal objects.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pushouts can be defined dually.

	(Co)limits		Dependent version	
00000	0000000	0000000	0000000	000000

Products

The product of a family of indexed types is defined as follows:

$$\frac{\Gamma, i: I \mid \cdot \vdash B_i}{\Gamma \mid \cdot \vdash \prod_{i:I} B_i}$$

$$\frac{\Gamma, i: I \mid \cdot \vdash B_i}{\Gamma, i: I \vdash \pi_i : \operatorname{Hom}(\prod_{i:I} B_i, B_i)}$$

$$\frac{|\Gamma| \cdot \vdash P \quad \Gamma, i: I \vdash f: \operatorname{Hom}(P, B_i)}{|\Gamma| \vdash \langle f \rangle_{i:I}: \operatorname{Hom}(P, \prod_{i:I} B_i)}$$

together with homotopies

$$\Gamma, i: I \vdash \beta(f) : \pi_i \circ \langle f \rangle_{i:I} = f,$$

$$\Gamma \vdash \eta(g) : \langle \pi_i \circ g \rangle_{i:I} = g.$$

うしん 同一人用 イモットモット 白マ

(Co)limits	Dependent version	Initial object theorem
0000000		

Strict products

There is a strict version of products:

$$\frac{\Gamma, i: I \mid \cdot \vdash B}{\Gamma \mid \cdot \vdash \prod_{i:I} B} \qquad \frac{\Gamma, i: I \mid \Delta \vdash b: B}{\Gamma \mid \Delta \vdash \lambda i. b: \prod_{i:I} B}, i \notin FV(\Delta)$$

$$\frac{\Gamma \mid \Delta \vdash f : \prod_{i:I} B \qquad \Gamma \vdash j : I}{\Gamma \mid \Delta \vdash f j : B[j/i]}$$

$$(\lambda i. b) j \equiv b[j/i]$$

 $\lambda i. f i \equiv f$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

(Co)limits 00000●0	Examples 0000000	Dependent version	Initial object theorem

Coproducts

The coproduct of a family of indexed types is defined dually:

$$\frac{\Gamma, i: I \mid \cdot \vdash B_i}{\Gamma \mid \cdot \vdash \coprod_{i:I} B_i}$$

$$\frac{\Gamma, i: I \mid \cdot \vdash B_i}{\Gamma, i: I \vdash \operatorname{in}_i: \operatorname{Hom}(B_i, \coprod_{i:I} B_i)}$$

$$\frac{\Gamma \mid \cdot \vdash C \qquad \Gamma, i: I \vdash f: \operatorname{Hom}(B_i, C)}{\Gamma \vdash [f]_{i:I}: \operatorname{Hom}(\coprod_{i:I} B_i, C)}$$

together with homotopies

$$\Gamma, i: I \vdash \beta(f) : [f]_{i:I} \circ \operatorname{in}_i = f, \\ \Gamma \vdash \eta(g) : [g \circ \operatorname{in}_i]_{i:I} = g$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

(Co)limits 000000●	Examples 0000000	Dependent version	Initial object theorem

Copowers

Copowers are coproducts of constant families $(X \cdot A = \coprod_{x:X} A)$. We have the following identities:

$$\begin{array}{l} \bot \cdot X \simeq 0 \\ (I \amalg_{K} J) \cdot X \simeq I \cdot X \amalg_{K \cdot X} J \cdot X \\ \top \cdot X \simeq X \\ (\sum_{i:I} J) \cdot X \simeq \prod_{i:I} J \cdot X \\ (\Sigma I) \cdot 1 \simeq \Sigma (I \cdot 1) \\ S^{n} \cdot 1 \simeq S^{n} \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Basic theory

(Co)limits

Examples

Dependent version

Initial object theorem

	(Co)limits	Examples	Dependent version	Initial object theorem
00000	000000	000000	0000000	000000

Self-indexing

- ► Every finitely complete (∞-)category gives rise to an indexed (∞)-category over itself.
- This can be reformulated as follows: indexed type theory can be interpreted in (homotopy) type theory.
- Hom-types correspond to function types, products correspond to Π-types, coproducts correspond to Σ-types.

This means that indexed type theory is weaker than type theory.

(Co)limits 0000000	Examples 00●0000	Dependent version	Initial object theorem

Quasicategories

- We can interpret base contexts as Kan complexes and indexed types over Γ as categorical fibrations E → B together with a map Γ → B.
- To prove that this model is Cartesian closed, we need to show that the exponent of a pair of fibrations in sSet/B is a fibration, but this is false.
- To fix this, we can replace B with its "core" before taking the exponent.
- These "cores" have several nice properties of Kan complexes: evevy categorical fibration with such a codomain is Cartesian fibration and the "core" functor maps categorical fibrations to Kan fibrations,
- These facts imply that the theory is Cartesian closed and locally small.

Localizations of presheaves

- For every small category *J* and every nice enough model of the base theory *C*, the functor category *C^J* is a model of the indexed type theory.
- In particular, we have a model in which base types are simplicial sets / Kan fibrations and indexed types are bisimplicial sets / injective fibrations.
- Localization often preserves models.
- In particular, we have a model in which base types are the same, but indexed types are bisimplicial sets satisfying either Segal (or Rezk) condition.

(Co)limits 0000000	Examples 0000●00	Dependent version 0000000	Initial object theorem

Pointed types

- Suppose that we have zero types and a fixed indexed type S^0 .
- Then every indexed type A has underlying base type Hom(S⁰, A). This type is based with base point S⁰ → 0 → A.
- Every map of indxed types A and B induces a map of pointed base types Hom(S⁰, A) and Hom(S⁰, B).
- We can add an axiom assering that

$$\operatorname{Hom}(A, B) \to (\operatorname{Hom}(S^0, A) \to_* \operatorname{Hom}(S^0, B))$$

is an equivalence.

Moreover, we can add an indexed type R(X,*) for every pointed base type (X,*) together with a pointed equivalence between Hom(S⁰, R(X,*)) and (X,*).

うつつ 川 ふかく 山 く 山 く し く

This theory is "complete" in some sense.

	(Co)limits 0000000	Examples 00000●0	Dependent version	Initial object theorem
Spectra				

- We can also define a theory of spectra.
- We will say that a theory is *stable* if it has zero types, pullback and pushout and canonical maps $A \rightarrow \Omega \Sigma A$ and $\Sigma \Omega A \rightarrow A$ are equivalences.
- If S is a fixed indexed type in a stable theory, then, for every indexed type A, we can define a spectrum U_S(A)_n = Hom(S, Σⁿ(A)).
- This is an Ω-spectrum:

 $\Omega(\operatorname{Hom}(S,\Sigma^{n+1}(A))) \simeq \operatorname{Hom}(S,\Omega\Sigma^{n+1}(A) \simeq \operatorname{Hom}(S,\Sigma^n(A)$

- Every map between indexed types induces a map of the underlying spectra.
- ► We can make this theory "complete" as before.

Synthetic higher category theory

- ► We can use indexed type theory to work with ∞-categories synthetically.
- We need to add an indexed type Δ¹ together with terms *I*, *r* : Δ¹ and require that every indexed type is a (complete) Segal type.
- ► This is similar to Riehl, Shulman approach, but we can define the core of an ∞-category.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Can we make this theory complete?

Basic theory

(Co)limits

Examples

Dependent version

Initial object theorem

	(Co)limits 0000000	Examples 0000000	Dependent version	Initial object theorem
Rules				

Indexed dependent type theory is a version of the theory in which the second level is also dependent. It has the following judgements:

 $\Gamma \vdash A$ $\Gamma \vdash a : A$ $\Gamma \mid \Delta \vdash B$ $\Gamma \mid \Delta \vdash b : B$

- We add usual identity types, Σ-types, and unit types to the second level.
- We add "Hom-extensionality", which requires the following canonical function to be an equivalence:

 $\mathrm{Id}_{\mathrm{Hom}(A,B)}(f,g) \to \mathrm{Sec}(\pi_1 : \mathrm{Hom}(\Sigma_{x:A}\mathrm{Id}_B(fx,gx),A))$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Finite (co)limits

The pullback of maps f : Hom(A, C) and g : Hom(B, C) can be defined as usual:

$$\sum_{x:A}\sum_{y:B} \mathrm{Id}_C(fx,gy)$$

- Hom-extensionality implies that this map is a pullback in the sense we defined before.
- The unit type is a terminal type.
- We can add the usual type-theoretic definition of the empty type, coproducts, and pushouts, which will give us corresponding categorical structures as we defined them before.

(Co)limits 0000000	Examples 0000000	Dependent version	Initial object theorem

Dependent products

Dependent products generalize (strict) products.

$$rac{\Gamma, i: I \mid \Delta \vdash B}{\Gamma \mid \Delta \vdash \prod_{i:I} B}$$
, $i \notin \mathrm{FV}(\Delta)$

$$\frac{\Gamma, i: I \mid \Delta \vdash b: B}{\Gamma \mid \Delta \vdash \lambda i. b: \prod_{i:I} B}, i \notin FV(\Delta)$$

$$\frac{\Gamma \mid \Delta \vdash f : \prod_{i:I} B \quad \Gamma \vdash j : I}{\Gamma \mid \Delta \vdash f j : B[j/i]}$$

 $(\lambda i. b) j \equiv b[j/i]$ $\lambda i. f i \equiv f$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

	(Co)limits		Dependent version	Initial object theorem
00000	0000000	0000000	0000000	000000

Stable dependent coproducts

$$\frac{\Gamma, i: I \mid \Delta \vdash B_i}{\Gamma \mid \Delta \vdash \coprod_{i:I} B_i}, i \notin FV(\Delta) \qquad \frac{\Gamma \vdash j: I \quad \Gamma \mid \Delta \vdash b: B_j}{\Gamma \mid \Delta \vdash (j, b): \coprod_{i:I} B_i}$$

$$\frac{\Gamma \mid \Delta, z : \coprod_{i:I} B_i \vdash D}{\Gamma, i : I \mid \Delta, x : B_i \vdash d : D[(i, x)/z] \qquad \Gamma \mid \Delta \vdash e : \coprod_{i:I} B_i}{\Gamma \mid \Delta \vdash \coprod \operatorname{-elim}(z.D, ix.d, e) : D[e/z]}$$

$$\prod -\operatorname{elim}(z.D, ix.d, (j, b)) \equiv d[j/i, b/x]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Basic theory	(Co)limits	Examples	Dependent version	Initial object theorem
00000	0000000	0000000	00000000	000000

Dependent coproducts

If we don't want coproducts to be stable under pullbacks, we need to modify the rules as follows:

$$\frac{\Gamma, i: I \mid \cdot \vdash B_i}{\Gamma \mid \Delta \vdash \coprod_{i:I} B_i}, i \notin FV(\Delta) \qquad \frac{\Gamma \vdash j: I \quad \Gamma \mid \Delta \vdash b: B_j}{\Gamma \mid \Delta \vdash (j, b): \coprod_{i:I} B_i}$$

$$\frac{\Gamma \mid z : \coprod_{i:I} B_i \vdash D}{\Gamma, i : I \mid x : B_i \vdash d : D[(i, x)/z]} \qquad \Gamma \mid \Delta \vdash e : \coprod_{i:I} B_i}{\Gamma \mid \Delta \vdash \coprod -\text{elim}(z.D, ix.d, e) : D[e/z]}$$

 $\prod -\operatorname{elim}(z.D, ix.d, (j, b)) \equiv d[j/i, b/x]$

(Co)limits 0000000	Examples 0000000	Dependent version	Initial object theorem

Cohesive type theory

- A cohesive ∞-topos is an ∞-topos *E* with an adjoint quadruple of functors between *E* and **sSet** (one of which is Hom(1, -) : *E* → **sSet**) satisfying some conditions.
- Shulman proposed a type theory that formalizes this setup.
- We can extend indexed type theory with additional rules corresponding to functors in the quadruple.
- ► The left adjoint to Hom(1, -) is given by the copower functor (- · 1). It is fully faithful if these copowers are disjoint.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We can formalize the other two functors in a way similar to Shulman's theory.

Linear dependent type theory

- Instead of unary or dependent type theory, we can use linear type theory at the second level.
- This is useful for theories of pointed types and spectra.
- We can add smash product, linear function types, and wedge sums with nice computational rules.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Basic theory

(Co)limits

Examples

Dependent version

Initial object theorem

(中) (문) (문) (문) (문)

(Co)limits 0000000	Examples 0000000	Dependent version 00000000	Initial object theorem

Initial object theorem

- Adjoint functor theorem holds for indexed categories.
- We cannot formulate it in the settings of indexed type theory because we cannot talk about functors, but we can formulate and prove its special case:

Theorem

If the base theory has natural numbers, the indexed theory has small limits, and there is a weakly initial family of indexed types, then there is an initial indexed type.

Proof of 1-categorical initial object theorem

- The product W of the weakly initial family is weakly initial.
- Let $e: Z \to W$ be the equalizer of all endomaps on W.
- Consider a pair of maps Z ⇒ X. Let E → Z be the equalizer of these maps and let r be the composite of E → Z and any map W → E:

Since e equalizes e ∘ r and id and e is a mono, r ∘ e = id. Since E → Z equalizes the maps Z ⇒ X, it follows that they are equal.

000000 000000	000000	0000000	000000

Proof of $\infty\text{-}\mathsf{categorical}$ initial object theorem

- Let r': W → Z be any map and assume that r' ∘ e is a split idempotent.
- Let $p: Z \to 0$ and $q: 0 \to Z$ be its splitting.
- Consider a pair of maps $0 \rightrightarrows X$.

- If we define r as before, we can show that $p \circ r \circ e = p \circ r' \circ e$.
- Since p ∘ r equalizes the maps Z ⇒ X and p ∘ q = id, it follows that they are equal.

Splitting of idempotents

- ► Lurie showed that idempotents split in any ∞-category with countable colimits.
- Shulman proved this in HoTT using exponential natural numbers.
- We can repeat his argument in indexed type theory, but using the external version of these assumptions:

Theorem

If the base theory has natural numbers and the indexed theory has finite limits and countable products, then idempotents between indexed types split.

Coherence of idempotents

- ► To split an idempotent h, we need to know it is coherent (i.e., there are homotopies I : h ∘ h = h and J : I * h = h * I).
- The original definition of Z gives us only I

$$Z = \sum_{x:W} \prod_{f:\operatorname{Hom}(W,W)} f x = x$$

► To get *J*, we need to modify the definition of *Z*:

 $\sum_{(x:W)} \sum_{(t:\prod_{f:\mathrm{Hom}(W,W)} fx=x)} \prod_{(f:\mathrm{Hom}(W,W))} \prod_{(s:f\circ f=f)} \mathrm{hap}(s,x) = \mathrm{ap}(f,t\,f)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ