Order Theory and Propositional Resizing in HoTT/UF

Tom de Jong^\dagger

Joint work with Martín Hötzel Escardó[†]

 † University of Birmingham, United Kingdom

HoTTEST Event for Junior Researchers

The Internet

13 January 2022

Introduction I

PhD research

Develop domain theory in constructive and predicative (i.e. without propositional resizing) HoTT/UF.

Domain theory

Domain theory is a branch of order theory with applications in:

- semantics of programming languages;
- topology and algebra;
- higher-type computability.

HoTT/UF

Sophisticated foundation for mathematics that is constructive by default.

Introduction II

Motivating observations

In the Scott model of the programming language PCF in HoTT/UF, the directed complete posets (dcpos) interpreting PCF types are large.

E.g. \mathbb{N} is in \mathcal{U}_0 , but [nat] is in \mathcal{U}_1 .

■ In pointfree topology in HoTT/UF: the locales/frames are large.

Main point of this talk

We show that this largeness is unavoidable in ${\rm HoTT}/{\rm UF}$ unless we assume propositional resizing.

Introduction II

Motivating observations

In the Scott model of the programming language PCF in HoTT/UF, the directed complete posets (dcpos) interpreting PCF types are large.

E.g. \mathbb{N} is in \mathcal{U}_0 , but [nat] is in \mathcal{U}_1 .

■ In pointfree topology in HoTT/UF: the locales/frames are large.

Main point of this talk

We show that this largeness is unavoidable in HoTT/UF unless we assume propositional resizing.

Based on our FSCD'21 paper

de J. and Martín Hötzel Escardó, Predicative Aspects of Order Theory in Univalent Foundations, LIPIcs (195), 2021. doi:10.4230/LIPIcs.FSCD.2021.8

Main result in this talk

Theorem (crude formulation)

Various kinds of nontrivial posets are small in HoTT/UF if and only if propositional resizing holds.

Main result in this talk

Theorem (crude formulation)

Various kinds of nontrivial posets are small in HoTT/UF if and only if propositional resizing holds.

Theorem (Freyd) for comparison

A category with small (co)limits is small if and only if it is a poset.

Main result in this talk

Theorem (crude formulation)

Various kinds of nontrivial posets are small in HoTT/UF if and only if propositional resizing holds.

Items to be made precise

- Propositional resizing
- Various kinds of posets
- Nontrivial
- Small poset

The precise formulation will be a theorem of HoTT/UF. We do not make reference to models.

Tom de Jong (UoB)

Order Theory & Prop. Resizing in HoTT/UF

Propositional resizing

Definition

The type $\Omega_{\mathcal{U}} \coloneqq \sum_{P:\mathcal{U}} \text{is-prop}(P)$ is the type of all propositions in a universe \mathcal{U} .

It's important to notice that $\Omega_{\mathcal{U}}$ lives in the next universe \mathcal{U}^+ .

Definition

A type $X : \mathcal{U}^+$ is *small* if we have $Y : \mathcal{U}$ with $Y \simeq X$.

Propositional resizing

Definition

The type $\Omega_{\mathcal{U}} \coloneqq \sum_{P:\mathcal{U}} \text{is-prop}(P)$ is the type of all propositions in a universe \mathcal{U} .

It's important to notice that $\Omega_{\mathcal{U}}$ lives in the next universe \mathcal{U}^+ .

Definition

A type $X : \mathcal{U}^+$ is *small* if we have $Y : \mathcal{U}$ with $Y \simeq X$.

Definition

The axiom $\Omega_{\mathcal{U}}$ -Resizing asserts that $\Omega_{\mathcal{U}}$ is small.

Open question

Does $\Omega_{\mathcal{U}}\operatorname{-Resizing}$ have a computational interpretation, like univalence in cubical type theory?

Tom de Jong (UoB)

- Vladimir Voevodsky proposed a propositional resizing rule, i.e. instead of having a type in U that is *equivalent* to Ω_U, we postulate Ω_U : U.
- We study propositional resizing axioms so that we can prove theorems about them inside HoTT/UF, rather than metatheorems.
- The rule is not known to be consistent, but the axiom is, because it follows from excluded middle which is validated by the simplicial sets model.

Excluded middle implies $\Omega_{\mathcal{U}}$ -Resizing

Proposition

Excluded middle in \mathcal{U} *implies* $\Omega_{\mathcal{U}}$ *-*Resizing.

Proof.

With excluded middle in \mathcal{U} we have $\Omega_{\mathcal{U}} \simeq \mathbf{2}$.

So in studying $\Omega_{\mathcal{U}}$ -Resizing we *must* work constructively, i.e. without excluded middle.

Weak excluded middle and propositional resizing

Definition

- A proposition P is $\neg \neg$ -*stable* if $\neg \neg P$ implies P.
- The type $\Omega_{\mathcal{U}}^{\neg \neg}$ is the type of all $\neg \neg$ -stable propositions in a universe \mathcal{U} .
- The axiom $\Omega_{\mathcal{U}}^{\neg}$ -Resizing asserts that $\Omega_{\mathcal{U}}^{\neg}$ is small.

Definition

Weak excluded middle holds in a universe \mathcal{U} if for every proposition P in \mathcal{U} either $\neg \neg P$ holds or $\neg P$ does.

Proposition

Weak excluded middle in \mathcal{U} implies $\Omega_{\mathcal{U}}^{\neg \neg}$ -Resizing.

Making the theorem precise

Theorem (crude formulation)

Various kinds of nontrivial posets are small in HoTT/UF if and only if propositional resizing holds.

Items to be made precise

- \checkmark Propositional resizing: $\Omega_{\mathcal{U}}$ -Resizing and $\Omega_{\mathcal{U}}^{\neg \neg}$ -Resizing.
- Various kinds of posets
- Nontrivial
- Small poset

Small-complete posets

Definition

A poset (X, \sqsubseteq) is a *U*-sup-lattice if every family $I \to X$ with $I : \mathcal{U}$ has a supremum in X.

The carrier X and the values of \sqsubseteq are *not* required to be in \mathcal{U} or even in the same universe.

Definition

A poset X is a \mathcal{U} -dcpo if every directed family $I \to X$ with $I : \mathcal{U}$ has a supremum in X.

Examples of \mathcal{U} -sup-lattices

Example

The powerset $\mathcal{P}(X) \coloneqq X \to \Omega_{\mathcal{U}}$ of $X : \mathcal{U}$ is \mathcal{U} -sup-lattice.

• If $I: \mathcal{U}$ and $A_{(-)}: I \to \mathcal{P}(X)$, then its supremum is the subset $x \mapsto \exists_{i:I} A_i(x)$.

• Note:
$$\exists_{i:I} A_i(x) : \mathcal{U}$$
, but $\mathcal{P}(X) : \mathcal{U}^+$.

Example

The type Ω_U is a U-sup-lattice ordered by implication and with suprema given by existential quantification.

Examples of \mathcal{U} -dcpos

Example

For any set $X : \mathcal{U}$, the *lifting* $\mathcal{L}(X) \coloneqq \sum_{P:\Omega_{\mathcal{U}}} (P \to X)$ of X is a \mathcal{U} -dcpo which lives in \mathcal{U}^+ .

- Any element x : X gives an element in $\mathcal{L}(X)$ by taking the proposition P to be 1.
- In general, P is the domain of definition of the partial element.

Examples of \mathcal{U} -dcpos

Example

For any set $X : \mathcal{U}$, the *lifting* $\mathcal{L}(X) \coloneqq \sum_{P:\Omega_{\mathcal{U}}} (P \to X)$ of X is a \mathcal{U} -dcpo which lives in \mathcal{U}^+ .

- Any element x : X gives an element in $\mathcal{L}(X)$ by taking the proposition P to be 1.
- In general, P is the domain of definition of the partial element.

In particular, for the Scott model of PCF:

 $\blacksquare [[nat]] \equiv \mathcal{L}(\mathbb{N}) \text{ is a } \mathcal{U}_0\text{-dcpo in } \mathcal{U}_1.$

 $[[nat \Rightarrow nat]] is the U₀-dcpo of Scott continuous functions from <math>\mathcal{L}(\mathbb{N})$ to $\mathcal{L}(\mathbb{N})$, which lives in U₁ again.

Definition

A poset (X, \sqsubseteq) is $\delta_{\mathcal{U}}$ -complete if for every proposition $P : \mathcal{U}$ and elements $x \sqsubseteq y$, the family

$$\delta_{x,y,P} : \mathbf{1} + P \to X$$
$$\operatorname{inl}(\star) \mapsto x;$$
$$\operatorname{inr}(p) \mapsto y;$$

has a supremum $\bigvee \delta_{x,y,P}$ in X.

Definition

A poset (X, \sqsubseteq) is $\delta_{\mathcal{U}}$ -complete if for every proposition $P : \mathcal{U}$ and elements $x \sqsubseteq y$, the family

$$\delta_{x,y,P} : \mathbf{1} + P \to X$$
$$\operatorname{inl}(\star) \mapsto x;$$
$$\operatorname{inr}(p) \mapsto y;$$

has a supremum $\bigvee \delta_{x,y,P}$ in X.

• With excluded middle in \mathcal{U} , every poset is $\delta_{\mathcal{U}}$ -complete.

Definition

A poset (X, \sqsubseteq) is $\delta_{\mathcal{U}}$ -complete if for every proposition $P : \mathcal{U}$ and elements $x \sqsubseteq y$, the family

$$\delta_{x,y,P} : \mathbf{1} + P \to X$$
$$\operatorname{inl}(\star) \mapsto x;$$
$$\operatorname{inr}(p) \mapsto y;$$

has a supremum $\bigvee \delta_{x,y,P}$ in X.

- With excluded middle in \mathcal{U} , every poset is $\delta_{\mathcal{U}}$ -complete.
- Assuming $x \neq y$, we have $\bigvee \delta_{x,y,P} = x \iff \neg P$, but $P \Rightarrow \bigvee \delta_{x,y,P} = y \Rightarrow \neg \neg P$.

Definition

A poset (X, \sqsubseteq) is $\delta_{\mathcal{U}}$ -complete if for every proposition $P : \mathcal{U}$ and elements $x \sqsubseteq y$, the family

$$\delta_{x,y,P} : \mathbf{1} + P \to X$$
$$\operatorname{inl}(\star) \mapsto x;$$
$$\operatorname{inr}(p) \mapsto y;$$

has a supremum $\bigvee \delta_{x,y,P}$ in X.

- With excluded middle in \mathcal{U} , every poset is $\delta_{\mathcal{U}}$ -complete.
- Assuming $x \neq y$, we have $\bigvee \delta_{x,y,P} = x \iff \neg P$, but $P \Rightarrow \bigvee \delta_{x,y,P} = y \Rightarrow \neg \neg P$.
- If the two-element poset with $0 \sqsubseteq 1$ is $\delta_{\mathcal{U}}$ -complete, then weak excluded middle holds in \mathcal{U} .

Examples of $\delta_{\mathcal{U}}$ -complete posets

 \mathcal{U} -sup-lattices (posets with all \mathcal{U} -suprema) are $\delta_{\mathcal{U}}$ -complete, and so are \mathcal{U} -dcpos and \mathcal{U} -bounded complete posets. (The family $\delta_{x,y,P}$ is bounded and directed when $x \sqsubseteq y$.)

Example

The \mathcal{U} -sup-lattices $\Omega_{\mathcal{U}}$ and $\mathcal{P}(X)$ for $X : \mathcal{U}$ are $\delta_{\mathcal{U}}$ -complete.

Example

The \mathcal{U}_0 -dcpos in the Scott model of PCF are $\delta_{\mathcal{U}_0}$ -complete.

Making the theorem precise

Theorem (crude formulation)

Various kinds of nontrivial posets are small in HoTT/UF if and only if propositional resizing holds.

Items to be made precise

- \checkmark Propositional resizing: $\Omega_{\mathcal{U}}$ -Resizing and $\Omega_{\mathcal{U}}^{\neg \neg}$ -Resizing.
- \checkmark Various kinds of posets: $\delta_{\mathcal{U}}\text{-complete posets}$
- Nontrivial
- Small poset

Nontriviality and positivity

Definition

A poset is *nontrivial* if we have x, y : X with $x \sqsubseteq y$ and $x \ne y$.

Nontriviality and positivity

Definition

A poset is *nontrivial* if we have x, y : X with $x \sqsubseteq y$ and $x \ne y$.

- Nontriviality is very weak, because $x \neq y$ is a negated proposition.
- For $\delta_{\mathcal{U}}$ -complete posets we can do better.

Nontriviality and positivity

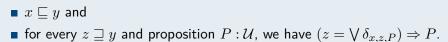
Definition

A poset is *nontrivial* if we have x, y : X with $x \sqsubseteq y$ and $x \ne y$.

- Nontriviality is very weak, because $x \neq y$ is a negated proposition.
- For $\delta_{\mathcal{U}}$ -complete posets we can do better.

Definition

An element x of a $\delta_{\mathcal{U}}$ -complete poset is *strictly below* an element y if



Definition

A $\delta_{\mathcal{U}}$ -complete poset X is *positive* if we have x, y : X such that x is strictly below y.

Examples of nontriviality and positivity

Slogan

Positivity is to nontriviality what inhabitedness is to nonemptiness.

Examples of nontriviality and positivity

Slogan

Positivity is to nontriviality what inhabitedness is to nonemptiness.

Example

In the powerset, $\emptyset \neq A$ if and only if A is a nonempty subset, but \emptyset is strictly below A if and only if A is an inhabited subset.

Example

In the type of propositions, $0 \neq P$ if and only if $\neg \neg P$ holds, but 0 is strictly below P if and only if P holds.

Making the theorem precise

Theorem (crude formulation)

Various kinds of nontrivial posets are small in HoTT/UF if and only if propositional resizing holds.

Items to be made precise

- \checkmark Propositional resizing: $\Omega_{\mathcal{U}}$ -Resizing and $\Omega_{\mathcal{U}}^{\neg \neg}$ -Resizing.
- \checkmark Various kinds of posets: $\delta_{\mathcal{U}}\text{-complete posets}$
- \checkmark Positivity and nontriviality
- Small poset

(Locally) small $\delta_{\mathcal{U}}$ -complete posets

Definition

A $\delta_{\mathcal{U}}$ -complete poset (X, \sqsubseteq) is *locally small* if the truth-value $x \sqsubseteq y$ is small for every x, y : X.

Example

Our running examples Ω_U and $\mathcal{P}(X)$ for $X : \mathcal{U}$ are locally small, as are the large dcpos in the Scott model of PCF.

Definition

A $\delta_{\mathcal{U}}$ -complete poset is *small* if it is locally small and its carrier is small.

Main results

Theorem

There is a small nontrivial $\delta_{\mathcal{U}}$ -complete poset if and only if $\Omega_{\mathcal{U}}^{\neg}$ -Resizing holds.

Theorem

There is a small positive $\delta_{\mathcal{U}}$ -complete poset if and only if $\Omega_{\mathcal{U}}$ -Resizing holds.

Main results

Theorem

There is a small nontrivial $\delta_{\mathcal{U}}$ -complete poset if and only if $\Omega_{\mathcal{U}}^{\neg}$ -Resizing holds.

Theorem

There is a small positive $\delta_{\mathcal{U}}$ -complete poset if and only if $\Omega_{\mathcal{U}}$ -Resizing holds.

Therefore, without resizing, there are no small nontrivial dcpos.

These are theorems of HoTT/UF. We do not make reference to models.

Proof sketch: using retracts

Definition

For a $\delta_{\mathcal{U}}$ -complete poset X with points $x \sqsubseteq y$, we define

$$\Delta_{x,y}: \Omega_{\mathcal{U}} \to X$$
$$P \mapsto \bigvee \delta_{x,y,F}$$

Proof sketch: using retracts

Definition

For a $\delta_{\mathcal{U}}$ -complete poset X with points $x \sqsubseteq y$, we define

$$\Delta_{x,y}: \Omega_{\mathcal{U}} \to X$$
$$P \mapsto \bigvee \delta_{x,y,P}$$

Lemma

A locally small $\delta_{\mathcal{U}}$ -complete poset X with points $x \sqsubseteq y$ is nontrivial if and only if the composite $\Omega_{\mathcal{U}}^{\neg \neg} \hookrightarrow \Omega_{\mathcal{U}} \xrightarrow{\Delta_{x,y}} X$ is a section.

Proof sketch: using retracts

Definition

For a $\delta_{\mathcal{U}}$ -complete poset X with points $x \sqsubseteq y$, we define

$$\Delta_{x,y}: \Omega_{\mathcal{U}} \to X$$
$$P \mapsto \bigvee \delta_{x,y,P}$$

Lemma

A locally small $\delta_{\mathcal{U}}$ -complete poset X with points $x \sqsubseteq y$ is nontrivial if and only if the composite $\Omega_{\mathcal{U}}^{\neg \neg} \hookrightarrow \Omega_{\mathcal{U}} \xrightarrow{\Delta_{x,y}} X$ is a section.

Lemma

A locally small $\delta_{\mathcal{U}}$ -complete poset X with points $x \sqsubseteq y$ is positive if and only if for every $z \sqsupseteq y$, the map $\Omega_{\mathcal{U}} \xrightarrow{\Delta_{x,z}} X$ is a section.

Back to the main results

Lemma

If $s : A \rightarrow B$ is a section and B is a small set, then A is small too.

Theorem

There is a small nontrivial $\delta_{\mathcal{U}}$ -complete poset if and only if $\Omega_{\mathcal{U}}^{\neg}$ -Resizing holds.

Theorem

There is a small positive $\delta_{\mathcal{U}}$ -complete poset if and only if $\Omega_{\mathcal{U}}$ -Resizing holds.

Decidable equality and excluded middle

Lemma

Types with decidable equality are closed under retracts.

Decidable equality and excluded middle

Lemma

Types with decidable equality are closed under retracts.

Constructively and predicatively, (locally small) $\delta_{\mathcal{U}}$ -complete posets cannot have decidable equality and are necessarily large.

Theorem

There is a locally small nontrivial $\delta_{\mathcal{U}}$ -complete poset with decidable equality if and only if weak excluded middle in \mathcal{U} holds.

Theorem

There is a locally small positive $\delta_{\mathcal{U}}$ -complete poset with decidable equality if and only if excluded middle in \mathcal{U} holds.

Conclusion

Take-home message

- Nontrivial/positive sup-lattices, dcpos, bounded-complete posets, etc., can only be small if ꪪ/Ω-resizing is assumed.
- Without propositional resizing, universe level management is necessary. In particular, the dcpos in the Scott model of PCF are necessarily large.
- Nontrivial/positive locally small sup-lattices, dcpos, etc., can only have decidable equality if (weak) excluded middle is assumed.

Conclusion

Take-home message

- Nontrivial/positive sup-lattices, dcpos, bounded-complete posets, etc., can only be small if $\Omega^{\neg \neg}/\Omega$ -resizing is assumed.
- Without propositional resizing, universe level management is necessary. In particular, the dcpos in the Scott model of PCF are necessarily large.
- Nontrivial/positive locally small sup-lattices, dcpos, etc., can only have decidable equality if (weak) excluded middle is assumed.

Further results in our FSCD'21 paper

- Various fixed point theorems crucially rely on propositional resizing.
- Zorn's Lemma implies propositional resizing (but not excluded middle).
- Compare completeness with respect to subsets/families.
- de J. and Martín Hötzel Escardó, Predicative Aspects of Order Theory in Univalent Foundations, LIPIcs (195), 2021. doi:10.4230/LIPIcs.FSCD.2021.8