
Kindergarten Shapes

cube simplex globe

HoTTEST

Semi-Simplicial Types

Astra Kolomatskaia
Joint work with Michael Shulman

Contents

𝛼 Why Are Semi-Simplicial Types Hard?

𝛽 A Proposed Constrution

↰

(involves an extension of type theory)

𝛼
Why Are Semi-Simplicial Types Hard?

Types in Type Theory

Simple type theory:
There is a collection of types; contexts are defined to be lists of types

Dependent type theory:
There are collections of length 𝑛 contexts, along with fundamental projections:

{⋆} = 𝐸0 𝐸1 𝐸2 𝐸3 …𝜕 𝜕 𝜕 𝜕

Type Structures
The previous formulation is fibred, and thus unsuitable for formalisation

We instead work with an indexed equivalent:
codata TyStr where

t y : TyStr → Type
ex : (𝒯 : TyStr) → t y 𝒯 → TyStr

In Agda:
record TyStr ℓ : Type (lsuc ℓ) where

coinductive
field

ty : Type ℓ
ex : ty → TyStr ℓ

Contexts

codata TyStr where
t y : TyStr → Type
ex : (𝒯 : TyStr) → t y 𝒯 → TyStr

From this definition, we are able to recover the type of length 𝑛 contexts:
data Ctx (𝒯 : TyStr) (n : ℕ) where

∅ : Ctx z e r o
⊹ : {n : ℕ}

(Γ : Ctx 𝒯 n) → t y (ex s 𝒯 Γ) → Ctx 𝒯 (suc n)

ex s : (𝒯 : TyStr) {n : ℕ} → Ctx 𝒯 n → TyStr
ex s 𝒯 ∅ = 𝒯
ex s 𝒯 (Γ ⊹ A) = ex (ex s 𝒯 Γ) A

Semi-Simplicial Types
Informally, a semi-simplicial type consists of the following infinite list of data:

𝐴0 ∶ Type
𝐴1 ∶ 𝐴0 → 𝐴0 → Type
𝐴2 ∶ {𝑥 𝑦 𝑧 ∶ 𝐴0} → 𝐴1 𝑥 𝑦 → 𝐴1 𝑥 𝑧 → 𝐴1 𝑦 𝑧 → Type
𝐴3 ∶ {𝑥 𝑦 𝑧 𝑤 ∶ 𝐴0} {𝛼 ∶ 𝐴1 𝑥 𝑦} {𝛽 ∶ 𝐴1 𝑥 𝑧} {𝛾 ∶ 𝐴1 𝑥 𝑤} {𝛿 ∶ 𝐴1 𝑦 𝑧}

{𝜖 ∶ 𝐴1 𝑦 𝑤} {𝜁 ∶ 𝐴1 𝑧 𝑤} → 𝐴2 𝛼 𝛽 𝛿 → 𝐴2 𝛼 𝛾 𝜖 → 𝐴2 𝛽 𝛾 𝜁 → 𝐴2 𝛿 𝜖 𝜁
→ Type

…

𝐴0 is a notion of points, 𝐴1 is a notion of lines, 𝐴2 is a notion of triangles,
𝐴3 is a notion of tetrahedra, etc. – we are defining all of the 𝑛-simplices

Problem Statement

Constructing SSTs is one of the most important open problems in HoTT

The problem is usually posed as constructing a function

SST ∶ ℕ → Type

such that SST 𝑛 is the type of 𝑛-truncated SSTs

Conceptual Refinement 1:
It is better to ask for

SST ∶ TyStr

Problem Statement [cont.]

We can begin defining SST by copattern matching:
SST : TyStr
t y SST =

Type
t y (ex SST A0) =

A0 → A0 → Type
t y (ex (ex SST A0) A1) =

{x y z : A0} → A1 x y → A1 x z → A1 y z → Type
ex (ex (ex SST A0) A1) A2 = ?

We recover the 𝑛-truncated SSTs by taking 𝐶𝑡𝑥 SST 𝑛,
and infinite SSTs may be defined as 𝐶𝑡𝑥∞ SST
Morally, we have passed to an indexed formulation of a problem from a fibred one

The Pattern

To discover the pattern, as observed by Tim Campion, we make all arguments
explicit, and annotate items in the telescopes with binary numbers:

𝐴0 ∶ Type
𝐴1 ∶ (𝑥 ∶ 𝐴0)

1

(𝑦 ∶ 𝐴0)
10

→ Type

𝐴2 ∶ (𝑥 ∶ 𝐴0)
1

(𝑦 ∶ 𝐴0)
10

(𝛼 ∶ 𝐴1 𝑥 𝑦)
11

(𝑧 ∶ 𝐴0)
100

(𝛽 ∶ 𝐴1 𝑥 𝑧)
101

(𝛾 ∶ 𝐴1 𝑦 𝑧)
110

→ Type

𝐴3 ∶ (𝑥 ∶ 𝐴0)
1

(𝑦 ∶ 𝐴0)
10

(𝛼 ∶ 𝐴1 𝑥 𝑦)
11

(𝑧 ∶ 𝐴0)
100

(𝛽 ∶ 𝐴1 𝑥 𝑧)
101

(𝛾 ∶ 𝐴1 𝑦 𝑧)
110

(𝑓0 ∶ 𝐴2 𝑥 𝑦 𝛼 𝑧 𝛽 𝛾)
111

(𝑤 ∶ 𝐴0)
1000

(𝛿 ∶ 𝐴1 𝑥 𝑤)
1001

(𝜖 ∶ 𝐴1 𝑦 𝑤)
1010

(𝑓1 ∶ 𝐴2 𝑥 𝑦 𝛼 𝑤 𝛿 𝜖)
1011

(𝜁 ∶ 𝐴1 𝑧 𝑤)
1100

(𝑓2 ∶ 𝐴2 𝑥 𝑧 𝛽 𝑤 𝛿 𝜁)
1101

(𝑓3 ∶ 𝐴2 𝑦 𝑧 𝛾 𝑤 𝜖 𝜁)
1110

→ Type

The Pattern [cont.]

The type of each 𝐴𝑛 is a telescope of items mapping to Type
▶ Each item has type 𝐴𝑚 … with zero or more variables applied
▶ The variable applications are unique and appear in increasing order
▶ Each item is indexed by a binary number, ranging from 1 to 1 … 10

𝑛 ones

Given an item indexed by binary number 𝑏, we have to answer two questions:

(a) Which 𝐴𝑚 appears in its type?
(b) Which variables are applied to this 𝐴𝑚?

The Pattern [cont.]

We start with some item, indexed by a binary number 𝑏:

(a) Which 𝐴𝑚 appears in its type?
The dimension of a binary number is one less than the number of 1s that it has
e.g. 1101 has dimension 2
A dimension 𝑚 item uses 𝐴𝑚

(b) Which variables are applied to this 𝐴𝑚?
One binary number is a subset of another, if, when aligned to the right, the 1s
digits of the first lie in a subset of the position of the 1s digits of the second
e.g. the non-zero proper subsets of 1101 are 1, 100, 101, 1000, 1001, 1100
The variables applied to 𝐴𝑚 are indexed by the non-zero proper subsets of 𝑏

Dependency Lists

For each item, we need to say yes or no to depending on the previous items
We also need to know the dimension of the item

To each 𝑛 we associated a dimension labelled dependency list
These will be linearised directed acyclic graphs with ℕ-valued vertex labels

Here is the labelled dependency list of a 2-simplex:

0 0
1

0
1 1

Properties of the Binary Ordering

In Agda, I have constructed a family of labelled dependency lists corresponding to
the pattern seen in the binary ordering of SSTs
Moreover, I have proven the following three properties of this data:

(a) Dimension Boundedness: All items in the labelled dependency list of an
𝑛-simplex have dimension strictly less than 𝑛

(b) Transitivity : If an item depends on some other item, then it also depends on
all of its dependencies

(c) The Shape Property : If you take an item of dimension 𝑛 in some labelled
dependency list and prune the items preceding it by discarding all items on
which it does not depend, then the resulting labelled dependency list is
precisely equal to that of the dependencies of an 𝑛-simplex

Simple Inverse Categories

In general, given any ℕ indexed family of labelled dependency lists, we can
construct untyped syntactic expressions 𝐴1, 𝐴2, 𝐴3, etc.

One asks: When will these expressions be well-typed?
The answer is: Exactly when the above three properties hold!

Such data presents a Simple Inverse Category

In the case of semi-simplicial types, we have completely scientifically qualified the
nature of the pattern that is apparent when first encountering the problem
However, does this solve the problem of constructing semi-simplicial types?

The Typing Puzzle

I have formalised untyped syntax, typing derivations, and the construction of
untyped expressions from families of labelled dependency lists

Audience Challenge: Prove, in Cubical Agda, that any simple inverse
category results in well-typed syntactic expressions, hence constructing
semi-simplicial types “externally”
On GitHub: The result of ∼35h of formalisation work setting up this puzzle

The main difficulty was proving things about the binary ordering
Conversations with Emily Riehl prompted formalising the binary ordering
Conversations with Ophelia Bauckholt prompted exploring typing
Reed Mullanix helped me with the formalisation for ∼6h

Infinite Coherence Issues

Well-typedness derivations are terms of some inductive datatype
If we could construct a function from derivations to Type, we would be done

Issue: HoTT can’t eat itself! (as far as we know…)

In the course of constructing such a function, one requires a coherence
In the course of proving the coherence, one requires a higher coherence
This continues…

𝛽
A Proposed Construction

Dependent Semi-Simplicial Types

We think of a semi-simplicial type 𝐴 as the following infinite list of data:
𝐴0 ∶ Type
𝐴1 ∶ 𝐴0 → 𝐴0 → Type
𝐴2 ∶ {𝑥 𝑦 𝑧 ∶ 𝐴0} → 𝐴1 𝑥 𝑦 → 𝐴1 𝑥 𝑧 → 𝐴1 𝑦 𝑧 → Type
…

Conceptual Refinement 2:
We instead seek to construct SST ∶ TyStr such that each 𝐴 ∶ ty SST is an
(infinite) semi-simplicial type

Dependent Semi-Simplicial Types [cont.]

Suppose that we have that 𝐴 ∶ ty SST represents a semi-simplicial type
What does 𝐵 ∶ ty (ex SST 𝐴) represent?

We think of a dependent semi-simplicial type 𝐵 over 𝐴 as the following infinite
list of data:

𝐵0 ∶ 𝐴0 → Type
𝐵1 ∶ {𝑥 𝑦 ∶ 𝐴0} → 𝐴1 𝑥 𝑦 → 𝐵0 𝑥 → 𝐵0 𝑦 → Type
𝐵2 ∶ {𝑥 𝑦 𝑧 ∶ 𝐴0} {𝛼 ∶ 𝐴1 𝑥 𝑦} {𝛽 ∶ 𝐴1 𝑥 𝑧} {𝛾 ∶ 𝐴1 𝑦 𝑧}

{𝑥′ ∶ 𝐵0 𝑥} {𝑦′ ∶ 𝐵0 𝑦} {𝑧′ ∶ 𝐵0 𝑧} → 𝐴2 𝛼 𝛽 𝛾
→ 𝐵1 𝛼 𝑥′ 𝑦′ → 𝐵1 𝛽 𝑥′ 𝑧′ → 𝐵1 𝛾 𝑦′ 𝑧′ → Type

…

Dependent Semi-Simplicial Types [cont.]

Similarly, we identify 𝐶 ∶ ty (ex (ex SST 𝐴) 𝐵) with the data:
𝐶0 ∶ {𝑥 ∶ 𝐴0} → 𝐵0 𝑥 → Type
𝐶1 ∶ {𝑥 𝑦 ∶ 𝐴0} {𝛼 ∶ 𝐴1 𝑥 𝑦} {𝑥′ ∶ 𝐵0 𝑥} {𝑦′ ∶ 𝐵0 𝑦}

→ 𝐵1 𝛼 𝑥′ 𝑦′ → 𝐶0 𝑥′ → 𝐶0 𝑦′ → Type
…

A dependent 𝑛-simplex in 𝐵 is indexed by a filled in dependent 𝑛-simplex in 𝐴, as
well as a lift of its boundary to 𝐵

A doubly dependent 𝑛-simplex in 𝐶 is indexed by a filled in dependent 𝑛-simplex
in 𝐵, as well as a lift of its boundary to 𝐶

etc.

SSTs are a Dependent Type Theory

By dependent type theories, I mean B-systems

B-systems have: weakening, elements, shifts (substitution), and zero-variables
This data is subject to nine axioms

On paper, we can show that the TyStr SST described above can be extended to
the full structure of a B-system

Key Observation: To construct SSTs, you need to work in greater generality!

Generalised Induction

Consider the type of type streams:
codata TyStream where

head : TyStream → Type
t a i l : TyStream → TyStream

Note that type streams have an appropriate notion of morphisms (ladder rungs)

𝐴0 𝐴1 𝐴2 𝐴3

𝐵0 𝐵1 𝐵2 𝐵3

𝑓0 𝑓1 𝑓2 𝑓3

…

…

Generalised Induction [cont.]

What would it mean to inductively define Foo ∶ TyStream?
data Foo : TyStream where

Z : head Foo
S : Foo → t a i l Foo

This definition is written in the internal logic of type streams
In this case S ∶ Foo → tail Foo is a morphism of type streams

Z ∶ head Foo, and S allows us to promote terms down the stream
Morally, Foo should be equivalent to a stream of units
This kind of inductive declaration makes sense

Defining SSTs

Recall that we have:
codata TyStr where

t y : TyStr → Type
ex : (𝒯 : TyStr) → t y 𝒯 → TyStr

We are now able to give a preliminary definition of semi-simplicial types:
codata SST : TyStr where

Z : SST → Type
S : (X : SST) → Z X → ex SST X

This is a TyStr-valued coinductive definition in the internal language of TyStr

Intuition for the Definition

Given any (possibly dependent) SST 𝐴, Z 𝐴 gives the 0-simplices of 𝐴

If 𝑥 ∶ Z 𝐴 is a 0-simplex, S 𝐴 𝑥 is the slice of 𝐴 over 𝑥

The simplices of the slice are mapping objects

Z 𝐴

𝑥

Z (S 𝐴 𝑥)

𝑥

𝑦

𝛼

Z (S (S 𝐴 𝑥) (𝑦, 𝛼))

𝑥

𝑦

𝛼 𝑧𝑓0

𝛽

𝛾

The number of new data in successive slices goes up by a factor of two

The Z Projection

We have that Z ∶ SST → Type
This should be a morphism of TyStrs, so we need to interpret Type as a TyStr

We construct the universe as follows:
𝒰 ’ : Type → TyStr
t y (𝒰 ’ A) = A → Type
ex (𝒰 ’ A) B = 𝒰 ’ (Σ A B)

𝒰 : TyStr
t y 𝒰 = Type
ex 𝒰 A = 𝒰 ’ A

Dependent Type Structures

A morphism 𝒯 → 𝒰 is equivalent to a dependent type structure over 𝒯

We can define this data as follows:
codata TyStrd (𝒯 : TyStr) where

t y d : TyStrd 𝒯 → t y 𝒯 → Type
exd : (𝒮 : TyStrd 𝒯) (A : t y 𝒯) → t y d 𝒮 A

→ TyStrd (ex 𝒯 A)

We will work under the assumption that Z ∶ TyStrd SST

The S Projection

We have that S ∶ (𝑋 ∶ SST) → Z 𝑋 → ex SST 𝑋

This should be a morphism of dependent type structures over SST

We thus need to define EX 𝒯 ∶ TyStrd 𝒯

In general, suppose that we have Γ = 𝐴 ← 𝐵 ← 𝐶 ← 𝐷 ∶ Ctx 𝒯 4

To define 𝒮 ∶ TyStrd 𝒯, we have to specify the Γ-indexed dependent contexts
Thus we must give meaning to Γ′ = 𝐴′ ⇐ 𝐵′ ⇐ 𝐶′ ⇐ 𝐷′ ∶ Ctxd 𝒮 Γ

The EX Diagram
In order to define EX 𝒯, we need 𝒯 ∶ TyStr to be equipped with weakening

The meaning of Γ′ = 𝐴′ ⇐ 𝐵′ ⇐ 𝐶′ ⇐ 𝐷′ ∶ Ctxd (EX 𝒯) Γ is:

𝐴

𝐵

𝐶

𝐷

𝐴′

𝑊𝐴′𝐵

𝑊𝐴′𝐶

𝑊𝐴′𝐷

𝐵′

𝑊𝐵′𝑊𝐴′𝐶

𝑊𝐵′𝑊𝐴′𝐷

𝐶′

𝑊𝐶′𝑊𝐵′𝑊𝐴′𝐷 𝐷′

Simplex Extraction

Suppose that we have 𝒯 ∶ TyStr, equipped with a 𝒲 ∶ WkStr 𝒯

A ZS-structure on (𝒯, 𝒲) consists of Z ∶ TyStrd 𝒯, and S, a morphism of
TyStrds over 𝒯 from Z to EX 𝒯

S induces, in particular, maps Ctxd Z Γ → Ctxd (EX 𝒯) Γ

With this data, every 𝐴 ∶ ty 𝒯 becomes an (infinite) SST
Similarly, every 𝐵 ∶ ty (ex 𝒯 𝐴) becomes a dependent SST

How do we extract 𝐴0, 𝐴1, 𝐴2, etc. from 𝐴?

Simplex Extraction [cont.]

We start with 𝐴 ∶ ty 𝒯, this gives us Γ0 = ∅ ⊹ 𝐴 ∶ Ctx 𝒯 1

The type 𝐴0 of 0-simplices is given as tyd Z 𝐴 ∶ Type
If we choose 𝑥 ∶ tyd Z 𝐴, then we obtain a Z-section ∅ ⊹ 𝑥 ∶ Ctxd Z Γ0

Applying S to this Z-section turns it into ∅ ⊹ S 𝑥 ∶ Ctxd (EX 𝒯) Γ0

By the EX-diagram, this EX-section defines Γ1 = ∅ ⊹ 𝐴 ⊹ S 𝑥 ∶ Ctx 𝒯 2

Next we form a Z-section of this context: ∅ ⊹ 𝑦 ⊹ 𝛼 ∶ Ctxd Z Γ1

Note that 𝑦 ∶ tyd Z 𝐴, so it’s a 0-simplex as well
𝛼 ∶ tyd (exd Z 𝐴 𝑦) (S 𝑥) has the type of 1-simplices with boundary 𝑥 and 𝑦

Simplex Extraction [cont.]

Next, we apply S to ∅ ⊹ 𝑦 ⊹ 𝛼 to get ∅ ⊹ S 𝑦 ⊹ S 𝛼 ∶ Ctxd (EX 𝒯) Γ1

By the EX-diagram, we get Γ2 = ∅ ⊹ 𝐴 ⊹ S 𝑦 ⊹ 𝑊S 𝑦 (S 𝑥) ⊹ S 𝛼 ∶ Ctx 𝒯 4

We Z-section again via ∅ ⊹ 𝑧 ⊹ 𝛽 ⊹ 𝛾 ⊹ 𝑓0 ∶ Ctxd Z Γ2

We have that 𝑧 ∶ tyd Z 𝐴 and 𝛽 ∶ tyd (exd Z 𝐴 𝑧) (S 𝑦)

So 𝑧 is a 0-simplex, and 𝛽 is a 1-simplex joining 𝑦 to 𝑧

We have that:

𝑓0 ∶ tyd (exd (exd (exd Z 𝐴 𝑧) (S 𝑦) 𝛽) (𝑊S 𝑦 (S 𝑥)) 𝛾) (S 𝛼)

Then 𝑓0 has the type of 2-simplicies with boundary 𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾

Simplex Extraction [cont.]

We previously sectioned Γ2 = ∅ ⊹ 𝐴 ⊹ S 𝑦 ⊹ 𝑊S 𝑦 (S 𝑥) ⊹ S 𝛼

Then, in ∅ ⊹ 𝑧 ⊹ 𝛽 ⊹ 𝛾 ⊹ 𝑓0 ∶ Ctxd Z Γ2, we have:

𝛾 ∶ tyd (exd (exd Z 𝐴 𝑧) (S 𝑦) 𝛽) (𝑊S 𝑦 (S 𝑥))

This ought to be a 1-simplex joining 𝑥 to 𝑧, i.e. of type tyd (exd Z 𝐴 𝑧) (S 𝑥)

The type that we see falsely suggests that 𝛾 depends on 𝑦 and 𝛽

Morally, the weakening should cancel the extension
This would follow if Z preserved weakening
In the category of TyStrs with weakening, morphisms should preserve weakening

Status Report

In present-day Agda, the universal property constructs unreduced simplex types
With rewriting, we can see that if Z and S preserve weakening definitionally, then
we extract the correct reduced simplex types
We are working on a type theory which lets us work with TyStrs with weakening
Further, in any example of universal property data in which preservation is
definitional, we can construct the corresponding SSTs in present-day Agda

In particular, we are able to construct the singular semi-simplicial types

Singular SSTs

Given a type 𝑋, we think of 𝑋 as a space
A space has points, lines, triangles, etc.
The corresponding SST is called Sing 𝑋

How do we use our universal property to construct this?

Singular SSTs [cont.]

We are going to construct singular SSTs from some type structure 𝒯

It turns out that we have to suitably generalise by taking 𝒯 = 𝒰

This has a standard weakening structure (we’re weakening types)

Z is defined to be the tautological dependent type structure on 𝒰

Suppose that Γ = ∅ ⊹ 𝐴 ⊹ 𝐵 ⊹ 𝐶 ∶ Ctx 𝒰 3

Then ∅ ⊹ 𝑥 ⊹ 𝑦 ⊹ 𝑧 ∶ Ctxd Z Γ consists of 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 𝑥, and 𝑧 ∶ 𝐶 (𝑥, 𝑦)

S is defined such that for 𝑥 ∶ 𝐴, we have S 𝑥 = 𝜆 𝑦. 𝑥 ≡ 𝑦

For the higher cases, we use cleverness involving cubical dependent path types

Singular SSTs [cont.]

Z’ : {X : Type ℓ} → X → ZStr (𝒰’ X) ℓ
tyz (Z’ x) A = A x
exz (Z’ x) a = Z’ (x , a)

Z : ZStr (𝒰 ℓ) ℓ
tyz Z A = A
exz Z a = Z’ a

S’ : {X Y : Type ℓ} (f : X → Y) (y : Y) (p : (x : X) → y ≡ f x) →
SStr (replace f) (Z’ y) (𝒲-𝒰’ X)

f uns (S’ f y p) {A} a0 = 𝜆 {(x , a1) → PathP (𝜆 i → A (p x i)) a0 a1}
ups (S’ f y p) {A} a =

S’ (𝜆 x → f (fst (fst x)) , snd (fst x)) (y , a)
(𝜆 x i → p (fst (fst x)) i , snd x i)

S : SStr (idTyMor (𝒰 ℓ)) Z 𝒲-𝒰
f uns S a0 a1 = a0 ≡ a1
ups S a = S’ fst a snd

Singular SSTs [cont.]

Applying the simplex extraction algorithm in Agda yields the following output:

𝑥 ∶ 𝑋 𝑤 ∶ 𝑋
𝑦 ∶ 𝑋 𝛿 ∶ 𝑧 ≡ 𝑤
𝛼 ∶ 𝑥 ≡ 𝑦 𝜖 ∶ 𝑦 ≡ 𝑤
𝑧 ∶ 𝑋 𝑓1 ∶ PathP (𝜆 𝑖 → 𝑦 ≡ 𝛿 𝑖) 𝛽 𝜖
𝛽 ∶ 𝑦 ≡ 𝑧 𝜁 ∶ 𝑥 ≡ 𝑤
𝛾 ∶ 𝑥 ≡ 𝑧 𝑓2 ∶ PathP (𝜆 𝑖 → 𝑦 ≡ 𝛿 𝑖) 𝛾 𝜁
𝑓0 ∶ PathP (𝜆 𝑖 → 𝑥 ≡ 𝛽 𝑖) 𝛼 𝛾 𝑓3 ∶ PathP (𝜆 𝑖 → 𝑦 ≡ 𝜖 𝑖) 𝛼 𝜁

Δ0 ∶ PathP (𝜆 𝑖 → PathP (𝜆 𝑗 → 𝑥 ≡ 𝑓1 𝑖 𝑗) 𝛼 (𝑓2 𝑖)) 𝑓0 𝑓3

Summary

𝛼
We can codify the pattern in SSTs via a simple inverse category
Audience Puzzle: show that this leads to externally well-typed expressions
However, it seems that these cannot be internalised

𝛽
When working with TyStrs with weakening, SST acquires a universal property
We can express this in terms of non-Type-valued coinduction
This universal property lets us construct singular semi-simplicial types
The type theory that lets us do this in generality is under construction

Thank you for listening to my talk!

A research writeup and associated code may be found at:
https://github.com/FrozenWinters/SSTs

