Calculating a Brunerie Number

Axel Ljungström

October 20, 2022
In his PhD thesis, Brunerie constructed a number n s.t.
\[\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z} \]

He then proved that $n = \pm 2$, thereby also showing that $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$.

Proving that $n = \pm 2$ should not be necessary – everything is constructive, so we should be able to simply compute n by plugging it into our favourite proof assistant.

But n is still constructively defined. Maybe if we unfold its definition enough, we should be able to deduce $n = \pm 2$ by simply staring at it.

In this talk, I will present such a proof.
• In his PhD thesis, Brunerie constructed a number n s.t.
 $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/n\mathbb{Z}$

• He then proved that $n = \pm 2$, thereby also showing that
 $\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z}$
Introduction

• In his PhD thesis, Brunerie constructed a number n s.t. $\pi_4(S^3) \cong \mathbb{Z}/n\mathbb{Z}$

• He then proved that $n = \pm 2$, thereby also showing that $\pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z}$

• Proving that $n = \pm 2$ should not be necessary – everything is constructive, so we should be able to simply compute n by plugging it into our favourite proof assistant
In his PhD thesis, Brunerie constructed a number n s.t. $\pi_4(S^3) \cong \mathbb{Z}/n\mathbb{Z}$

He then proved that $n = \pm 2$, thereby also showing that $\pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z}$

Proving that $n = \pm 2$ should not be necessary – everything is constructive, so we should be able to simply compute n by plugging it into our favourite proof assistant

Not that easy...
In his PhD thesis, Brunerie constructed a number \(n \) s.t.
\[
\pi_4(S^3) \cong \mathbb{Z}/n\mathbb{Z}
\]
He then proved that \(n = \pm 2 \), thereby also showing that
\[
\pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z}
\]
Proving that \(n = \pm 2 \) should not be necessary – everything is constructive, so we should be able to simply compute \(n \) by plugging it into our favourite proof assistant.

Not that easy...

But \(n \) is still constructively defined. Maybe if we unfold its definition enough, we should be able to deduce \(n = \pm 2 \) by simply staring at it.
In his PhD thesis, Brunerie constructed a number n s.t.
\[\pi_4(S^3) \cong \mathbb{Z}/n\mathbb{Z} \]
He then proved that $n = \pm 2$, thereby also showing that
\[\pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z} \]
Proving that $n = \pm 2$ should not be necessary – everything is constructive, so we should be able to simply compute n by plugging it into our favourite proof assistant.
Not that easy...
But n is still constructively defined. Maybe if we unfold its definition enough, we should be able to deduce $n = \pm 2$ by simply staring at it.
In this talk, I will present such a proof
Definition 1 (Suspensions)
The suspension of a type A, denoted ΣA, is given by the following HIT

- north, south : ΣA
- merid : $A \rightarrow$ north $=$ south
Definition 2 (The circle)

We define the circle S^1 by the HIT

- base : S^1
- loop : base $= \text{base}$

Definition 3 (Spheres)

For $n \geq 1$, we define the n-sphere by $(n - 1)$-fold suspension of S^1, i.e.

$$S^n := \Sigma^{n-1} S^1$$
Suspension maps

For a pointed type A, there is a canonical map

$$\sigma : A \to \Omega(\Sigma A)$$

where $\Omega(\Sigma A) := \{(\text{north} = \text{north})\}$

given by

$$\sigma(a) = \text{merid}(a) \cdot \text{merid}(\ast_A)^{-1}$$

In particular, when $A = S^n$, we get

$$\sigma : S^n \to \Omega S^{n+1}$$
Definition 4 (Joins)

The join of two types A and B, denoted $A \ast B$, is given by

- $\text{inl} : A \rightarrow A \ast B$
- $\text{inr} : B \rightarrow A \ast B$
- $\text{push} : ((a, b) : A \times B) \rightarrow \text{inl}(a) = \text{inr}(b)$
Joins

- There is a very useful way to construct maps $A \ast B \to C$ out of maps $A \times B \to \Omega C$.

Definition 5

Let $f : A \times B \to \Omega C$. Define $\iota_f : A \ast B \to C$ by

$$
\iota_f(\text{inl}(a)) = \star C
$$

$$
\iota_f(\text{inr}(b)) = \star C
$$

$$
\text{ap}_{\iota_f}(\text{push}(a, b)) = f(a, b)
$$

- We note that functions $f, g : A \times B \to \Omega C$ can be ‘composed’:

$$
(f \cdot g)(a, b) = f(a, b) \cdot g(a, b)
$$

- Q: is there a way of saying that ι is a ‘homomorphism’ i.e.

$$
\iota_{f \cdot g} = \iota_f + \iota_g?
$$
An ad hoc construction

- A: yes, if A and B are reasonable.
- Recall, $\pi_n(A) := \|S^n \to \ast A\|_0$

Definition 6
For a pointed type A, define $\pi_{n+m+1}^*(A) = \|S^n \ast S^m \to \ast A\|_0$
An ad hoc construction

- A: yes, if A and B are reasonable.
- Recall, $\pi_n(A) := \|\mathbb{S}^n \to \ast A\|_0$

Definition 6
For a pointed type A, define $\pi^{*}_{n+m+1}(A) = \|\mathbb{S}^n \ast \mathbb{S}^m \to \ast A\|_0$

Theorem 7
There is a group structure on $\pi^{*}_{n+m+1}(A)$ such that
- $\pi^{*}_{n+m+1}(A) \simeq \pi_{n+m+1}(A)$
- For $f, g : \mathbb{S}^n \times \mathbb{S}^m \to \Omega A$, we have $\iota_{f \cdot g} = \iota_f + \iota_g$
An ad hoc construction

• A: yes, if A and B are reasonable.

• Recall, $\pi_n(A) := \| S^n \to * A \|_0$

Definition 6
For a pointed type A, define $\pi^*_{n+m+1}(A) = \| S^n \ast S^m \to * A \|_0$

Theorem 7
There is a group structure on $\pi^*_{n+m+1}(A)$ such that

• $\pi^*_{n+m+1}(A) \cong \pi_{n+m+1}(A)$

• For $f, g : S^n \times S^m \to \Omega A$, we have $\imath_{f \cdot g} = \imath_f + \imath_g$

• Disclaimer: Formalisation only for $n = m = 1$ and A 1-connected. (only case we’ll use)
Here is a particularly important example of the ι-construction.

There is a canonical map $\iota : S^1 \times S^1 \to S^2$.

Composing it with σ gives us $(\sigma \circ \iota) : S^1 \times S^1 \to \Omega S^3$

Define $F = \iota(\sigma \circ \iota) : S^1 \ast S^1 \to S^3$

Proposition 8

F is an equivalence, and $(_ \circ F^{-1}) : \pi_3^*(A) \cong \pi_3(A)$
The Hopf Map and the Brunerie Map

• Define \(h, \beta : S^1 \times S^1 \to \Omega S^2 \) by

\[
\begin{align*}
 h(x, y) &= \sigma(y - x) \\
 \beta(x, y) &= \sigma(y) \cdot \sigma(x)
\end{align*}
\]

• Above, the subtraction comes from the group structure on \(S^1 \)
The Hopf Map and the Brunerie Map

• Define $h, \beta : S^1 \times S^1 \to \Omega S^2$ by

$$h(x, y) = \sigma(y - x)$$
$$\beta(x, y) = \sigma(y) \cdot \sigma(x)$$

• Above, the subtraction comes from the group structure on S^1
• The induced maps $\iota_h, \iota_\beta : S^1 \ast S^1 \to S^2$ are called the Hopf map and the Brunerie Map respectively.
Brunerie’s First Theorem

- By precomposition with $F^{-1} : S^3 \to S^2$, we get two corresponding elements $\hat{i}_h, \hat{i}_\beta : \pi_3(S^2)$.
Brunerie’s First Theorem

• By precomposition with $F^{-1} : S^3 \to S^2$, we get two corresponding elements $\hat{i}_h, \hat{i}_\beta : \pi_3(S^2)$.

• **Fact:** $\pi_3(S^2) \cong \mathbb{Z}$ and is generated by \hat{i}_h.
Brunerie’s First Theorem

- By precomposition with \(F^{-1} : S^3 \rightarrow S^2 \), we get two corresponding elements \(\hat{i}_h, \hat{i}_\beta : \pi_3(S^2) \).

- **Fact:** \(\pi_3(S^2) \cong \mathbb{Z} \) and is generated by \(\hat{i}_h \).

Theorem 9 (Brunerie 16)

\[\pi_4(S^3) \cong \mathbb{Z} / n\mathbb{Z} \] where \(n \) is the integer s.t.

\[n \cdot \hat{i}_h = \hat{i}_\beta \]
Brunerie’s First Theorem

• By precomposition with $\mathcal{F}^{-1} : \mathbb{S}^3 \to \mathbb{S}^2$, we get two corresponding elements $\hat{\iota}_h, \hat{\iota}_\beta : \pi_3(\mathbb{S}^2)$.

• **Fact:** $\pi_3(\mathbb{S}^2) \cong \mathbb{Z}$ and is generated by $\hat{\iota}_h$.

Theorem 9 (Brunerie 16)

$\pi_4(\mathbb{S}^3) \cong \mathbb{Z} / n\mathbb{Z}$ where n is the integer s.t.

$$n \cdot \hat{\iota}_h = \hat{\iota}_\beta$$

• We will attempt to solve this equation directly. I claim that $n = -2$ is the solution.
Proof sketch

• In order to show that $n = -2$, we would like to show that

$$\hat{\iota}_h + \hat{\iota}_h = -\hat{\iota}_\beta$$

i.e.

$$(\iota_h \circ \mathcal{F}^{-1}) + (\iota_h \circ \mathcal{F}^{-1}) = - (\iota_\beta \circ \mathcal{F}^{-1})$$

• With our π_3^* construction, the above can be rewritten to something much nicer:

$$(\iota_h + \iota_h) \circ \mathcal{F}^{-1} = (\iota_\beta) \circ \mathcal{F}^{-1}$$
Proof sketch

- Idea for the rest of the proof: keep rewriting the above equation by passing it through the sequence of isomorphisms

\[\pi_3(S^2) \xrightarrow{\circ F} \pi_3^*(S^2) \xrightarrow{(\iota h \circ -)^{-1}} \pi_3^*(S^1 \ast S^1) \xrightarrow{F \circ} \pi_3^*(S^3) \]

- When we reach \(\pi_3^*(S^2) \), the equation will have turned into something cute!
Applying the highlighted isomorphism above reduces our old equation (in $\pi_3(S^2)$)

$$(\iota_h + \iota_h) \circ \mathcal{F}^{-1} = (-\iota_\beta) \circ \mathcal{F}^{-1}$$

to the following equation in $\pi_3^*(S^2)$

$$\iota_h + \iota_h = -\iota_\beta$$
Step 2

\[\pi_3(S^2) \xrightarrow{\circ F} \pi_3(S^2) \xrightarrow{(\iota_h \circ _)^{-1}} \pi_3(S^1 \ast S^1) \xrightarrow{F \circ} \pi_3(S^3) \]

- We would like to rewrite our equation to an equation in \(\pi_3^*(S^1 \ast S^1) \) via the highlighted isomorphism.
- To this end, we construct two maps in \(f, g : S^1 \ast S^1 \rightarrow S^1 \ast S^1 \) s.t.
 \[
 \begin{align*}
 \iota_h \circ f &= \iota_h + \iota_h \\
 \iota_h \circ g &= \iota_\beta
 \end{align*}
 \]
- \(f \) is given by \(\text{id} + \text{id} \)
- \(g \) has a somewhat more complicated construction
Step 2

\[\pi_3(\mathbb{S}^2) \xrightarrow{\circ \mathcal{F}} \pi_3^*(\mathbb{S}^2) \xrightarrow{(\iota_h \circ _)^{-1}} \pi_3^*(\mathbb{S}^1 \ast \mathbb{S}^1) \xrightarrow{\mathcal{F} \circ} \pi_3^*(\mathbb{S}^3) \]

• Define \(g : \mathbb{S}^1 \ast \mathbb{S}^1 \rightarrow \mathbb{S}^1 \ast \mathbb{S}^1 \) by

\[
g(\text{inl}(x)) = \text{inr}(-x) \\
g(\text{inr}(y)) = \text{inr}(y) \\
ap_g(\text{push}(x, y)) = \text{push}(y - x, -x)^{-1} \cdot \text{push}(y - x, y)
\]

• It is very direct to verify that \(\iota_h \circ g = \iota_\beta \)
Step 3

\[\pi_3(S^2) \xrightarrow{-\circ \mathcal{F}} \pi_3^*(S^2) \xrightarrow{(\iota_h \circ _)^{-1}} \pi_3^*(S^1 \ast S^1) \xrightarrow{\mathcal{F} \circ} \pi_3^*(S^3) \]

- So we have new equation in \(\pi_3^*(S^1 \ast S^1) \):
 \[\text{id} + \text{id} = -g \]
- Let's apply the highlighted isomorphism to \((\text{id} + \text{id})\) and \(g\).
- For the LHS: we have, trivially,
 \[\mathcal{F} \circ (\text{id} + \text{id}) = \mathcal{F} + \mathcal{F} \]
Proposition 10
\[\mathcal{F} \circ g = (-\mathcal{F}) + (-\mathcal{F}) \]

Proof.
Using the fact that \(\mathcal{F} \) is just \(\iota(\sigma \circ \sim) \) and the homomorphism property of \(\iota \), the proof boils down to proving

\[-((y - x) \sim (-x)) = -(x \sim y) \]

\[(y - x) \sim y = -(x \sim y)\]

which is easy.
So we are reduced to verifying

\[\mathcal{F} + \mathcal{F} = -((-\mathcal{F}) + (-\mathcal{F})) \]

which, of course, is trivial.

Combining all the steps, we have shown:

Theorem 11

The Brunerie number (with our definition) is -2.
Concluding remarks

• Paired together with chapters 1–3 in Brunerie’s thesis, the above theorem allows us to conclude

\[\pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z} \]

• Cool things about this:
 • Much shorter than Brunerie’s original proof (skips chapters 4–6)
 • Does not use (co)homology
Concluding remarks

• Ignoring chapters 1–3, we also get a short, standalone proof of the following fact

Theorem 13

If \(\pi_4(\mathbb{S}^3) \) is non-trivial, then \(\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z} \).

• The proof only uses \(|n| = 2 \), the Freudenthal suspension theorem and Eckmann-Hilton.

• Proving \(\Sigma\mathbb{C}P^2 \not\simeq \mathbb{S}^3 \vee \mathbb{S}^5 \) can be done using Steenrod squares (WIP, joint with David Wärn)

• But a direct proof, not relying on cohomology would be amazing (suggestions?)
Concluding remarks

• Ignoring chapters 1–3, we also get a short, standalone proof of the following fact

Theorem 13

If $\pi_4(S^3)$ *is non-trivial, then* $\pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z}$.

• The proof only uses $|n| = 2$, the Freudenthal suspension theorem and Eckmann-Hilton.

• In particular, an easy corollary is the following:

Theorem 14

If $\Sigma \mathbb{C}P^2 \not\cong S^3 \vee S^5$, *then* $\pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z}$.
Concluding remarks

• Ignoring chapters 1–3, we also get a short, standalone proof of the following fact

Theorem 13
If \(\pi_4(\mathbb{S}^3) \) is non-trivial, then \(\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z} \).

• The proof only uses \(|n| = 2 \), the Freudenthal suspension theorem and Eckmann-Hilton.

• In particular, an easy corollary is the following:

Theorem 14
If \(\Sigma\mathbb{C}P^2 \not\simeq \mathbb{S}^3 \vee \mathbb{S}^5 \), then \(\pi_4(\mathbb{S}^3) \cong \mathbb{Z}/2\mathbb{Z} \).

• Proving \(\Sigma\mathbb{C}P^2 \not\simeq \mathbb{S}^3 \vee \mathbb{S}^5 \) can be done using Steenrod squares (WIP, joint with David Wärn)
Concluding remarks

• Ignoring chapters 1–3, we also get a short, standalone proof of the following fact

Theorem 13

If \(\pi_4(S^3) \) *is non-trivial, then* \(\pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z} \).

• The proof only uses \(|n| = 2 \), the Freudenthal suspension theorem and Eckmann-Hilton.

• In particular, an easy corollary is the following:

Theorem 14

If \(\Sigma \mathbb{C}P^2 \not\simeq S^3 \vee S^5 \), *then* \(\pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z} \).

• Proving \(\Sigma \mathbb{C}P^2 \not\simeq S^3 \vee S^5 \) can be done using Steenrod squares (WIP, joint with David Wärn)

• But a direct proof, not relying on cohomology would be amazing (suggestions?)
Future work

- Prove $\Sigma \mathbb{C}P^2 \not\cong S^3 \vee S^5$ to complete the new proof of $\pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z}$
- The Brunerie map is an example of a ‘Whitehead product’:

$$[_, _] : \pi_n(X) \times \pi_m(X) \to \pi_{n+m-1}(X)$$

These play an important role in the computation of the homotopy groups of spheres. The methods used here could possibly be mimicked for other Whitehead products too.