
What are we thinking
when we present a type theory?

Peter LeFanu Lumsdaine
(joint work with Bauer, Haselwarter)

Stockholm University

HoTTEST, June 2020
Video: h�ps://youtu.be/kQe0knDuZqg

1 / 25

https://youtu.be/kQe0knDuZqg

Some familiar rules

Γ ` A type Γ, x:A ` B type

Γ ` Π(x:A)B type

Π

Γ ` A type Γ, x:A ` B type

Γ, x:A ` b : B

Γ ` λx:A. b type

λ

Γ ` A type Γ, x:A ` B type

Γ ` f : Π(x:A)B Γ ` a : A

Γ ` appx:A, B(f , a) : B[a/x]
app

Γ ` A type Γ, x:A ` B type

Γ, x:A ` b : BΓ ` a : A

Γ ` appx:A, B((λx:A. b), a) ≡ b[a/x] : B[a/x]
β

2 / 25

Some unfamiliar rules

Γ, x:N ` P type

Γ ` T(x .P) type

Γ, x:N ` P type

Γ ` tx .P : P[refl(0)/x]

Γ ` a : Q[0/x, refl(0)/y]

Γ ` Tx .Q,a type

Γ ` a : Bool

Γ, x:N ` a : IdN(x, x)

Γ ` T (a) type

Question
What criteria make us accept some of these, reject others?

3 / 25

Some unfamiliar rules

Γ, x:N ` P type

Γ ` T(x .P) type

Γ, x:N ` P type

Γ ` tx .P : P[refl(0)/x]

Γ ` a : Q[0/x, refl(0)/y]

Γ ` Tx .Q,a type

Γ ` a : Bool

Γ, x:N ` a : IdN(x, x)

Γ ` T (a) type

Question
What criteria make us accept some of these, reject others?

3 / 25

Some unfamiliar rules

Γ, x:N ` P type

Γ ` T(x .P) type

Γ, x:N ` P type

Γ ` tx .P : P[refl(0)/x]

Γ ` a : Q[0/x, refl(0)/y]

Γ ` Tx .Q,a type

Γ ` a : Bool

Γ, x:N ` a : IdN(x, x)

Γ ` T (a) type

Question
What criteria make us accept some of these, reject others?

3 / 25

Some unfamiliar rules

Γ, x:N ` P type

Γ ` T(x .P) type

Γ, x:N ` P type

Γ ` tx .P : P[refl(0)/x]

Γ ` a : Q[0/x, refl(0)/y]

Γ ` Tx .Q,a type

Γ ` a : Bool

Γ, x:N ` a : IdN(x, x)

Γ ` T (a) type

Question
What criteria make us accept some of these, reject others?

3 / 25

Some unfamiliar rules

Γ, x:N ` P type

Γ ` T(x .P) type

Γ, x:N ` P type

Γ ` tx .P : P[refl(0)/x]

Γ ` a : Q[0/x, refl(0)/y]

Γ ` Tx .Q,a type

Γ ` a : Bool

Γ, x:N ` a : IdN(x, x)

Γ ` T (a) type

Question
What criteria make us accept some of these, reject others?

3 / 25

Basic setup

I Background setup: raw syntax, raw rules, raw type theories,
derivability of judgements . . .

I Desirable properties of rules
I Well-ordered presentations
I Semantics

Goals:
I articulate what we have implicitly in mind when

writing/reading type theories;
I formalise the idea “A type theory is a well-ordered family of

rules, each well-formed over the type theory given by the
earlier rules.”

I show this su�ces to give good behaiour, algebraic semantics.

4 / 25

Basic setup

I Background setup: raw syntax, raw rules, raw type theories,
derivability of judgements . . .

I Desirable properties of rules
I Well-ordered presentations
I Semantics

Goals:
I articulate what we have implicitly in mind when

writing/reading type theories;
I formalise the idea “A type theory is a well-ordered family of

rules, each well-formed over the type theory given by the
earlier rules.”

I show this su�ces to give good behaiour, algebraic semantics.

4 / 25

Signatures

De�nition
I Syntactic classes: Ty, Tm.
I Arity: a list of pairs of syntactic class and number.
I Signature:

I a set Σ of symbols;
I a function a : Σ Class × Arity, the (input) arity and (output)

class of each symbol.
Tersely: signature is a family of pairs of a class and arity.

Idea: arity gives, for each argument of a symbol, the class and
number of bindings. E.g. signature for Π-types:

Π Ty [(Ty, 0), (Ty, 1)]
λ Tm [(Ty, 0), (Ty, 1), (Tm, 1)]

app Tm [(Ty, 0), (Ty, 1), (Tm, 0), (Tm, 0)]

5 / 25

Signatures

De�nition
I Syntactic classes: Ty, Tm.
I Arity: a list of pairs of syntactic class and number.
I Signature:

I a set Σ of symbols;
I a function a : Σ Class × Arity, the (input) arity and (output)

class of each symbol.
Tersely: signature is a family of pairs of a class and arity.

Idea: arity gives, for each argument of a symbol, the class and
number of bindings. E.g. signature for Π-types:

Π Ty [(Ty, 0), (Ty, 1)]
λ Tm [(Ty, 0), (Ty, 1), (Tm, 1)]

app Tm [(Ty, 0), (Ty, 1), (Tm, 0), (Tm, 0)]

5 / 25

Signatures

De�nition
I Syntactic classes: Ty, Tm.
I Arity: a list of pairs of syntactic class and number.
I Signature:

I a set Σ of symbols;
I a function a : Σ Class × Arity, the (input) arity and (output)

class of each symbol.
Tersely: signature is a family of pairs of a class and arity.

Idea: arity gives, for each argument of a symbol, the class and
number of bindings. E.g. signature for Π-types:

Π Ty [(Ty, 0), (Ty, 1)]
λ Tm [(Ty, 0), (Ty, 1), (Tm, 1)]

app Tm [(Ty, 0), (Ty, 1), (Tm, 0), (Tm, 0)]

5 / 25

Signatures

De�nition
I Syntactic classes: Ty, Tm.
I Arity: a list of pairs of syntactic class and number.
I Signature:

I a set Σ of symbols;
I a function a : Σ Class × Arity, the (input) arity and (output)

class of each symbol.
Tersely: signature is a family of pairs of a class and arity.

Idea: arity gives, for each argument of a symbol, the class and
number of bindings. E.g. signature for Π-types:

Π Ty [(Ty, 0), (Ty, 1)]
λ Tm [(Ty, 0), (Ty, 1), (Tm, 1)]

app Tm [(Ty, 0), (Ty, 1), (Tm, 0), (Tm, 0)]

5 / 25

Signatures

De�nition
I Syntactic classes: Ty, Tm.
I Arity: a list of pairs of syntactic class and number.
I Signature:

I a set Σ of symbols;
I a function a : Σ Class × Arity, the (input) arity and (output)

class of each symbol.
Tersely: signature is a family of pairs of a class and arity.

Idea: arity gives, for each argument of a symbol, the class and
number of bindings. E.g. signature for Π-types:

Π Ty [(Ty, 0), (Ty, 1)]
λ Tm [(Ty, 0), (Ty, 1), (Tm, 1)]

app Tm [(Ty, 0), (Ty, 1), (Tm, 0), (Tm, 0)]

5 / 25

Signatures

De�nition
I Syntactic classes: Ty, Tm.
I Arity: a list of pairs of syntactic class and number.
I Signature:

I a set Σ of symbols;
I a function a : Σ Class × Arity, the (input) arity and (output)

class of each symbol.
Tersely: signature is a family of pairs of a class and arity.

Idea: arity gives, for each argument of a symbol, the class and
number of bindings. E.g. signature for Π-types:

Π Ty [(Ty, 0), (Ty, 1)]
λ Tm [(Ty, 0), (Ty, 1), (Tm, 1)]

app Tm [(Ty, 0), (Ty, 1), (Tm, 0), (Tm, 0)]

5 / 25

Signatures

De�nition
I Syntactic classes: Ty, Tm.
I Arity: a list of pairs of syntactic class and number.
I Signature:

I a set Σ of symbols;
I a function a : Σ Class × Arity, the (input) arity and (output)

class of each symbol.
Tersely: signature is a family of pairs of a class and arity.

Idea: arity gives, for each argument of a symbol, the class and
number of bindings. E.g. signature for Π-types:

Π Ty [(Ty, 0), (Ty, 1)]
λ Tm [(Ty, 0), (Ty, 1), (Tm, 1)]

app Tm [(Ty, 0), (Ty, 1), (Tm, 0), (Tm, 0)]

5 / 25

Expressions, judgements

De�nition
Over a signature Σ, de�ne:
I Raw (scoped) expressions ExprTy

Σ (n), ExprTm

Σ (n): sets of raw
type/term expressions in n variables

I Raw contexts Γ: suitable lists of raw type epxressions
I Judgement forms, judgements: suitable lists/tuples of

expressions

Ty Γ ` A type

Tm Γ ` a : A
TyEq Γ ` A ≡ B
TmEq Γ ` a ≡ b : A

6 / 25

Expressions, judgements

De�nition
Over a signature Σ, de�ne:
I Raw (scoped) expressions ExprTy

Σ (n), ExprTm

Σ (n): sets of raw
type/term expressions in n variables

I Raw contexts Γ: suitable lists of raw type epxressions
I Judgement forms, judgements: suitable lists/tuples of

expressions

Ty Γ ` A type

}
object judgements

Tm Γ ` a : A
TyEq Γ ` A ≡ B

}
equality judgements

TmEq Γ ` a ≡ b : A

6 / 25

Raw rules
What do we mean when we write down a rule?
I A list of judgements (premises) and a judgement (conclusion),

interpreted as closure condition on derivability

I All rules hold over arbitrary ambient contexts. So: context not
needed in rule speci�cation!

I Treatment of metavariables? Add symbols to signature.
I Substitution in metavariables? Arguments to symbols;

instantiate as actual substitution.

for all raw Γ, A, B, f , a, if
Γ ` A type Γ ` A type

Γ, x:A ` B type Γ, x:A ` B type

Γ ` f : Π(x:A)B Γ ` f : Π(x:A)B
Γ ` a : A Γ ` a : A

are all derivable, then
Γ ` app(A, B, f , a) : B[a/x] Γ ` app(A, B, f , a) : B[a/x]

is derivable
7 / 25

Raw rules
What do we mean when we write down a rule?
I A list family of judgements (premises) and a judgement

(conclusion), interpreted as closure condition on derivability

I All rules hold over arbitrary ambient contexts. So: context not
needed in rule speci�cation!

I Treatment of metavariables? Add symbols to signature.
I Substitution in metavariables? Arguments to symbols;

instantiate as actual substitution.

for all raw Γ, A, B, f , a, if
Γ ` A type Γ ` A type

Γ, x:A ` B type Γ, x:A ` B type

Γ ` f : Π(x:A)B Γ ` f : Π(x:A)B
Γ ` a : A Γ ` a : A

are all derivable, then
Γ ` app(A, B, f , a) : B[a/x] Γ ` app(A, B, f , a) : B[a/x]

is derivable
7 / 25

Raw rules
What do we mean when we write down a rule?
I A list family of judgements (premises) and a judgement

(conclusion), interpreted as closure condition on derivability

I All rules hold over arbitrary ambient contexts. So: context not
needed in rule speci�cation!

I Treatment of metavariables? Add symbols to signature.
I Substitution in metavariables? Arguments to symbols;

instantiate as actual substitution.

for all raw Γ, A, B, f , a, if
Γ ` A type Γ ` A type

Γ, x:A ` B type Γ, x:A ` B type

Γ ` f : Π(x:A)B Γ ` f : Π(x:A)B
Γ ` a : A Γ ` a : A

are all derivable, then
Γ ` app(A, B, f , a) : B[a/x] Γ ` app(A, B, f , a) : B[a/x]

is derivable
7 / 25

Raw rules
What do we mean when we write down a rule?
I A list family of judgements (premises) and a judgement

(conclusion), interpreted as closure condition on derivability
I All rules hold over arbitrary ambient contexts. So: context not

needed in rule speci�cation!

I Treatment of metavariables? Add symbols to signature.
I Substitution in metavariables? Arguments to symbols;

instantiate as actual substitution.

for all raw Γ, A, B, f , a, if
Γ ` A type Γ ` A type

Γ, x:A ` B type Γ, x:A ` B type

Γ ` f : Π(x:A)B Γ ` f : Π(x:A)B
Γ ` a : A Γ ` a : A

are all derivable, then
Γ ` app(A, B, f , a) : B[a/x] Γ ` app(A, B, f , a) : B[a/x]

is derivable
7 / 25

Raw rules
What do we mean when we write down a rule?
I A list family of judgements (premises) and a judgement

(conclusion), interpreted as closure condition on derivability
I All rules hold over arbitrary ambient contexts. So: context not

needed in rule speci�cation!

I Treatment of metavariables? Add symbols to signature.
I Substitution in metavariables? Arguments to symbols;

instantiate as actual substitution.

for all raw Γ, A, B, f , a, if
` A type Γ ` A type

x:A ` B type Γ, x:A ` B type

` f : Π(x:A)B Γ ` f : Π(x:A)B
` a : A Γ ` a : A

are all derivable, then
` app(A, B, f , a) : B[a/x] Γ ` app(A, B, f , a) : B[a/x]

is derivable
7 / 25

Raw rules
What do we mean when we write down a rule?
I A list family of judgements (premises) and a judgement

(conclusion), interpreted as closure condition on derivability
I All rules hold over arbitrary ambient contexts. So: context not

needed in rule speci�cation!
I Treatment of metavariables? Add symbols to signature.

I Substitution in metavariables? Arguments to symbols;
instantiate as actual substitution.

for all raw Γ, A, B, f , a, if
` A type Γ ` A type

x:A ` B type Γ, x:A ` B type

` f : Π(x:A)B Γ ` f : Π(x:A)B
` a : A Γ ` a : A

are all derivable, then
` app(A, B, f , a) : B[a/x] Γ ` app(A, B, f , a) : B[a/x]

is derivable
7 / 25

Raw rules
What do we mean when we write down a rule?
I A list family of judgements (premises) and a judgement

(conclusion), interpreted as closure condition on derivability
I All rules hold over arbitrary ambient contexts. So: context not

needed in rule speci�cation!
I Treatment of metavariables? Add symbols to signature.

I Substitution in metavariables? Arguments to symbols;
instantiate as actual substitution.

for all raw Γ, A, B, f , a, if
` A type Γ ` A type

x:A ` B(x) type Γ, x:A ` B type

` f : Π(A,B(x)) Γ ` f : Π(x:A)B
` a : A Γ ` a : A

are all derivable, then
` app(A,B(x), f, a) : B(a) Γ ` app(A, B, f , a) : B[a/x]

is derivable
7 / 25

Raw rules
What do we mean when we write down a rule?
I A list family of judgements (premises) and a judgement

(conclusion), interpreted as closure condition on derivability
I All rules hold over arbitrary ambient contexts. So: context not

needed in rule speci�cation!
I Treatment of metavariables? Add symbols to signature.
I Substitution in metavariables? Arguments to symbols;

instantiate as actual substitution.

for all raw Γ, A, B, f , a, if
` A type Γ ` A type

x:A ` B(x) type Γ, x:A ` B type

` f : Π(A,B(x)) Γ ` f : Π(x:A)B
` a : A Γ ` a : A

are all derivable, then
` app(A,B(x), f, a) : B(a) Γ ` app(A, B, f , a) : B[a/x]

is derivable
7 / 25

Raw rules
What do we mean when we write down a rule?
I A list family of judgements (premises) and a judgement

(conclusion), interpreted as closure condition on derivability
I All rules hold over arbitrary ambient contexts. So: context not

needed in rule speci�cation!
I Treatment of metavariables? Add symbols to signature.
I Substitution in metavariables? Arguments to symbols;

instantiate as actual substitution.

for all raw Γ, A, B, f , a, if
` A type Γ ` A type

x:A ` B(x) type Γ, x:A ` B type

` f : Π(A,B(x)) Γ ` f : Π(x:A)B
` a : A Γ ` a : A

are all derivable, then
` app(A,B(x), f, a) : B(a) Γ ` app(A, B, f , a) : B[a/x]

is derivable
7 / 25

Raw rules

De�nition
I Metavariable extension Σ + a (a an arity): signature extending Σ

by symbols for the arguments of a.
I Raw rule over Σ of arity a: family of judgements (premises) and

one more judgement (conclusion), all over Σ + a.
I Instantiation of a over Σ: a raw context Γ and suitable

expressions according to a, specfying mapping from syntax of
Σ + a to syntax of Σ.

I Raw type theory over Σ: family of raw rules over Σ.
I Derivability over raw type theory T: relation on judgements,

inductively de�ned by closure conditions for
I standard structural rules;
I all instantiations of all raw rules in T.

8 / 25

Raw rules

De�nition
I Metavariable extension Σ + a (a an arity): signature extending Σ

by symbols for the arguments of a.
I Raw rule over Σ of arity a: family of judgements (premises) and

one more judgement (conclusion), all over Σ + a.
I Instantiation of a over Σ: a raw context Γ and suitable

expressions according to a, specfying mapping from syntax of
Σ + a to syntax of Σ.

I Raw type theory over Σ: family of raw rules over Σ.
I Derivability over raw type theory T: relation on judgements,

inductively de�ned by closure conditions for
I standard structural rules;
I all instantiations of all raw rules in T.

8 / 25

Summary so far

Have de�ned:
I signatures, raw syntax, judgements;
I raw rules;
I raw type theories, derivability.

A satisfactory account of what these are usually understood to mean.

However: too general. Need to add more requirements to ensure:
I well-behavedness as a formal system (metatheorems);
I intuitive comprehensibility;
I can assign good semantics.

9 / 25

Presuppositions, boundaries
De�nition
Any judgement has a family of presuppositions:
I Γ ` A type has no presuppositions;
I only presuppositions of Γ ` a : A is Γ ` A type;
I presuppositions of Γ ` A ≡ A′ are Γ ` A type, Γ ` A′ type;
I presuppositions of Γ ` a ≡ a′ : A are Γ ` A type, Γ ` a : A,

Γ ` a′ : A.
A judgement boundary is like a judgement, but missing the head
expression (if any):

Γ ` _ type Γ ` _ : A Γ ` A
?
≡ A′ Γ ` a

?
≡ a′ : A

Boundary holds same data as presuppositions, but seen as a single
con�guration, not just a family of judgements.

Compare: the faces and boundary of a simplex.
10 / 25

Presupposivity
De�nition
I A raw rule is (derivably) presuppositive over T if all

presuppositions of its premises and conclusion are derivable
from its premises, over T .

I A raw rule is admissibly presuppositive over T if whenever its
premises are derivable, so are all presuppositions of its premises
and conclusion.

I Admissible presuppositivity: never(?) violated in practice.
I Derivable presuppositivity: sometimes violated. May need to

close premises under presuppositions, inversion principles, etc.
I WLONG1 all rules can be assumed (derivably) presuppositive.

Proposition

If all rules of T are presuppositive, then whenever a judgement is
derivable over T, so are all its presuppositions.

1without loss of natural generality
11 / 25

Tightness
De�nition
A raw rule is tight if its metavariables correspond bijectively to its
object-judgement premises,
each premise introducing the corresponding metavariable in general
form.

` A type

x:A ` B(x) type

` Π(A,B(x)) type

x:A ` B(x) type

` Π(A,B(x)) type

` a : Bool x:N ` a : IdN(x, x)

` T(a) type

Violated frequently, but within strict limits: “missing premises” can
always(?) be inferred via presuppositions, inversion principles, etc.
WLONG, all(?) natural examples are equivalent to tight rules.

12 / 25

Tightness
De�nition
A raw rule is tight if its metavariables correspond bijectively to its
object-judgement premises,
each premise introducing the corresponding metavariable in general
form.

` A type

x:A ` B(x) type

` Π(A,B(x)) type

x:A ` B(x) type

` Π(A,B(x)) type

` a : Bool x:N ` a : IdN(x, x)

` T(a) type

Violated frequently, but within strict limits: “missing premises” can
always(?) be inferred via presuppositions, inversion principles, etc.
WLONG, all(?) natural examples are equivalent to tight rules.

12 / 25

Tightness
De�nition
A raw rule is tight if its metavariables correspond bijectively to its
object-judgement premises,
each premise introducing the corresponding metavariable in general
form.

` A type

x:A ` B(x) type

` Π(A,B(x)) type

x:A ` B(x) type

` Π(A,B(x)) type

` a : Bool x:N ` a : IdN(x, x)

` T(a) type

Violated frequently, but within strict limits: “missing premises” can
always(?) be inferred via presuppositions, inversion principles, etc.
WLONG, all(?) natural examples are equivalent to tight rules.

12 / 25

Tightness of theories

De�nition
A raw type theory is tight if all its rules are tight, and its
object-judgement rules correspond precisely to symbols of its
signature.

Proposition

Any tight, congruent, presuppositive type theory satis�es uniqueness of
typing:

if Γ ` a : A and Γ ` a : A′, then Γ ` A ≡ A′.

13 / 25

Substitutivity, congruity
Two more properties, a bit more negotiable depending on choice of
structural rules: substitutivity, congruity.

De�nition
I A rule is substitutive if the context of its conclusion is empty.
I A type theory is substitutive if all its rules are.

Cf. universal vs hypothetical forms of rules.

Congruity: Every object-judgement rule has an associated
congruence rule. Can include these as structural rules, or ask they be
included in the raw type theory.

Proposition

I Over a substitutive type theory, the substitution structural rule
can be eliminated.

I Given the substitution structural rule, every rule is equivalent to a
substitutive one.

I Over a substitutive, congruent type theory, the
substitution-of-equalities structural rule can be eliminated.

14 / 25

Substitutivity, congruity
Two more properties, a bit more negotiable depending on choice of
structural rules: substitutivity, congruity.

De�nition
I A rule is substitutive if the context of its conclusion is empty.
I A type theory is substitutive if all its rules are.

Cf. universal vs hypothetical forms of rules.
Congruity: Every object-judgement rule has an associated
congruence rule. Can include these as structural rules, or ask they be
included in the raw type theory.

Proposition

I Over a substitutive type theory, the substitution structural rule
can be eliminated.

I Given the substitution structural rule, every rule is equivalent to a
substitutive one.

I Over a substitutive, congruent type theory, the
substitution-of-equalities structural rule can be eliminated.

14 / 25

Substitutivity, congruity
Two more properties, a bit more negotiable depending on choice of
structural rules: substitutivity, congruity.

De�nition
I A rule is substitutive if the context of its conclusion is empty.
I A type theory is substitutive if all its rules are.

Cf. universal vs hypothetical forms of rules.
Congruity: Every object-judgement rule has an associated
congruence rule. Can include these as structural rules, or ask they be
included in the raw type theory.

Proposition

I Over a substitutive type theory, the substitution structural rule
can be eliminated.

I Given the substitution structural rule, every rule is equivalent to a
substitutive one.

I Over a substitutive, congruent type theory, the
substitution-of-equalities structural rule can be eliminated.

14 / 25

Orderedness
Major missing ingredient so far: order of presentation.
Shows up at various levels:
I Types of a context
I Premises of a rule
I Rules of a theory

Raw expressions of each type/premise/rule use only earlier
variables/metavariables/constructors.
Typechecking of each component use only earlier
variable-typing/premises/rules.

De�nition
Well-formed (sequential) contexts: inductively de�ned.
I [] is a well-formed context of length 0;
I for Γ a well-formed context of length n,

and A a type expression in scope n,
the extension (Γ;A) is a well-formed context of length n + 1.

15 / 25

Orderedness
Major missing ingredient so far: order of presentation.
Shows up at various levels:
I Types of a context
I Premises of a rule
I Rules of a theory

Raw expressions of each type/premise/rule use only earlier
variables/metavariables/constructors.
Typechecking of each component use only earlier
variable-typing/premises/rules.

De�nition
Well-formed (sequential) contexts: inductively de�ned.
I [] is a well-formed context of length 0;
I for Γ a well-formed context of length n,

and A a type expression in scope n,
the extension (Γ;A) is a well-formed context of length n + 1.

15 / 25

Ordered rules

De�nition
Sequentially-presented premise family over signature Σ, raw type
theory T:

1. ∅ is a sequentially-presented premise family, of arity ∅;
2. for P a seq.-pres. prem. fam. of arity a,

and B a judgement boundary in Σ + a,
of form j and context length n, well-formed over T + P ,
the extension (P ;B) is a seq.-pres. prem. fam. of arity (a; (j, n)).

Sequentially-presented headless rule over Σ, T:
a seq.-pres. premise family P of arity P ,
together with a boundary C over Σ + a, well-formed over T + P .

Why are premises and conclusion given just as boundaries?

To ensure tightness.

16 / 25

Ordered rules

De�nition
Sequentially-presented premise family over signature Σ, raw type
theory T:

1. ∅ is a sequentially-presented premise family, of arity ∅;
2. for P a seq.-pres. prem. fam. of arity a,

and B a judgement boundary in Σ + a,
of form j and context length n, well-formed over T + P ,
the extension (P ;B) is a seq.-pres. prem. fam. of arity (a; (j, n)).

Sequentially-presented headless rule over Σ, T:
a seq.-pres. premise family P of arity P ,
together with a boundary C over Σ + a, well-formed over T + P .

Why are premises and conclusion given just as boundaries?

To ensure tightness.

16 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` type

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` type

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` B(x) type

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` B(x) type

` : Π(x:A)B(x)

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` B(x) type

` f : Π(x:A)B(x)

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` B(x) type

` f : Π(x:A)B(x)
` : A

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` B(x) type

` f : Π(x:A)B(x)
` a : A

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` B(x) type

` f : Π(x:A)B(x)
` a : A

` : B(a)

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` B(x) type

` f : Π(x:A)B(x)
` a : A

` : B(a)
app

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` B(x) type

` f : Π(x:A)B(x)
` a : A

` app(A,B(x), f, a) : B(a)
app

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` B(x) type

` f : Π(x:A)B(x)
` a : A

` app(A,B(x), f, a) : B(a)
app

17 / 25

Ordered rules

Premises just boundaries: their heads will be �lled in with the
corresponding metavariables

Similarly, conclusion just a boundary (rule “headless”): its head (if
any) will later be �lled in as the constructor it introduces.

` A type

x:A ` B(x) type

` f : Π(x:A)B(x)
` a : A

` app(A,B(x), f, a) : B(a)
app

17 / 25

Ordered type theories
De�nition
Linearly well-presented type theories: de�ned inductively.

1. ∅ is a linearly well-presented type theory.
2. For T linearly well-presented, and R a sequentially-presented

headless rule over T, the extension (T; R) is linearly
well-presented.

3. For α a limit ordinal, and 〈Ti〉i∈α an increasing sequence of
linearly well-presented type-theories, the union

⋃
i<α Ti is

linearly well-presented.

Two equivalent ways to read this: an inductive-recursive type; or an
inductive predicate on raw type theories.
(Cf. Uemura signatures.)
Shortcomings:
I In many examples, order not naturally total.
I Constructively, assuming order total is not WLOG!

18 / 25

Ordered type theories
De�nition
Linearly well-presented type theories: de�ned inductively.

1. ∅ is a linearly well-presented type theory. (Follows from 3.)
2. For T linearly well-presented, and R a sequentially-presented

headless rule over T, the extension (T; R) is linearly
well-presented.

3. For α a limit ordinal, and 〈Ti〉i∈α an increasing sequence of
linearly well-presented type-theories, the union

⋃
i<α Ti is

linearly well-presented.

Two equivalent ways to read this: an inductive-recursive type; or an
inductive predicate on raw type theories.
(Cf. Uemura signatures.)
Shortcomings:
I In many examples, order not naturally total.
I Constructively, assuming order total is not WLOG!

18 / 25

Ordered type theories
De�nition
Linearly well-presented type theories: de�ned inductively.

1. ∅ is a linearly well-presented type theory. (Follows from 3.)
2. For T linearly well-presented, and R a sequentially-presented

headless rule over T, the extension (T; R) is linearly
well-presented.

3. For α a limit ordinal, and 〈Ti〉i∈α an increasing sequence of
linearly well-presented type-theories, the union

⋃
i<α Ti is

linearly well-presented.

Two equivalent ways to read this: an inductive-recursive type; or an
inductive predicate on raw type theories.

(Cf. Uemura signatures.)
Shortcomings:
I In many examples, order not naturally total.
I Constructively, assuming order total is not WLOG!

18 / 25

Ordered type theories
De�nition
Linearly well-presented type theories: de�ned inductively.

1. ∅ is a linearly well-presented type theory. (Follows from 3.)
2. For T linearly well-presented, and R a sequentially-presented

headless rule over T, the extension (T; R) is linearly
well-presented.

3. For α a limit ordinal, and 〈Ti〉i∈α an increasing sequence of
linearly well-presented type-theories, the union

⋃
i<α Ti is

linearly well-presented.

Two equivalent ways to read this: an inductive-recursive type; or an
inductive predicate on raw type theories.
(Cf. Uemura signatures.)
Shortcomings:
I In many examples, order not naturally total.
I Constructively, assuming order total is not WLOG!

18 / 25

Ordered type theories
De�nition
Well-presented type theory:
I A well-ordering (I, ≺), and family 〈(ai, Ri,Di)〉i∈I , where
I each ai is a �nite rule-arity;
I each Ri is a seq.-pres. headless raw rule of arity ai, over the

signature derived from 〈aj〉j≺i;
I each Di is a tuple of derivations witnessing that Ri is

well-formed over the raw type theory 〈Rj〉j≺i.

Concisely: A well-ordered family of rules, each well-formed over the
type theory formed by the earlier rules.

(Formally: 3 separate families 〈ai〉i∈I , 〈Ri〉i∈I , 〈Di〉i∈I?)

Proposition

A well-presented type theory is congruous, substitutive, tight, &
presuppositive. �

19 / 25

Ordered type theories
De�nition
Well-presented type theory:
I A well-ordering (I, ≺), and family 〈(ai, Ri,Di)〉i∈I , where
I each ai is a �nite rule-arity;
I each Ri is a seq.-pres. headless raw rule of arity ai, over the

signature derived from 〈aj〉j≺i;
I each Di is a tuple of derivations witnessing that Ri is

well-formed over the raw type theory 〈Rj〉j≺i.

Concisely: A well-ordered family of rules, each well-formed over the
type theory formed by the earlier rules.
(Formally: 3 separate families 〈ai〉i∈I , 〈Ri〉i∈I , 〈Di〉i∈I?)

Proposition

A well-presented type theory is congruous, substitutive, tight, &
presuppositive. �

19 / 25

Ordered type theories
De�nition
Well-presented type theory:
I A well-ordering (I, ≺), and family 〈(ai, Ri,Di)〉i∈I , where
I each ai is a �nite rule-arity;
I each Ri is a seq.-pres. headless raw rule of arity ai, over the

signature derived from 〈aj〉j≺i;
I each Di is a tuple of derivations witnessing that Ri is

well-formed over the raw type theory 〈Rj〉j≺i.

Concisely: A well-ordered family of rules, each well-formed over the
type theory formed by the earlier rules.
(Formally: 3 separate families 〈ai〉i∈I , 〈Ri〉i∈I , 〈Di〉i∈I?)

Proposition

A well-presented type theory is congruous, substitutive, tight, &
presuppositive. �

19 / 25

Notions of type theory
I raw type theory

I reasonably elementary
I certainly part of traditional reading of type theories
I very general: “niceness” not assumed/implied
I used as an auxiliary notion in nicer de�nitions

I raw type theory + niceness properties
I reasonably elementary
I arguably re�ects traditional intentions
I semantics unclear

I linearly well-presented type theory
I reasonably clear de�nition
I enjoys strong niceness properties, good semantics
I linearity not part of traditional intention?

I (general) well-presented type theory
I de�nition hard to formulate clearly
I enjoys strong niceness properties, good semantics
I re�ects traditional intentions well?

20 / 25

Notions of type theory
I raw type theory

I reasonably elementary
I certainly part of traditional reading of type theories
I very general: “niceness” not assumed/implied
I used as an auxiliary notion in nicer de�nitions

I raw type theory + niceness properties
I reasonably elementary
I arguably re�ects traditional intentions
I semantics unclear

I linearly well-presented type theory
I reasonably clear de�nition
I enjoys strong niceness properties, good semantics
I linearity not part of traditional intention?

I (general) well-presented type theory
I de�nition hard to formulate clearly
I enjoys strong niceness properties, good semantics
I re�ects traditional intentions well?

20 / 25

Notions of type theory
I raw type theory

I reasonably elementary
I certainly part of traditional reading of type theories
I very general: “niceness” not assumed/implied
I used as an auxiliary notion in nicer de�nitions

I raw type theory + niceness properties
I reasonably elementary
I arguably re�ects traditional intentions
I semantics unclear

I linearly well-presented type theory
I reasonably clear de�nition
I enjoys strong niceness properties, good semantics
I linearity not part of traditional intention?

I (general) well-presented type theory
I de�nition hard to formulate clearly
I enjoys strong niceness properties, good semantics
I re�ects traditional intentions well?

20 / 25

Notions of type theory
I raw type theory

I reasonably elementary
I certainly part of traditional reading of type theories
I very general: “niceness” not assumed/implied
I used as an auxiliary notion in nicer de�nitions

I raw type theory + niceness properties
I reasonably elementary
I arguably re�ects traditional intentions
I semantics unclear

I linearly well-presented type theory
I reasonably clear de�nition
I enjoys strong niceness properties, good semantics
I linearity not part of traditional intention?

I (general) well-presented type theory
I de�nition hard to formulate clearly
I enjoys strong niceness properties, good semantics
I re�ects traditional intentions well?

20 / 25

Categorical analysis

Raw type theories form category RTT.

Rule-extension: inclusion maps T (T; R) in RTT.

Linearly well-presented type theories: cell complexes of
rule-extensions,
i.e. trans�nite composite

0 = T0 T1 · · · Tα · · · for all α < κ

rule-extension at successor stages, colimit at limit stages.

Well-presented type theories: good colimits (Lurie) / fat cell
complexes (cf. Makkai, Rosický, Vokřínek) of rule extensions.

21 / 25

Categorical analysis

Raw type theories form category RTT.

Rule-extension: inclusion maps T (T; R) in RTT.

Linearly well-presented type theories: cell complexes of
rule-extensions,
i.e. trans�nite composite

0 = T0 T1 · · · Tα · · · for all α < κ

rule-extension at successor stages, colimit at limit stages.

Well-presented type theories: good colimits (Lurie) / fat cell
complexes (cf. Makkai, Rosický, Vokřínek) of rule extensions.

21 / 25

Categorical analysis

Raw type theories form category RTT.

Rule-extension: inclusion maps T (T; R) in RTT.

Linearly well-presented type theories: cell complexes of
rule-extensions,
i.e. trans�nite composite

0 = T0 T1 · · · Tα · · · for all α < κ

rule-extension at successor stages, colimit at limit stages.

Well-presented type theories: good colimits (Lurie) / fat cell
complexes (cf. Makkai, Rosický, Vokřínek) of rule extensions.

21 / 25

Semantics
Have category STT of semantic type theories.

Roughly: a STT is an ess. alg. theory extending CwF’s by adding
operations strictly stable under reindexing. (Cf. Isaev 2016.)

A correspondence E between a raw type theory T and semantic type
theory S: an equivalence AlgExt(T) ' Mod(S), acting “the obvious
way” on underlying CwF’s.

Correspondences extend by rules: for E : T ' S and R a rule over T,
get (E; R) : (T ; R) ' (S; E[R]).

Correspondences respect suitable colimits.

Theorem
I Any (linearly or generally) well-presented type theory T has a

corresponding semantic type theory ST.
I The syntactic CwF of T underlies the initial model of ST.
I For familiar T, ST is exactly the standard CwF-based semantics.

22 / 25

Semantics
Have category STT of semantic type theories.

Roughly: a STT is an ess. alg. theory extending CwF’s by adding
operations strictly stable under reindexing. (Cf. Isaev 2016.)

A correspondence E between a raw type theory T and semantic type
theory S: an equivalence AlgExt(T) ' Mod(S), acting “the obvious
way” on underlying CwF’s.

Correspondences extend by rules: for E : T ' S and R a rule over T,
get (E; R) : (T ; R) ' (S; E[R]).

Correspondences respect suitable colimits.

Theorem
I Any (linearly or generally) well-presented type theory T has a

corresponding semantic type theory ST.
I The syntactic CwF of T underlies the initial model of ST.
I For familiar T, ST is exactly the standard CwF-based semantics.

22 / 25

Semantics
Have category STT of semantic type theories.

Roughly: a STT is an ess. alg. theory extending CwF’s by adding
operations strictly stable under reindexing. (Cf. Isaev 2016.)

A correspondence E between a raw type theory T and semantic type
theory S: an equivalence AlgExt(T) ' Mod(S), acting “the obvious
way” on underlying CwF’s.

Correspondences extend by rules: for E : T ' S and R a rule over T,
get (E; R) : (T ; R) ' (S; E[R]).

Correspondences respect suitable colimits.

Theorem
I Any (linearly or generally) well-presented type theory T has a

corresponding semantic type theory ST.
I The syntactic CwF of T underlies the initial model of ST.
I For familiar T, ST is exactly the standard CwF-based semantics.

22 / 25

A closing curiosity

Very dependent function types (Hickey 1996):
I type of functions over a well-founded domain,
I type of each value can depend on earlier values.

Γ ` A type Γ, x, y:A ` x ≺ y type

Γ ` H : IsWellFounded[A, ≺]
Γ, x:A, f : {g | p:Σ(y:A)y ≺ x B(p, g)} ` B(x, f) type

Γ ` {f | x:A B(x, f)} type

(Several details swept under rug here.)

I Allows clean de�nition of well-presented type theories.
I Natural example of non-well-presented type theory!

23 / 25

A closing curiosity

Very dependent function types (Hickey 1996):
I type of functions over a well-founded domain,
I type of each value can depend on earlier values.

Γ ` A type Γ, x, y:A ` x ≺ y type

Γ ` H : IsWellFounded[A, ≺]
Γ, x:A, f : {g | p:Σ(y:A)y ≺ x B(p, g)} ` B(x, f) type

Γ ` {f | x:A B(x, f)} type

(Several details swept under rug here.)

I Allows clean de�nition of well-presented type theories.
I Natural example of non-well-presented type theory!

23 / 25

Summary

I Various principles in mind when presenting type theories.
I Usually followed; can always be followed WLONG.
I Congruity; substitutivity; tightness; presuppositivity. . .
I Well-ordered presentations!
I Categorical analysis: (fat) cell complexes of rule-extensions.
I Well-presented type theory: su�cient to assign a good

CwF-based semantics.

24 / 25

Appendix: related work

Note: here have focused on concrete details of our approach.

For comparison with related work — in particular, LF-based
approaches — see PLL’s Edinburgh LFCS seminar talk, General
de�nitions of dependent type theories, 21 April 2020,
h�ps://youtu.be/FTyQ5EFOtbQ .

25 / 25

https://youtu.be/FTyQ5EFOtbQ

