Directed univalence in simplicial sets

Denis-Charles Cisinski & Hoang Kim Nguyen

Universität Regensburg

HoTTEST March 9, 2023

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Motivation

<ロ> < 団> < 団> < 三> < 三> < 三> < □> < □> < □> < ○<</p>

Motivation

 $\infty\mbox{-}{\mbox{categories}}$ are a semantic interpretation of Directed Type Theory.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation

HoTT	Semantics	DTT	Semantics	
Types	∞ -groupoids	Types	∞ -categories	
Identity type $Id_A(a, b)$	path space $P_{a,b}(A)$	Hom type Hom _A (a, b)	mapping space Map _A (a, b)	
Universe	S^{\simeq}	Universe	Q	
Univalence	$P_{X,Y}(S^{\simeq}) \xrightarrow{\simeq} \operatorname{Eq}_{S}(X,Y)$	Directed Univalence	?	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Goal for today

Directed univalence holds in simplicial sets.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Fibrations

<ロ> < 団> < 団> < 三> < 三> < 三> < □> < □> < □> < ○<</p>

Fibrations in simplicial sets

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Examples

Let C be an ∞ -category then

- The target projection $C^{\Delta^1} \xrightarrow{t} C$ is a cocartesian fibration
- The source projection $C^{\Delta^1} \xrightarrow{s} C$ is a cartesian fibration
- The source-target projection $C^{\Delta^1} \xrightarrow{(s,t)} C \times C$ is a two-sided fibration.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Universes

<ロ> < 団> < 団> < 三> < 三> < 三> < □> < □> < □> < ○<</p>

Universes

There are several universes we can define in simplicial sets:

- ▶ The universe classifying small Kan fibrations S^{\simeq}
- The universe classifying small left fibrations S

► The universe classifying small cocartesian fibrations *Q* The *n*-simplices are given by small fibrations (with some extra coherence data)

$X \\ \downarrow \\ \Delta^n$

In particular, the 0-simplices of S^{\simeq} and S are ∞ -groupoids and the 0-simplices of Q are given by ∞ -categories.

Theorem (Kapulkin-Lumsdaine-Voevodsky, Cisinski, N.)

The simplicial set S^{\simeq} is an ∞ -groupoid and the simplicial sets S and Q are ∞ -categories.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Universes

We have the following pullback diagram whose vertical maps are the universal Kan, left and cocartesian fibration respectively

The map $S^{\simeq} \to S$ is the inclusion of the maximal ∞ -groupoid and the map $S \to Q$ is the inclusion of the full subcategory of spaces into the ∞ -category of ∞ -categories.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

<ロ> < 団> < 団> < 三> < 三> < 三> < □> < □> < □> < ○<</p>

The univalence axiom asserts an equivalence between the identity type of the universe and the type of equivalences between types, i.e. that the map

$$Id_{\mathfrak{U}}(A,B) \to A \simeq B$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のの⊙

induced by path induction is an equivalence.

Convention

The term fibration will mean either Kan, left or cocartesian fibration. A map of fibrations is assumed to preserve the appropriate structure and an equivalence of fibrations is the appropriate notion of equivalence.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

In simplicial sets this translates as follows: Given a fibration $p: X \to A$ there is an object of equivalences $Eq_A(X)$ whose *n*-simplices are given by maps $f, g: \Delta^n \to A$ and an equivalence of fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The object $Eq_A(X)$ comes with canonical maps

$$A \to Eq_A(X) \to A imes A$$

factorizing the diagonal.

Definition

The fibration p is univalent if this is a path object in the Kan-Quillen model structure (Kan fibrations), respectively in the Joyal model structure (left fibrations and cocartesian fibrations).

There is a canonical choice of path object in these model structures. Let J be the nerve of the free walking isomorphism

$$J = N \left(\bullet \swarrow \bullet \right)$$

This induces the path object

$$A \to A^J \to A \times A$$

Path induction defines a lift in the commutative square

and the fibration $p: X \to A$ is univalent if and only if this lift is an equivalence.

Theorem(K.-L.-V.,C., C.-N.)

The universal fibrations

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

are univalent.

In homotopy type theory this is all we can express. The universe of ∞ -groupoids is itself an ∞ -groupoid, so it only sees equivalences between types.

On the other hand, the universes S and Q, being ∞ -categories, also see non-invertible functions between types.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のの⊙

Directed univalence

<ロ> < 団> < 団> < 三> < 三> < 三> < □> < □> < □> < ○<</p>

Since S and Q are ∞ -categories, we want to express a directed univalence axiom.

The identity type should then be replaced by a hom type. Directed univalence then should assert an equivalence between hom types and function types.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のの⊙

Given an ∞ -category C, we have a factorization of the diagonal

$$C o C^{\Delta^1} \xrightarrow{(s,t)} C imes C$$

The source-target map is a two-sided fibration and in particular an isofibration.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のの⊙

However, this does not define a path object in the Joyal model structure.

Taking fibers at a point (a, b) of $C \times C$ defines the mapping space of C

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The function type

Given a fibration $p: X \to A$ there is an object of morphisms $\underline{\text{Hom}}_{A \times A}(X^0, X^1)$ whose *n*-simplices are given by maps $f, g: \Delta^n \to A$ and a map of fibrations

We obtain a canonical factorization of the diagonal

$$A
ightarrow \operatorname{\operatorname{{\rm Hom}}}_{\mathcal{A} imes \mathcal{A}}(X^0, X^1)
ightarrow A imes \mathcal{A}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のの⊙

The function type

Definition

We call

$$\begin{matrix} \operatorname{Hom}_{Q\times Q}(Q^0_{\bullet},Q^1_{\bullet}) \\ \downarrow \\ Q\times Q \end{matrix}$$

the universal morphism classifier.

Indeed, a map $K \to \underline{Hom}_{Q \times Q}(Q^0_{\bullet}, Q^1_{\bullet})$ is determined by cocartesian fibrations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

and a map preserving cocartesian edges.

The function type

The function type should be a dependent type. It is easy to see that we always get an isofibration, but more is true:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is a two-sided fibration.

Directed univalence

We always have a lift in the square

Definition

A fibration is called directed univalent if this lift is an equivalence of $\infty\mbox{-}categories.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Directed Univalence

can be constructed directly from the lifting properties of fibrations. It can also be viewed as an instance of directed path induction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Directed univalence

Let's unpack this for the universal cocartesian fibration.

A point in $Q \times Q$ is given by a pair of ∞ -categories (C, D). The fiber of the universal morphism classifier at (C, D) is given by Fun $(C, D)^{\simeq}$. Thus the induced map on fibers is

 $\operatorname{Map}_Q(C,D) \to \operatorname{Fun}(C,D)^{\simeq}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のの⊙

Theorem(Cisinski-N.)

The universal left fibration and the universal cocartesian fibration

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

are directed univalent.

Sketch of proof

Since the hom space and the universal morphism classifier are two-sided fibrations, it is enough to check fiberwise that the comparison map

is an equivalence. Hence we need to show that

 $\operatorname{Map}_Q(C,D) \to \operatorname{Fun}(C,D)^{\simeq}$

is an equivalence of ∞ -groupoids.

To proof this, we consider the functor

$$ho(Q)
ightarrow ho(\mathrm{sSet}^{\mathrm{Joyal}})$$

It sends an object $\Delta^0 \to Q$ to the fibration that it classifies, i.e. to a small ∞ -category C. On morphisms we simply take π_0 of

$$\operatorname{Map}_Q(C,D) \to \operatorname{Fun}(C,D)^{\simeq}$$

One checks that this is compatible with composition.

Sketch of proof

The essential result needed is:

Theorem for A a simplest. There is an equivalence of categories $ho(Fun(A, Q)) \xrightarrow{\simeq} coCart(A)$ howshipsy cat of the on sSet / * (日) (四) (日) (日) (日)

This theorem implies that we have for all simplicial sets A an isomorphism

 $\pi_0(\operatorname{Fun}(A, \operatorname{Map}_Q(C, D))) \to \pi_0(\operatorname{Fun}(A, \operatorname{Fun}(C, D)^{\simeq}))$

which implies the desired equivalence of spaces

 $\operatorname{Map}_Q(C,D) \simeq \operatorname{Fun}(C,D)^{\simeq}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fun fact

The proof of directed univalence uses univalence in an essential way: univalence implies that the functor

 $ho(\operatorname{Fun}(A, Q)) \to \operatorname{coCart}(A)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のの⊙

is fully faithful.

Remark

The proof shows a close connection between directed univalence and straightening/unstraightening. In fact it is easy to see that directed univalence is equivalent to the equivalence of categories

 $ho(\operatorname{Fun}(A,Q)\simeq\operatorname{coCart}(A)$

With some effort this can be improved to the full straightening/unstraightening equivalence, which in particular implies that Q is equivalent to the localization of simplicial sets at the Joyal equivalences.

$$\pi_{4}p_{0}(c,D) = \pi_{1}(c,D)^{2}$$

<ロ> < 団> < 団> < 三> < 三> < 三> < □> < □> < □> < ○<</p>

Recall that a fibration $p: X \rightarrow A$ is directed univalent if the lift in the square

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

is an equivalence.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Proof

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Take fibres + 2- Ort - of -3

Corollary

The classifying map of the universal left fibration

$$S \rightarrow Q$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

is fully faithful.

How to get to a full shraightaning / unstraightaning equivalence small t-cut Fun $(T, \sigma Set^{+}/_{A} +) = \sigma Set^{+}/_{T*A} +$ Quiten equivalence Get Fun (I, sSet/AF) ---) ces Cent (I×A) $lus Fun(\Sigma, Fun(A, Q))$ This is a localitation Now byte $\underline{T} = sSch^{+}/_{t} = N(sSch^{+}/_{t}) \rightarrow Fun(\underline{I}, Q)$

Geh		juduce d	Juch			
		2 (BSCA	$\left(\begin{array}{c} A \\ A \end{array} \right) = ,$			
		s-Catlos	chbahM			
tus	meder	ives ustin	nts and	1 1 2 1 1 1 1 1 1 1 1 1 1	ey miv, t	
					· · · · · · · · · ·	

ou honolopy ats

Thank You!