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Motivation

• Equality checking algorithms are essential parts of proof
assistants.

• Most popular proof assistants provide them for their
underlying type theory.

• Extensions to the equality checking.
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Motivation
What happens with user-definable type theory like in
Andromeda 2?

What we did:
• Designed a user-extensible equality checking algorithm, based

on type-directed equality checking, e.g., Harper & Stone
(2006).

• Implementation in Andromeda 2.
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Talk overview

• Finitary Type Theories (as implemented in Andromeda 2).
• Overview of the algorithm:

• type-directed phase,
• normalization phase,
• normal forms.

• Live demo: using the implementation of the equality checker
in Andromeda 2.
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Finitary Type Theories
An adaptation of general type theories that Peter Lumsdaine
talked about,

but finitary rules and finitely many of them.
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Finitary Type Theories

• 4 hypothetical judgement forms

Γ ⊢ 𝐴 type Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵 Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴

• boundaries

Γ ⊢ □ type Γ ⊢ □ ∶ 𝐴 Γ ⊢ 𝐴 ?≡ 𝐵 Γ ⊢ 𝑎 ?≡ 𝑏 ∶ 𝐴

• well-presented rules (finitary and finitely many)
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Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

no proof state ⟹ no global contexts.
Context-free presentation:

• Previous work: Γ∞ by Geuvers et al. for Calculus of
Constructions.

• No explicit contexts.
• Free variables are tagged with their types: 𝑎𝐴.

Details: Philipp Haselwarter’s dissertation.
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Context-free presentation of finitary type theories

Γ ⊢ 𝐴 type Γ, 𝑥∶𝐴 ⊢ 𝐵 type
Γ ⊢ Π(𝑥∶𝐴) . 𝐵 type

↓

⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) type

Abstraction is a primitive notion.
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Context-free presentation of type theories

4 judgement forms:

𝑗 ≔ 𝐴 type 𝑎∶𝐴 𝐴 ≡ 𝐵 by 𝛼 𝑎 ≡ 𝑏 ∶ 𝐴 by 𝛼

boundaries:

b ≔ □ type □ ∶ 𝐴 𝐴 ≡ 𝐵 by □ 𝑎 ≡ 𝑏 ∶ 𝐴 by □

Abstracted judgements and boundaries:

{𝑥1 ∶𝐴1} … {𝑥𝑛 ∶𝐴𝑛}𝑗 {𝑥1 ∶𝐴1} … {𝑥𝑛 ∶𝐴𝑛}b

.
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Assumption sets
Contexts keep track of:

1 Types of variables.
2 Which variables are available.

Annotations solve 1, but 2 needs care, e.g., if the user poses
equality reflection rule

Γ ⊢ 𝐴 type Γ ⊢ 𝑠 ∶ 𝐴 Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑝 ∶ Eq(𝐴, 𝑠, 𝑡)
Γ ⊢ 𝑠 ≡ 𝑡 ∶ 𝐴

then 𝑝 (and its potential variables) is not recorded in the
conclusion. Tracking used variables: assumption sets.

𝐴 ≡ 𝐵 by 𝛼 𝑎 ≡ 𝑏 ∶ 𝐴 by 𝛼

Assumption sets 𝛼 consist of:
• free variables
• bound variables
• meta-variables
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Conversions
Explicit conversion in terms:

⊢ 𝐴 type ⊢ 𝐵 type ⊢ 𝑡 ∶ 𝐴 ⊢ 𝐴 ≡ 𝐵 by 𝛼
⊢ (𝑡 ∶ 𝐵 by 𝛼) ∶ 𝐵

Choices:
Example (Congruence rule for Π)

Γ ⊢ 𝐴 ≡ 𝐴′ Γ, 𝑥∶𝐴 ⊢ 𝐵(𝑥) ≡ 𝐵′(𝑥)
Γ ⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥))

⊢ 𝐴 ≡ 𝐴′ by 𝛼 ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥 ∶ 𝐴 by 𝛼))

⊢ 𝐴 ≡ 𝐴′ by 𝛼 ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥 ∶ 𝐴′ by 𝛼) by 𝛽
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥))
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Finitary Type Theories

Summary:
• Free variables annotated with their types 𝑎𝐴.
• Bound variables abstracted with an explicit abstraction.
• Assumption sets.
• Explicit conversions in terms.
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Overview of the algorithm

Mutually recursive sub-algorithms:
• Normalize a type 𝐴
• Normalize a term 𝑡 of type 𝐴
• Check equality of types 𝐴 ≡ 𝐵
• Check equality of normal types 𝐴 ≡ 𝐵
• Check equality of terms 𝑠 and 𝑡 of type 𝐴

1 type-directed phase
2 normalization phase

• Check equality of normal terms 𝑠 and 𝑡 of type 𝐴
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Normalization

• Use computation rules as long as any apply.
• Normalize the normalizing arguments.

Normalization outputs a certified equation between the original
and normalized expression.
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Equality checking

• Check equality of types 𝐴 ≡ 𝐵: 𝐴 and 𝐵 are normalized
and their normal forms are compared.

• Check equality of normal types 𝐴 ≡ 𝐵: compare
structurally - apply a congruence rule. Proceed recursively on
the (normalizing) arguments.

• Check equality of terms 𝑠 and 𝑡 of type 𝐴:
1 type-directed phase: normalize the type 𝐴 and apply

extensionality rules, if any.
2 normalization phase: if no extensionality rules apply,

normalize 𝑠 and 𝑡 and compare their normal forms.
• Check equality of normal terms 𝑠 and 𝑡 of type 𝐴: normal

terms are compared structurally.

15 / 22



Extensionality rules
𝑃1 ⋯ 𝑃𝑛 ⊢ 𝑥 ∶ 𝐴 ⊢ 𝑦 ∶ 𝐴 𝑄1 ⋯ 𝑄𝑚

⊢ 𝑥 ≡ 𝑦 ∶ 𝐴 ,

where
• 𝑃1, … , 𝑃𝑛 are object premises,
• 𝑄1, … , 𝑄𝑚 are equality premises,

Example (Extensionality rule for dependent functions1)

⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type
⊢ 𝑓 ∶ Π(𝐴, {𝑥}𝐵(𝑥)) ⊢ 𝑔 ∶ Π(𝐴, {𝑥}𝐵(𝑥))

⊢ {𝑥∶𝐴} app(𝐴, 𝐵, 𝑓, 𝑥) ≡ app(𝐴, 𝐵, 𝑔, 𝑥) ∶ 𝐵(𝑥)
⊢ 𝑓 ≡ 𝑔 ∶ Π(𝐴, {𝑥}𝐵(𝑥))

Note: Inter-derivable with 𝜂-rules.

1not to be confused with function extensionality
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Computation rules

Computation rules take the forms

𝑃1 ⋯ 𝑃𝑛
⊢ 𝑢 ≡ 𝑣 ∶ 𝑇

𝑃1 ⋯ 𝑃𝑛
⊢ 𝐴 ≡ 𝐵

where the 𝑃𝑖’s are object premises.
• 𝑢 has the form s(𝑒1, … , 𝑒𝑚)
• 𝐴 has the form S(𝑒1, … , 𝑒𝑚)

Example (Dependent functions)

⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type ⊢ {𝑥∶𝐴}𝑠 ∶ 𝐵(𝑥) ⊢ 𝑎 ∶ 𝐴
⊢ app(𝐴, 𝐵, 𝜆(𝐴, 𝐵, 𝑠), 𝑎) ≡ 𝑠[𝑎/𝑥] ∶ 𝐵(𝑎)
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Normal forms
Definition
An expression is in normal form if

• no computation rules apply,
• its normalizing arguments are in normal form.

Selecting normalizing arguments specifies what is a (weak) normal
form.

In Andromeda 2: normalizing arguements for s(𝑢1, … , 𝑢𝑛) are
those 𝑢𝑖’s that are not meta-variables.

Example (Computation rule for app)
⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type ⊢ {𝑥∶𝐴}𝑠 ∶ 𝐵(𝑥) ⊢ 𝑎 ∶ 𝐴

⊢ app(𝐴, 𝐵, 𝜆(𝐴, 𝐵, 𝑠), 𝑎) ≡ 𝑠[𝑎/𝑥] ∶ 𝐵(𝑎)

Andromeda marks just the third argument of app as normalizing
argument.

18 / 22



Normal forms
Definition
An expression is in normal form if

• no computation rules apply,
• its normalizing arguments are in normal form.

Selecting normalizing arguments specifies what is a (weak) normal
form.

In Andromeda 2: normalizing arguements for s(𝑢1, … , 𝑢𝑛) are
those 𝑢𝑖’s that are not meta-variables.

Example (Computation rule for app)
⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type ⊢ {𝑥∶𝐴}𝑠 ∶ 𝐵(𝑥) ⊢ 𝑎 ∶ 𝐴

⊢ app(𝐴, 𝐵, 𝜆(𝐴, 𝐵, 𝑠), 𝑎) ≡ 𝑠[𝑎/𝑥] ∶ 𝐵(𝑎)

Andromeda marks just the third argument of app as normalizing
argument.

18 / 22



Normalizing abstracted arguments

Example
How to normalize ∏(𝐴, {𝑥} 𝐵(𝑥)).

1 Normalize 𝐴 to get ⊢ 𝐴 ≡ 𝐴′ by 𝛼.
2 Normalize {𝑥∶𝐴} 𝐵(𝑥) to get ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽
3 Convert 𝑥 in 𝐵′(𝑥) to get

⊢ ∏(𝐴′, {𝑥} 𝐵′[(𝑥 ∶ 𝐴 by 𝛼)/𝑥]) type

4 Apply congruence rule and combine into

⊢ ∏(𝐴, {𝑥} 𝐵(𝑥)) ≡ ∏(𝐴′, {𝑥} 𝐵′(𝑥 ∶ 𝐴 by 𝛼)) by (𝛽\{𝑥})
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1 Normalize 𝐴 to get ⊢ 𝐴 ≡ 𝐴′ by 𝛼.
2 Normalize {𝑥∶𝐴} 𝐵(𝑥) to get ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽
3 Convert 𝑥 in 𝐵′(𝑥) to get

⊢ ∏(𝐴′, {𝑥} 𝐵′[(𝑥 ∶ 𝐴 by 𝛼)/𝑥]) type

4 Apply congruence rule and combine into

⊢ ∏(𝐴, {𝑥} 𝐵(𝑥)) ≡ ∏(𝐴′, {𝑥} 𝐵′(𝑥 ∶ 𝐴 by 𝛼)) by (𝛽\{𝑥})
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Future work

• Add support for confluence and termination of normalization.
• Appraise efficiency and find opportunities for optimization.
• Extend the algorithm to cover more complex patterns.
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Demo in Andromeda
• Implemented-in-Ocaml in 1300 lines.
• Outside of trusted nucleus.
• Each equality step certified by nucleus.
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Demo in Andromeda

require eq ;;
rule Π (A type) ({x : A} B type) type ;;
rule lambda (A type) ({x : A} B type) ({x : A} e : B{x}) : Π A B ;;
rule app (A type) ({x : A} B type) (s : Π A B) (a : A) : B{a} ;;

rule Π_beta (A type) ({x : A} B type)
({x : A} s : B{x}) (a : A)
: app A B (lambda A B s) a == s{a} : B{a} ;;

eq.add_rule Π_beta;;

rule Π_ext (A type) ({x : A} B type) (f : Π A B) (g : Π A B) ({x : A} app A B f x == app A B g x : B{x})
: f == g : Π A B;;

eq.add_rule Π_ext;;

let eta = derive (A type) ({x : A} B type) (f : Π A B) ->
eq.prove (f == lambda A B ({a : A} app A B f a) : Π A B by ??) ;;
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