
Equality Checking for Finitary Type Theories

Anja Petković1

1University of Ljubljana, Slovenia

HoTTEST Conference 2020,
June 18, 2020

j.w.w. Andrej Bauer and Philipp G. Haselwarter

1This material is based upon work supported by the Air Force Office of Scientific Research under award
number FA9550-17-1-0326.

1 / 22



Motivation

• Equality checking algorithms are essential parts of proof
assistants.

• Most popular proof assistants provide them for their
underlying type theory.

• Extensions to the equality checking.

2 / 22



Motivation
What happens with user-definable type theory like in
Andromeda 2?

What we did:
• Designed a user-extensible equality checking algorithm, based

on type-directed equality checking, e.g., Harper & Stone
(2006).

• Implementation in Andromeda 2.

3 / 22



Motivation
What happens with user-definable type theory like in
Andromeda 2?

What we did:
• Designed a user-extensible equality checking algorithm, based

on type-directed equality checking, e.g., Harper & Stone
(2006).

• Implementation in Andromeda 2.

3 / 22



Talk overview

• Finitary Type Theories (as implemented in Andromeda 2).
• Overview of the algorithm:

• type-directed phase,
• normalization phase,
• normal forms.

• Live demo: using the implementation of the equality checker
in Andromeda 2.

4 / 22



Finitary Type Theories
An adaptation of general type theories that Peter Lumsdaine
talked about,

but finitary rules and finitely many of them.
5 / 22



Finitary Type Theories

• 4 hypothetical judgement forms

Γ ⊢ 𝐴 type Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝐴 ≡ 𝐵 Γ ⊢ 𝑎 ≡ 𝑏 ∶ 𝐴

• boundaries

Γ ⊢ □ type Γ ⊢ □ ∶ 𝐴 Γ ⊢ 𝐴 ?≡ 𝐵 Γ ⊢ 𝑎 ?≡ 𝑏 ∶ 𝐴

• well-presented rules (finitary and finitely many)

6 / 22



Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

no proof state ⟹ no global contexts.
Context-free presentation:

• Previous work: Γ∞ by Geuvers et al. for Calculus of
Constructions.

• No explicit contexts.
• Free variables are tagged with their types: 𝑎𝐴.

Details: Philipp Haselwarter’s dissertation.

7 / 22



Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

no proof state

⟹ no global contexts.
Context-free presentation:

• Previous work: Γ∞ by Geuvers et al. for Calculus of
Constructions.

• No explicit contexts.
• Free variables are tagged with their types: 𝑎𝐴.

Details: Philipp Haselwarter’s dissertation.

7 / 22



Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

no proof state ⟹ no global contexts.

Context-free presentation:
• Previous work: Γ∞ by Geuvers et al. for Calculus of

Constructions.
• No explicit contexts.
• Free variables are tagged with their types: 𝑎𝐴.

Details: Philipp Haselwarter’s dissertation.

7 / 22



Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

no proof state ⟹ no global contexts.
Context-free presentation:

• Previous work: Γ∞ by Geuvers et al. for Calculus of
Constructions.

• No explicit contexts.
• Free variables are tagged with their types: 𝑎𝐴.

Details: Philipp Haselwarter’s dissertation.

7 / 22



Context-free presentation of finitary type theories
Andromeda 2 is an LCF-style proof assistant:

no proof state ⟹ no global contexts.
Context-free presentation:

• Previous work: Γ∞ by Geuvers et al. for Calculus of
Constructions.

• No explicit contexts.
• Free variables are tagged with their types: 𝑎𝐴.

Details: Philipp Haselwarter’s dissertation.

7 / 22



Context-free presentation of finitary type theories

Γ ⊢ 𝐴 type Γ, 𝑥∶𝐴 ⊢ 𝐵 type
Γ ⊢ Π(𝑥∶𝐴) . 𝐵 type

↓

⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) type

Abstraction is a primitive notion.

8 / 22



Context-free presentation of finitary type theories

Γ ⊢ 𝐴 type Γ, 𝑥∶𝐴 ⊢ 𝐵 type
Γ ⊢ Π(𝑥∶𝐴) . 𝐵 type

↓

⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) type

Abstraction is a primitive notion.

8 / 22



Context-free presentation of type theories

4 judgement forms:

𝑗 ≔ 𝐴 type 𝑎∶𝐴 𝐴 ≡ 𝐵 by 𝛼 𝑎 ≡ 𝑏 ∶ 𝐴 by 𝛼

boundaries:

b ≔ □ type □ ∶ 𝐴 𝐴 ≡ 𝐵 by □ 𝑎 ≡ 𝑏 ∶ 𝐴 by □

Abstracted judgements and boundaries:

{𝑥1 ∶𝐴1} … {𝑥𝑛 ∶𝐴𝑛}𝑗 {𝑥1 ∶𝐴1} … {𝑥𝑛 ∶𝐴𝑛}b

.

9 / 22



Assumption sets
Contexts keep track of:

1 Types of variables.
2 Which variables are available.

Annotations solve 1, but 2 needs care, e.g., if the user poses
equality reflection rule

Γ ⊢ 𝐴 type Γ ⊢ 𝑠 ∶ 𝐴 Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑝 ∶ Eq(𝐴, 𝑠, 𝑡)
Γ ⊢ 𝑠 ≡ 𝑡 ∶ 𝐴

then 𝑝 (and its potential variables) is not recorded in the
conclusion. Tracking used variables: assumption sets.

𝐴 ≡ 𝐵 by 𝛼 𝑎 ≡ 𝑏 ∶ 𝐴 by 𝛼

Assumption sets 𝛼 consist of:
• free variables
• bound variables
• meta-variables

10 / 22



Assumption sets
Contexts keep track of:

1 Types of variables.

2 Which variables are available.
Annotations solve 1, but 2 needs care, e.g., if the user poses
equality reflection rule

Γ ⊢ 𝐴 type Γ ⊢ 𝑠 ∶ 𝐴 Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑝 ∶ Eq(𝐴, 𝑠, 𝑡)
Γ ⊢ 𝑠 ≡ 𝑡 ∶ 𝐴

then 𝑝 (and its potential variables) is not recorded in the
conclusion. Tracking used variables: assumption sets.

𝐴 ≡ 𝐵 by 𝛼 𝑎 ≡ 𝑏 ∶ 𝐴 by 𝛼

Assumption sets 𝛼 consist of:
• free variables
• bound variables
• meta-variables

10 / 22



Assumption sets
Contexts keep track of:

1 Types of variables.
2 Which variables are available.

Annotations solve 1, but 2 needs care, e.g., if the user poses
equality reflection rule

Γ ⊢ 𝐴 type Γ ⊢ 𝑠 ∶ 𝐴 Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑝 ∶ Eq(𝐴, 𝑠, 𝑡)
Γ ⊢ 𝑠 ≡ 𝑡 ∶ 𝐴

then 𝑝 (and its potential variables) is not recorded in the
conclusion. Tracking used variables: assumption sets.

𝐴 ≡ 𝐵 by 𝛼 𝑎 ≡ 𝑏 ∶ 𝐴 by 𝛼

Assumption sets 𝛼 consist of:
• free variables
• bound variables
• meta-variables

10 / 22



Assumption sets
Contexts keep track of:

1 Types of variables.
2 Which variables are available.

Annotations solve 1, but 2 needs care, e.g., if the user poses
equality reflection rule

Γ ⊢ 𝐴 type Γ ⊢ 𝑠 ∶ 𝐴 Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑝 ∶ Eq(𝐴, 𝑠, 𝑡)
Γ ⊢ 𝑠 ≡ 𝑡 ∶ 𝐴

then 𝑝 (and its potential variables) is not recorded in the
conclusion.

Tracking used variables: assumption sets.

𝐴 ≡ 𝐵 by 𝛼 𝑎 ≡ 𝑏 ∶ 𝐴 by 𝛼

Assumption sets 𝛼 consist of:
• free variables
• bound variables
• meta-variables

10 / 22



Assumption sets
Contexts keep track of:

1 Types of variables.
2 Which variables are available.

Annotations solve 1, but 2 needs care, e.g., if the user poses
equality reflection rule

Γ ⊢ 𝐴 type Γ ⊢ 𝑠 ∶ 𝐴 Γ ⊢ 𝑡 ∶ 𝐴 Γ ⊢ 𝑝 ∶ Eq(𝐴, 𝑠, 𝑡)
Γ ⊢ 𝑠 ≡ 𝑡 ∶ 𝐴

then 𝑝 (and its potential variables) is not recorded in the
conclusion. Tracking used variables: assumption sets.

𝐴 ≡ 𝐵 by 𝛼 𝑎 ≡ 𝑏 ∶ 𝐴 by 𝛼

Assumption sets 𝛼 consist of:
• free variables
• bound variables
• meta-variables

10 / 22



Conversions
Explicit conversion in terms:

⊢ 𝐴 type ⊢ 𝐵 type ⊢ 𝑡 ∶ 𝐴 ⊢ 𝐴 ≡ 𝐵 by 𝛼
⊢ (𝑡 ∶ 𝐵 by 𝛼) ∶ 𝐵

Choices:
Example (Congruence rule for Π)

Γ ⊢ 𝐴 ≡ 𝐴′ Γ, 𝑥∶𝐴 ⊢ 𝐵(𝑥) ≡ 𝐵′(𝑥)
Γ ⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥))

⊢ 𝐴 ≡ 𝐴′ by 𝛼 ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥 ∶ 𝐴 by 𝛼))

⊢ 𝐴 ≡ 𝐴′ by 𝛼 ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥 ∶ 𝐴′ by 𝛼) by 𝛽
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥))

11 / 22



Conversions
Explicit conversion in terms:

⊢ 𝐴 type ⊢ 𝐵 type ⊢ 𝑡 ∶ 𝐴 ⊢ 𝐴 ≡ 𝐵 by 𝛼
⊢ (𝑡 ∶ 𝐵 by 𝛼) ∶ 𝐵

Choices:
Example (Congruence rule for Π)

Γ ⊢ 𝐴 ≡ 𝐴′ Γ, 𝑥∶𝐴 ⊢ 𝐵(𝑥) ≡ 𝐵′(𝑥)
Γ ⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥))

⊢ 𝐴 ≡ 𝐴′ by 𝛼 ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥 ∶ 𝐴 by 𝛼))

⊢ 𝐴 ≡ 𝐴′ by 𝛼 ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥 ∶ 𝐴′ by 𝛼) by 𝛽
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥))

11 / 22



Conversions
Explicit conversion in terms:

⊢ 𝐴 type ⊢ 𝐵 type ⊢ 𝑡 ∶ 𝐴 ⊢ 𝐴 ≡ 𝐵 by 𝛼
⊢ (𝑡 ∶ 𝐵 by 𝛼) ∶ 𝐵

Choices:
Example (Congruence rule for Π)

Γ ⊢ 𝐴 ≡ 𝐴′ Γ, 𝑥∶𝐴 ⊢ 𝐵(𝑥) ≡ 𝐵′(𝑥)
Γ ⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥))

⊢ 𝐴 ≡ 𝐴′ by 𝛼 ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥 ∶ 𝐴 by 𝛼))

⊢ 𝐴 ≡ 𝐴′ by 𝛼 ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥 ∶ 𝐴′ by 𝛼) by 𝛽
⊢ Π(𝐴, {𝑥}𝐵(𝑥)) ≡ Π(𝐴′, {𝑥}𝐵′(𝑥))

11 / 22



Finitary Type Theories

Summary:
• Free variables annotated with their types 𝑎𝐴.
• Bound variables abstracted with an explicit abstraction.
• Assumption sets.
• Explicit conversions in terms.

12 / 22



Overview of the algorithm

Mutually recursive sub-algorithms:
• Normalize a type 𝐴
• Normalize a term 𝑡 of type 𝐴
• Check equality of types 𝐴 ≡ 𝐵
• Check equality of normal types 𝐴 ≡ 𝐵
• Check equality of terms 𝑠 and 𝑡 of type 𝐴

1 type-directed phase
2 normalization phase

• Check equality of normal terms 𝑠 and 𝑡 of type 𝐴

13 / 22



Normalization

• Use computation rules as long as any apply.
• Normalize the normalizing arguments.

Normalization outputs a certified equation between the original
and normalized expression.

14 / 22



Equality checking

• Check equality of types 𝐴 ≡ 𝐵: 𝐴 and 𝐵 are normalized
and their normal forms are compared.

• Check equality of normal types 𝐴 ≡ 𝐵: compare
structurally - apply a congruence rule. Proceed recursively on
the (normalizing) arguments.

• Check equality of terms 𝑠 and 𝑡 of type 𝐴:
1 type-directed phase: normalize the type 𝐴 and apply

extensionality rules, if any.
2 normalization phase: if no extensionality rules apply,

normalize 𝑠 and 𝑡 and compare their normal forms.
• Check equality of normal terms 𝑠 and 𝑡 of type 𝐴: normal

terms are compared structurally.

15 / 22



Extensionality rules
𝑃1 ⋯ 𝑃𝑛 ⊢ 𝑥 ∶ 𝐴 ⊢ 𝑦 ∶ 𝐴 𝑄1 ⋯ 𝑄𝑚

⊢ 𝑥 ≡ 𝑦 ∶ 𝐴 ,

where
• 𝑃1, … , 𝑃𝑛 are object premises,
• 𝑄1, … , 𝑄𝑚 are equality premises,

Example (Extensionality rule for dependent functions1)

⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type
⊢ 𝑓 ∶ Π(𝐴, {𝑥}𝐵(𝑥)) ⊢ 𝑔 ∶ Π(𝐴, {𝑥}𝐵(𝑥))

⊢ {𝑥∶𝐴} app(𝐴, 𝐵, 𝑓, 𝑥) ≡ app(𝐴, 𝐵, 𝑔, 𝑥) ∶ 𝐵(𝑥)
⊢ 𝑓 ≡ 𝑔 ∶ Π(𝐴, {𝑥}𝐵(𝑥))

Note: Inter-derivable with 𝜂-rules.

1not to be confused with function extensionality
16 / 22



Extensionality rules
𝑃1 ⋯ 𝑃𝑛 ⊢ 𝑥 ∶ 𝐴 ⊢ 𝑦 ∶ 𝐴 𝑄1 ⋯ 𝑄𝑚

⊢ 𝑥 ≡ 𝑦 ∶ 𝐴 ,

where
• 𝑃1, … , 𝑃𝑛 are object premises,
• 𝑄1, … , 𝑄𝑚 are equality premises,

Example (Extensionality rule for dependent functions1)

⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type
⊢ 𝑓 ∶ Π(𝐴, {𝑥}𝐵(𝑥)) ⊢ 𝑔 ∶ Π(𝐴, {𝑥}𝐵(𝑥))

⊢ {𝑥∶𝐴} app(𝐴, 𝐵, 𝑓, 𝑥) ≡ app(𝐴, 𝐵, 𝑔, 𝑥) ∶ 𝐵(𝑥)
⊢ 𝑓 ≡ 𝑔 ∶ Π(𝐴, {𝑥}𝐵(𝑥))

Note: Inter-derivable with 𝜂-rules.
1not to be confused with function extensionality

16 / 22



Computation rules

Computation rules take the forms

𝑃1 ⋯ 𝑃𝑛
⊢ 𝑢 ≡ 𝑣 ∶ 𝑇

𝑃1 ⋯ 𝑃𝑛
⊢ 𝐴 ≡ 𝐵

where the 𝑃𝑖’s are object premises.
• 𝑢 has the form s(𝑒1, … , 𝑒𝑚)
• 𝐴 has the form S(𝑒1, … , 𝑒𝑚)

Example (Dependent functions)

⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type ⊢ {𝑥∶𝐴}𝑠 ∶ 𝐵(𝑥) ⊢ 𝑎 ∶ 𝐴
⊢ app(𝐴, 𝐵, 𝜆(𝐴, 𝐵, 𝑠), 𝑎) ≡ 𝑠[𝑎/𝑥] ∶ 𝐵(𝑎)

17 / 22



Normal forms
Definition
An expression is in normal form if

• no computation rules apply,
• its normalizing arguments are in normal form.

Selecting normalizing arguments specifies what is a (weak) normal
form.

In Andromeda 2: normalizing arguements for s(𝑢1, … , 𝑢𝑛) are
those 𝑢𝑖’s that are not meta-variables.

Example (Computation rule for app)
⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type ⊢ {𝑥∶𝐴}𝑠 ∶ 𝐵(𝑥) ⊢ 𝑎 ∶ 𝐴

⊢ app(𝐴, 𝐵, 𝜆(𝐴, 𝐵, 𝑠), 𝑎) ≡ 𝑠[𝑎/𝑥] ∶ 𝐵(𝑎)

Andromeda marks just the third argument of app as normalizing
argument.

18 / 22



Normal forms
Definition
An expression is in normal form if

• no computation rules apply,
• its normalizing arguments are in normal form.

Selecting normalizing arguments specifies what is a (weak) normal
form.

In Andromeda 2: normalizing arguements for s(𝑢1, … , 𝑢𝑛) are
those 𝑢𝑖’s that are not meta-variables.

Example (Computation rule for app)
⊢ 𝐴 type ⊢ {𝑥∶𝐴}𝐵 type ⊢ {𝑥∶𝐴}𝑠 ∶ 𝐵(𝑥) ⊢ 𝑎 ∶ 𝐴

⊢ app(𝐴, 𝐵, 𝜆(𝐴, 𝐵, 𝑠), 𝑎) ≡ 𝑠[𝑎/𝑥] ∶ 𝐵(𝑎)

Andromeda marks just the third argument of app as normalizing
argument.

18 / 22



Normalizing abstracted arguments

Example
How to normalize ∏(𝐴, {𝑥} 𝐵(𝑥)).

1 Normalize 𝐴 to get ⊢ 𝐴 ≡ 𝐴′ by 𝛼.
2 Normalize {𝑥∶𝐴} 𝐵(𝑥) to get ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽
3 Convert 𝑥 in 𝐵′(𝑥) to get

⊢ ∏(𝐴′, {𝑥} 𝐵′[(𝑥 ∶ 𝐴 by 𝛼)/𝑥]) type

4 Apply congruence rule and combine into

⊢ ∏(𝐴, {𝑥} 𝐵(𝑥)) ≡ ∏(𝐴′, {𝑥} 𝐵′(𝑥 ∶ 𝐴 by 𝛼)) by (𝛽\{𝑥})

19 / 22



Normalizing abstracted arguments

Example
How to normalize ∏(𝐴, {𝑥} 𝐵(𝑥)).

1 Normalize 𝐴 to get ⊢ 𝐴 ≡ 𝐴′ by 𝛼.

2 Normalize {𝑥∶𝐴} 𝐵(𝑥) to get ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽
3 Convert 𝑥 in 𝐵′(𝑥) to get

⊢ ∏(𝐴′, {𝑥} 𝐵′[(𝑥 ∶ 𝐴 by 𝛼)/𝑥]) type

4 Apply congruence rule and combine into

⊢ ∏(𝐴, {𝑥} 𝐵(𝑥)) ≡ ∏(𝐴′, {𝑥} 𝐵′(𝑥 ∶ 𝐴 by 𝛼)) by (𝛽\{𝑥})

19 / 22



Normalizing abstracted arguments

Example
How to normalize ∏(𝐴, {𝑥} 𝐵(𝑥)).

1 Normalize 𝐴 to get ⊢ 𝐴 ≡ 𝐴′ by 𝛼.
2 Normalize {𝑥∶𝐴} 𝐵(𝑥) to get ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽

3 Convert 𝑥 in 𝐵′(𝑥) to get

⊢ ∏(𝐴′, {𝑥} 𝐵′[(𝑥 ∶ 𝐴 by 𝛼)/𝑥]) type

4 Apply congruence rule and combine into

⊢ ∏(𝐴, {𝑥} 𝐵(𝑥)) ≡ ∏(𝐴′, {𝑥} 𝐵′(𝑥 ∶ 𝐴 by 𝛼)) by (𝛽\{𝑥})

19 / 22



Normalizing abstracted arguments

Example
How to normalize ∏(𝐴, {𝑥} 𝐵(𝑥)).

1 Normalize 𝐴 to get ⊢ 𝐴 ≡ 𝐴′ by 𝛼.
2 Normalize {𝑥∶𝐴} 𝐵(𝑥) to get ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽
3 Convert 𝑥 in 𝐵′(𝑥) to get

⊢ ∏(𝐴′, {𝑥} 𝐵′[(𝑥 ∶ 𝐴 by 𝛼)/𝑥]) type

4 Apply congruence rule and combine into

⊢ ∏(𝐴, {𝑥} 𝐵(𝑥)) ≡ ∏(𝐴′, {𝑥} 𝐵′(𝑥 ∶ 𝐴 by 𝛼)) by (𝛽\{𝑥})

19 / 22



Normalizing abstracted arguments

Example
How to normalize ∏(𝐴, {𝑥} 𝐵(𝑥)).

1 Normalize 𝐴 to get ⊢ 𝐴 ≡ 𝐴′ by 𝛼.
2 Normalize {𝑥∶𝐴} 𝐵(𝑥) to get ⊢ {𝑥∶𝐴}𝐵(𝑥) ≡ 𝐵′(𝑥) by 𝛽
3 Convert 𝑥 in 𝐵′(𝑥) to get

⊢ ∏(𝐴′, {𝑥} 𝐵′[(𝑥 ∶ 𝐴 by 𝛼)/𝑥]) type

4 Apply congruence rule and combine into

⊢ ∏(𝐴, {𝑥} 𝐵(𝑥)) ≡ ∏(𝐴′, {𝑥} 𝐵′(𝑥 ∶ 𝐴 by 𝛼)) by (𝛽\{𝑥})

19 / 22



Future work

• Add support for confluence and termination of normalization.
• Appraise efficiency and find opportunities for optimization.
• Extend the algorithm to cover more complex patterns.

20 / 22



Demo in Andromeda
• Implemented-in-Ocaml in 1300 lines.
• Outside of trusted nucleus.
• Each equality step certified by nucleus.

21 / 22



Demo in Andromeda

require eq ;;
rule Π (A type) ({x : A} B type) type ;;
rule lambda (A type) ({x : A} B type) ({x : A} e : B{x}) : Π A B ;;
rule app (A type) ({x : A} B type) (s : Π A B) (a : A) : B{a} ;;

rule Π_beta (A type) ({x : A} B type)
({x : A} s : B{x}) (a : A)
: app A B (lambda A B s) a == s{a} : B{a} ;;

eq.add_rule Π_beta;;

rule Π_ext (A type) ({x : A} B type) (f : Π A B) (g : Π A B) ({x : A} app A B f x == app A B g x : B{x})
: f == g : Π A B;;

eq.add_rule Π_ext;;

let eta = derive (A type) ({x : A} B type) (f : Π A B) ->
eq.prove (f == lambda A B ({a : A} app A B f a) : Π A B by ??) ;;

22 / 22


