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Intensional Type Theories vs. (∞, 1)-Categories

Type Theory Category Theory

Type Theory with finitely complete
dependent sums and (∞, 1)− categories

intensional identity types

Intensional Martin-Löf Locally Cartesian closed
Type Theory with (∞, 1)− categories∏
,
∑
, id− types

Homotopy type Elementary (∞, 1)−
theories topos ???

Internal Language

Models

Kapulkin,Szumilo

⊆ Kapulkin

if Presentable

⊆

⊆

if Grothendieck

⊆

Let’s focus on the last line!
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Homotopy Type Theories vs (∞, 1)-Categories
Towards Models of HoTT

What’s a model for HoTT: Vague Edition

A model for HoTT is an (∞, 1)-category in which we can interpret
various type theoretic constructions.
In some cases it is reasonably clear what that means:

1 Coproduct type  coproduct in the (∞, 1)-category.

2 The type of natural numbers  natural number object.

In some cases it’s not really clear what that means:

3 Univalent universe?

Key problem: General (∞, 1)-categories are very non-strict!
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Why Presentability?
Type-Theoretic Model Topos

Model Categories

The fix is an appropriate use of model categories!

Model categories are strict 1-categories!
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Why Presentability?
Type-Theoretic Model Topos

Axiomatizations of Model Categories

1 Arendt, Kapulkin: Introduce logical model categories and
prove they model Σ, Π, id-types.

2 Shulman: Introduces type-theoretic model categories and
prove their Π-types satisfy function extensionality.

3 Shulman, Lumsdaine: Introduce good model categories,
which model certain higher inductive types (coproduct type,
circle, ...), and excellent model categories, which model
further higher inductive types (W -types, truncations,
localizations, ...).

4 Shulman: Introduces type-theoretic model toposes, which is
a model topos and is a special case of all the previous
examples, but also models strict univalent universes.
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Why Presentability?
Type-Theoretic Model Topos

Why Grothendieck Toposes?

Motivated by 1-Categories
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Why Presentability?
Type-Theoretic Model Topos

Grothendieck Toposes and Model Toposes

Definition

A Grothendieck 1-topos is a category G that fits into an adjunction

Fun(Cop, Set) G
a

⊥

where C small, a is left-exact.

Definition

A Grothendieck model topos is a simplicial model category X that
fits into a Quillen adjunction:

Fun(Cop, sSetKan)proj X
a

⊥

where C small, a is left-exact.
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Presentable Models
Elementary Models

Why Presentability?
Type-Theoretic Model Topos

Model Topos vs. Grothendieck (∞, 1)-Topos

We generalize the previous diagram:
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Elementary Models

Why Presentability?
Type-Theoretic Model Topos

What is a Type-Theoretic Model Topos E ?

Definition (Shulman)

1 Grothendieck 1-topos.

2 right proper, simplicial, combinatorial model structure with
cofibrations monos.

3 simplicially locally Cartesian closed

4 locally representable, relatively acyclic notion of fibred
structure that covers all fibrations

Note: It is in fact a Grothendieck model topos.
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Why Presentability?
Type-Theoretic Model Topos

Univalent Universes in TTMT

Fix large enough κ.

Fibκ :Eop Grpd

X ((Fib/X )κ)'

The last condition implies the existence of a cofibrant object U and
an acyclic fibration

E(−,U)� Fibκ

Moreover, U is fibrant and univalent.
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Why Presentability?
Type-Theoretic Model Topos

Model Topos = Type-Theoretic Model Topos

Type-theoretic model toposes in fact recover all model toposes.

Fun(C, sSetKan)proj X
a

⊥

Three steps:

1 The Kan model structure is a TTMT (also observed by
Kapulkin-Lumsdaine).

2 Injective model structure on diagrams into TTMT is a
TTMT.

3 Left-exact Bousfield localizations of a TTMT is a TTMT.
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Presentable Models
Elementary Models

The Classical Story
Type-Theoretic Elementary Model Topos
Closure under Filter Products

What about the non-presentable case?

We expect non-presentable models for homotopy type theories.
However, arbitrary non-presentable (∞, 1)-categories don’t come
from model categories.

1 General Case: Embed every category in its presheaf category.
2 Specific Case: Use specific constructions.

Realizability topos
Filter Product
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Elementary 1-Toposes

In order to move from the presentable to the non-presentable world
we need to generalize our toposes.

Definition

An elementary 1-topos is a locally Cartesian closed category with
subobject classifier.

Proposition

A locally presentable category is an elementary 1-topos if and only
if it is a Grothendieck 1-topos.

Slogan: The “correct” generalization of Grothendieck 1-toposes.
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Filters

Let’s start with filters:

Definition

Let I be a set. A filter Φ ⊆ P(I ) is a subset of the power set
satisfying:

1 Non-Empty: I ∈ Φ.

2 Intersection Closed: J1, J2 ∈ Φ→ J1 ∩ J2 ∈ Φ.

3 Upwards Closed: J1 ∈ Φ, J1 ⊆ J2 → J2 ∈ Φ.

We can think of elements in Φ as “large” subsets of I .
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Filter Products

Definition

For a category C define the filter-product
∏

Φ C as:

Obj: (ci )i∈I , ci ∈ Obj(C).

Mor:

Hom∏
Φ C((ci )i∈I , (c

′
i )i∈I ) =

(∐
J∈Φ

∏
i∈J

HomC(ci , c
′
i )

)
/ ∼

(fi )i∈J1 ∼ (gi )i∈J2 ⇔ ∃J3 ⊆ J1 ∩ J2, J3 ∈ Φ, {i ∈ J3 : fi = gi} ∈ Φ

So, morphisms that agree on a “large” index set are identified.
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Filter Products in Elementary Topos Theory

Filter products are relevant in topos theory.

Theorem (Adelman-Johnstone 1982)

Let E be an elementary 1-topos, I a set and Φ a filter. Then
∏

Φ E

is also an elementary 1-topos.

Remark

The same does not hold with Grothendieck toposes!

Example

Let E = Set, I = N and Φ the Fréchet filter (of cofinite sets).
Then

∏
Φ Set is a non-Grothendieck elementary topos.
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Generalize to Model Categories

We want to generalize the example from categories to model
categories!

We need to generalize the definition appropriately:

Type-Theoretic Elementary Model Topos
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Type-Theoretic Elementary Model Topos

TT Grothendieck MT TT Elementary MT
(1) Grothendieck topos elementary topos

(2) right proper, simplicial, right proper, simplicial
combinatorial, combinatorial,

cofibrations are monos cofibrations are monos

(3) simplicially lcc simplicially lcc

(4) notion of fibred structure F Fib has a
locally representable fibrant-cofibrant

relatively acyclic univalent universe
|F| = Fib
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What does it mean: “has a universe”?

E has a universe, if there is a filtration

Eκ1 ⊆ Eκ2 ⊆ ...

of E such that for all Eκ in the filtration there exists a
fibrant-cofibrant, univalent universe U, meaning a acyclic trivial
fibration:

E(−,U)� Fibκ.
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Is this the best we can do?

I don’t know!

1 It generalizes type-theoretic Grothendieck model topos.
2 It still includes many relevant examples:

Logical model categories
Type-theoretic model categories
good model categories
but not excellent model categories

In particular, it interprets Martin-Löf Type theory with
Σ-types, Π-types with function extensionality, identity
types, the natural numbers type, the sphere types
Sn,universe types, ...

3 It has non-trivial examples.
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Filter-Product Model Structure

Theorem (R)

Let M be a model structure (with finite (co)limits), I a set and Φ
a filter on I . Then there is a model structure on

∏
ΦM given by

(fi )i∈J ∈ F ⇔ {i ∈ J : fi ∈ F} ∈ Φ

where F is one of the classes of fibrations/cofibration/weak
equivalences.

The proof is routine checking.

Remark

Fun fact: We really need all three conditions of a filter!
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Transfer of Properties

The following properties will transfer from M to
∏

ΦM:

finite (co)limits

Cartesian closure

left/right proper

simplicial

compatibility with Cartesian closure

cofibrations monomorphism

The following will not transfer:

infinite (co)limits

local presentability

cofibrantly generated
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Comparison with (∞, 1)-Version

We also have following comparison theorem.

Theorem (R)

Let M be a simplicial model category, I a set and Φ a filter. Then
we have an equivalence of (∞, 1)-categories

N(
∏
Φ

M) '
∏
Φ

N(M)
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Constructing Elementary Models of HoTT

Theorem (R)

Let E be a type-theoretic elementary model topos, I a set and Φ a
filter. Then

∏
Φ E is a type-theoretic elementary model topos.

This directly generalizes the result by Adelman-Johnstone.

Nima Rasekh - EPFL Filter Products and Elementary Models of HoTT 26 / 34



Models of Type Theories
Presentable Models
Elementary Models

The Classical Story
Type-Theoretic Elementary Model Topos
Closure under Filter Products

Example I

We are now finally in a position to put the theory in practice and
give examples.

Example

Let

E = sSet with Kan model structure

I = N
Φ = Fréchet filter (cofinite subsets)

Then, by the previous theorem,
∏

Φ Kan is a type-theoretic
elementary model topos.

Claim: It’s not Grothendieck!
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Example II

1 The underlying category
∏

Φ sSet is not locally presentable.
So, in particular,

∏
Φ Kan is not combinatorial.

2 It does not even have infinite colimits.

3 The natural number object is non-standard.
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Example III
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Where do we go from here?

These results don’t generalize to other elementary models!

Could be an application of HoTT to non-classical algebraic
topology

HoTT indexes homotopy groups by the internal natural
number object.
HoTT proofs of algebraic topological results still hold
...
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Proof I

Need to check four conditions:

1
∏

Φ E is an elementary 1-topos.

2
∏

Φ E has a right proper, simplicial model structure where
cofibrations are monos

3
∏

Φ E is simplicially locally Cartesian closed.

4 FibΦ has a fibrant-cofibrant univalent universe

The first three follow from previous analysis.
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Proof II
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Proof III
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The End!

Thank you!

Questions?
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