Synthetic Spectra via a Monadic and Comonadic Modality

Mitchell Riley¹ jww. Dan Licata¹ Eric Finster²

Wesleyan University¹ University of Birmingham²

18th June 2020

Pointed Types

Recall:

Definition

- ▶ A pointed type is a pair of A : Type and a : A.
- ▶ A pointed function $(A, a) \rightarrow_{\star} (B, b)$ is a function $f : A \rightarrow B$ and path p : f(a) = b.

Carrying these paths p through constructions can be tedious.

We might prefer to talk about functions that preserve the point *strictly*. But we cannot arrange this in ordinary type theory.

Spectra

Definition

- ▶ A prespectrum E is a sequence of pointed types $E: \mathbb{N} \to \mathsf{Type}_{\star}$ together with pointed maps $\alpha_n: E_n \to_{\star} \Omega E_{n+1}$.
- A spectrum is a prespectrum such that the α_n are pointed equivalences.

Examples

- ▶ Each abelian group G yields a spectrum with $E_n := K(G, n)$, the 'Eilenberg-MacLane spaces'.
- ▶ The zero spectrum with $E_n := 1$.
- ► The sphere prespectrum has $E_n := S^n$, with α_n the transpose of $\Sigma S^n \to_{\star} S^{n+1}$

Working With Spectra

Definition

A map of spectra $f: E \to F$ is a sequence of pointed maps $f_n: E_n \to_{\star} F_n$ that commute with the structure maps of E and F.

Not many operations on spectra have been defined in type theory!

Do It Synthetically

Can we find a model where functions automatically respect the point?

Pointed spaces or spectra don't form a good model of type theory.

Space indexed families of pointed spaces/spectra do!

Parameterised Pointed Spaces

Definition

A parameterised pointed space is a space-indexed family of pointed spaces.

Theorem

The ∞ -category of parameterised pointed spaces, $P\mathcal{S}_{\star}$, is an ∞ -topos.

Parameterised Spectra

Definition

A parameterised spectrum is a space-indexed family of spectra.

Theorem (Joyal 2008, jww. Biedermann)

The ∞ -category of parameterised spectra, $P\mathrm{Spec}$, is an ∞ -topos.

Types As

HoTT

Types as ∞ -groupoids.

In This Talk

Types as ∞ -groupoids indexing a family of pointed things.

Spatial Type Theory (Shulman 2018)

Types as ∞ -groupoids equipped with additional topological structure.

Underlying Space

For every parameterised family, there is an operation that forgets the family.

And given a space, we can equip it with the trivial family.

Underlying Space

As a diagram of categories:

$$\begin{array}{c|c}
PC \\
0 & \downarrow & \downarrow \\
S
\end{array}$$

Let abla be the round-trip on PC, this is an idempotent monad and comonad that is adjoint to itself.

Goal:

We want an extension of HoTT with a type former \natural that captures this situation.

Review: Spatial Type Theory

The \$ Modality

Axioms

A Synthetic Smash Product

Review: Spatial Type Theory

The | Modality

Axioms

A Synthetic Smash Product

Spatial Type Theory

The b/\sharp fragment of cohesive type theory (Shulman 2018).

The intended models are 'local toposes':

$$\begin{array}{c|c} \mathcal{E} \\ \text{Disc} & \downarrow \Gamma + \uparrow \text{CoDisc} \\ \mathcal{S} \end{array}$$

with the outer functors fully faithful.

- ▶ $\flat :\equiv \operatorname{Disc} \circ \Gamma$ is a lex idempotent comonad,
- ▶ $\sharp :\equiv \operatorname{CoDisc} \circ \Gamma$ is an idempotent monad,
- with b ⊢ #.

We want \flat and \sharp as unary type formers in our theory.

Spatial Type Theory

Following the pattern of adjoint logic, we put in a judgemental version of \flat and have the type formers interact with it.

$$\Delta \mid \Gamma \vdash a : A$$
 corresponds to $a : \flat \Delta \times \Gamma \to A$

We need two variable rules:

The second rule comes from the counit $\flat A \rightarrow A$.

Figuring Out

The unary type former \sharp is supposed to be right adjoint to \flat , so we make it adjoint to the judgemental context \flat .

What does \flat do to contexts? Recall $\Delta \mid \Gamma$ means $\flat \Delta \times \Gamma$.

$$\flat(\flat\Delta\times\Gamma)\cong\flat\flat\Delta\times\flat\Gamma\cong\flat\Delta\times\flat\Gamma\cong\flat(\Delta\times\Gamma)$$

So applying \flat to $\Delta \mid \Gamma$ gives $\Delta, \Gamma \mid \cdot$.

$$\begin{array}{ll} \sharp\text{-FORM} & \sharp\text{-INTRO} \\ \underline{\Delta, \Gamma \mid \cdot \vdash A \text{ type}} & \underline{\Delta, \Gamma \mid \cdot \vdash a : A} \\ \underline{\Delta \mid \Gamma \vdash \sharp A \text{ type}} & \underline{\Delta \mid \Gamma \vdash a^\sharp : \sharp A} \end{array}$$

Figuring Out # Elim

First go:

$$\frac{\Delta \mid \Gamma \vdash s : \sharp A}{\Delta, \Gamma \mid \cdot \vdash s_{\sharp} : A}$$

Going from the conclusion to the premise, demoting Γ only makes it more difficult to use:

$$\frac{\text{\sharp-ELIM-V2?}}{\Delta\mid\cdot\vdash s:\sharp A}$$

$$\frac{\Delta\mid\cdot\vdash s:\sharp A}{\Delta\mid\cdot\vdash s_{\sharp}:A}$$

Context in the conclusion should be fully general:

$$\frac{\Delta \mid \cdot \vdash s : \sharp A}{\Delta \mid \Gamma \vdash s_{\sharp} : A}$$

Review: Spatial Type Theory

The \$ Modality

Axioms

A Synthetic Smash Product

Almost Spatial Type Theory

Comparing the setting of spatial type theory with ours:

We could use Spatial Type Theory to study our setting on the right, if we impose that $\flat A \to A \to \sharp A$ is always an equivalence.

But transport across equivalence this would need to occur everywhere. We want a version that captures such a modality directly.

The Roundtrip

- ▶ The primary difficulty is that the structure maps include a non-trivial round trip $A \rightarrow \natural A \rightarrow A$.
- ▶ In Spatial Type Theory the counit was *silent*, not annotated in the term.

$$\overline{\Delta, x :: A, \Delta' \mid \Gamma \vdash x : A}$$

At least one of the unit or counit has to be explicit.

▶ We chose to make the counit *explicit*, and the unit silent.

Variables

Our contexts again have two zones, where $\Delta \mid \Gamma$ morally means $\natural \Delta \times \Gamma$.

VAR
$$\frac{\text{VAR-ZERO}}{\Delta \mid \Gamma, x : A, \Gamma' \vdash x : A} \frac{\overline{\Delta}, \underline{x} :: A, \Delta' \mid \Gamma \vdash \underline{x} : A}{\overline{\Delta}, \underline{x} :: A, \Delta' \mid \Gamma \vdash \underline{x} : A}$$

$$\frac{\text{VAR-ROUNDTRIP}}{\overline{\Delta} \mid \Gamma, x : A, \Gamma' \vdash \underline{x} : \underline{A}}$$

- ▶ VAR-ZERO corresponds to a use of the counit,
- ► VAR-ROUNDTRIP corresponds to the unit followed by the counit.

on Contexts

What does \(\) do to contexts? Like last time:

$$\natural(\natural\Delta\times\Gamma)\cong\natural\natural\Delta\times\natural\Gamma\cong\natural\Delta\times\natural\Gamma\cong\natural(\Delta\times\Gamma)$$

But we can't write $\Delta, \Gamma \mid \cdot$ exactly, because the counit is not silent! The types in Γ have to have all uses of other variables from Γ marked.

Let's write Δ , $0\Gamma \mid \cdot$ for this.

E.g.: $\underline{x} :: A \mid y : B, z : C(y)$ becomes $\underline{x} :: A, \underline{y} :: B, \underline{z} :: C(\underline{y}) \mid \cdot$.

Marking Terms

Precomposition with the structural rules can be extended to terms:

When using x: A via the round-trip, also have to round-trip the type:

$$\Delta \mid \Gamma, x : A, \Gamma' \vdash \underline{x} : \underline{A}$$

Figuring Out 4

$$\begin{array}{ll} \begin{tabular}{ll} \downarrow-FORM & \sharp-INTRO \\ $\Delta,0\Gamma\mid\cdot\vdash A$ type & $\Delta,0\Gamma\mid\cdot\vdash a:A$ \\ \hline $\Delta\mid\Gamma\vdash \natural A$ type & $\Delta\mid\Gamma\vdash a^{\natural}:\natural A$ \\ \hline \end{array}$$

$$\frac{\triangle \mid \Gamma \vdash a : \natural A}{\Delta, 0\Gamma \mid \cdot \vdash a_{\natural} : A}$$

Here we don't have to drop Γ as we did with \sharp , instead we can precompose the result with the unit:

$$\frac{\Delta \mid \Gamma \vdash a : \natural A}{\Delta \mid \Gamma \vdash a_{\natural} : A}$$

Rules for \$

$$\frac{\Delta, 0\Gamma \mid \cdot \vdash A \text{ type}}{\Delta \mid \Gamma \vdash \natural A \text{ type}}$$

$$\frac{\Delta, 0\Gamma \mid \cdot \vdash a : A}{\Delta \mid \Gamma \vdash a^{\natural} : \natural A}$$

$$\frac{\Delta \mid \Gamma \vdash \nu : \natural A}{\Delta \mid \Gamma \vdash \nu_{\natural} : A}$$

$$\frac{\Delta, 0\Gamma \mid \cdot \vdash a : A}{\Delta \mid \Gamma \vdash a^{\natural}_{\natural} \equiv a : A}$$

$$\frac{\Delta \mid \Gamma \vdash \nu : \sharp A}{\Delta \mid \Gamma \vdash \nu \equiv \underline{\nu}_{\natural}^{\natural} : \sharp A}$$

Properties of \(\bar{4} \)

- ↓ is a lex monadic modality in the sense of the HoTT book, like #
- ▶ ‡ is also comonadic, like ♭
- ▶ \natural is self-adjoint: $\natural(\natural A \to B) \simeq \natural(A \to \natural B)$

Definition

- ▶ A type X is a *space* if $(\lambda x.\underline{x}^{\natural}): X \to \natural \underline{X}$ is an equivalence.
- ▶ A type E is a *spectrum* if $abla \underline{E}$ is contractible.

(To be more model agnostic you might call these 'modal' and 'reduced')

Using \\

Proposition

For any A, the type atural is a space.

Proof.

We have to show that $(\lambda v.\underline{v}^{\natural}): \natural \underline{A} \to \natural \natural \underline{A}$ is an equivalence. For an inverse, use the counit $(\lambda z.z_{\natural}): \natural \natural \underline{A} \to \natural \underline{A}$.

In one direction:

and in the other:

$$\underline{v}^{\natural}{}_{\natural} \equiv \underline{v} \equiv \underline{\underline{v}}_{\natural}{}^{\natural} \equiv \underline{v}_{\natural}{}^{\natural} \equiv v.$$

Review: Spatial Type Theory

The | Modality

Axioms

A Synthetic Smash Product

Stability

Our spectra don't behave much like actual spectra yet.

Axiom S

For any 'dull' spectra $\underline{\underline{F}}$ and $\underline{\underline{F}}$, the wedge inclusion $\iota_{\underline{E},F}:\underline{\underline{F}}\vee\underline{F}\to\underline{\underline{F}}\times\underline{F}$ is an equivalence.

(The 'spectra' don't form a stable category in every slice, only in slices over spaces!)

Proposition

A dull square of spectra is a pushout square iff it is a pullback square.

Proposition

Dull spectra and dull maps between them are ∞ -connected.

Normalisation

Fix a distinguished spectrum \mathbb{S} : Type.

We can use this to build an adjunction

$$\operatorname{Space}_{\star}$$
 Spec

$$\Sigma^{\infty}X :\equiv X \wedge \mathbb{S}$$
$$\Omega^{\infty}\underline{E} :\equiv \sharp(\mathbb{S} \to_{\star} \underline{E})$$

Definition

The homotopy groups of a spectrum \underline{E} are

$$\pi_n^s(\underline{E}) :\equiv \pi_n(\Omega^{\infty}\underline{E})$$

Normalisation

In fact, this factors into a sequence of adjunctions:

where SeqPreSpec and SeqSpec are the types of sequential prespectra and spectra described earlier.

$$LJ :\equiv \operatorname{colim}(\Sigma^{\infty} J_0 \to \Omega \Sigma^{\infty} J_1 \to \Omega^2 \Sigma^{\infty} J_2 \to \dots)$$
$$(R\underline{E})_n :\equiv \Omega^{\infty} \Sigma^n \underline{E}$$

(The details of the $SeqPreSpec \rightarrow SeqSpec$ adjunction have not yet been done in type theory)

Normalisation

Axiom N

The $L\dashv R$ adjunction between SeqSpec and Spec is a (dull) adjoint equivalence: $\mathrm{Mor}(J,R\underline{E})\simeq \natural(LJ\to_\star\underline{E})$

Proposition

$$\pi_n^s(\mathbb{S}) \simeq \operatorname{colim}_k \pi_{n+k}(S^k)$$

Proof.

$$\pi_n^{s}(\mathbb{S}) \equiv \pi_n(\Omega^{\infty}\mathbb{S}) \simeq \pi_n(\Omega^{\infty}(S^0 \wedge \mathbb{S})) \simeq \pi_n(\Omega^{\infty}\Sigma^{\infty}S^0)$$
$$\simeq \pi_n(\operatorname{colim}_k \Omega^k \Sigma^k S^0) \simeq \operatorname{colim}_k \pi_n(\Omega^k \Sigma^k S^0)$$
$$\simeq \operatorname{colim}_k \pi_{n+k}(\Sigma^k S^0) \simeq \operatorname{colim}_k \pi_{n+k}(S^k)$$

Review: Spatial Type Theory

The | Modality

Axioms

A Synthetic Smash Product

Coming Soon

For two types A and B there should be a type $A \otimes B$ corresponding to the 'external smash product'.

This is a symmetric monoidal product with no additional structural rules. (i.e., no weakening or contraction)

Bunched Contexts

We can take a cue from 'bunched logics', where there are two ways of combining contexts, an ordinary cartesian one and a linear one.

$$\frac{\Gamma_1 \ \text{ctx} \qquad \Gamma_2 \ \text{ctx}}{\Gamma_1, \Gamma_2 \ \text{ctx}} \qquad \qquad \frac{\Gamma_1 \ \text{ctx} \qquad \Gamma_2 \ \text{ctx}}{(\Gamma_1)(\Gamma_2) \ \text{ctx}}$$

For the comma *only*, we have weakening and contraction as normal.

Smash and Dependency

- ▶ When does a 'dependent external smash' $(x : A) \otimes B(x)$ make sense?
- ▶ When B(x) only depends on the base space of x : A, so when we have $(x : A) \otimes B(\underline{x})$.
- Having the modality first is critical for dependent smash to work!

Thank You!

- ▶ Described a human-usable type theory for a ‡ modality with the correct properties.
- ► Gave an axiom making synthetic spectra form a stable category, and another for 'normalisation' of S.
- ▶ Hinted at how the smash type former will work.

Questions?

References I

```
Joyal, André (2008). Notes on logoi. URL: http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf.
Shulman, Michael (2018). "Brouwer's fixed-point theorem in real-cohesive homotopy type theory". In: Math. Structures Comput. Sci. 28.6, pp. 856–941. ISSN: 0960-1295. DOI: 10.1017/S0960129517000147. URL: https://doi.org/10.1017/S0960129517000147.
```