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A motivation

An∞-topos is an∞-category with an internal univalent type theory
which is inherently proof-relevant. Predicates are generally non-monic
type families, represented by a fibration of the form∑

b:B
E(x)

E
����

B

e.g.
∑

b1,b2:B×B
b1 =B b2

IdB
����

B× B

according to the "Propositions as types"-paradigm. Particularly, due to
univalence, a general fiber b1 =B b2 of IdB can be of virtually any
homotopy type.
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A motivation

In particular, this holds for the terminal∞-topos: The∞-category S of
spaces. That means, the “external” logic of an∞-topos is proof-relevant
(and univalent) as well.

Guiding Principle: If the duality of logic and topology ought to be
mathematically universal, and the logic in this context is proof relevant,
then so should be its topology.

Thus, given a small∞-category C, want a canonical C-indexed logical
structure OC such that∞-toposes embedded in Ĉ := [Cop,S] correspond
exactly to the topological ideals/logical quotients of OC .

In order to capture all such ideals we have to allow to take quotients at
all suitable multiplicative substructures.
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A motivation
In ordinary topos theory such suitable multiplicative substructures
are presented by Grothendieck topologies: That is, certain
C-indexed collections of sieves

S : (C/C)op → {0, 1}

(f : D→ C) 7→

{
1, if f ∈ S,
0, otherwise.

In higher topos theory such suitable multiplicative substructures
should consist of general C-indexed collections of proof relevant
predicates

S : (C/C)op → S
(f : D→ C) 7→ S(f )

where the spaces S(f ) can be of any homotopy type.
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A motivation

Grothendieck topologies on a small category C are generated by an
associated notion of covers over objects C ∈ C: That is, collections of
objects Xi → C.
A J-sieve S thus generated consists of the maps f ∈ C/C which (merely)
exhibit a factorization through one of the Xi .
Two such generalized elements f , g : D→ C of S coincide if and only if
they coincide as generalized elements of the representable yC.
The∞-categorical context allows to consider proof-relevant covers:
Diagrams X : I→ C/C which generate a cover colimyX → yC whose
generalized elements consist of maps f ∈ C/C together with a specified
lift into a component Xi .
Two such generalized elements f , g are equal if their lifts to the formal
colimit colimyX → yC coincide.
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Ordinary Topos Theory
The proof-irrelevant logical structure sheaf

Let C be a small category. Consider the composition

ΩC : Cop
C/(·)−−→ Catop

Ω(·)
−−→ Frm

C 7→ Sv(C/C)

for Ω the subobject classifier in Set and Frm the category of frames and
frame homomorphisms. This defines the “proof-irrelevant logical
structure sheaf on C”.

Whenever C has finite products, ΩC is a first order hyperdoctrine on C
with equality. We will generally think of OC as a canonical logical
equipment of C.
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Definition
Let C be a small category. A sheaf E of ΩC-ideals is a regular subfunctor

E ⊆ ΩC : C → Loc

with C-indexed reflector.

 A sheaf E of ΩC-ideals is literally a functor of exponential ideals of
ΩC , such that the associated “nuclei” jC : ΩC(C)� E(C) for C ∈ C
assemble to a natural transformation over C as well.

 The Grothendieck topology J associated to E is exactly the collection
of predicates J(C) ⊆ ΩC(C) nullified in E(C).
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Theorem (e.g. Mac Lane and Moerdijk’s Book)
Let C be a small category. Then the following stand in 1-1 correspondence to
one another.

1. Equivalence classes of reflective left exact localizations of Ĉ.
2. A closure operator on Ĉ , that is, an indexed left exact factorization
system of monomorphisms in Ĉ.

3. Sheaves of ΩC-ideals.

4. Grothendieck topologies on C.
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Remark

A closure operator on Ĉ is an elementary subfibration∑
X∈Ĉ
E(X) �

�
//

** **

∑
X∈Ĉ

Sub(X)

����

Ĉ

with a cartesian fibered reflector (̄·) :
∑

X∈Ĉ Sub(X)→ E which preserves
meets fiberwise. Its pullback along the Yoneda embedding is exactly its
associated sheaf of ΩC-ideals represented as an elementary fibration.
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Proposition
Let C be a small category, E be a sheaf of ΩC-ideals and J the associated
Grothendieck topology on C. Then the diagram E : Cop → Frm is a J-stack of
frames: For every J-cover S, the sequence

EC //
∏
f∈S Edomf

//
//
∏
f∈S,domf=codg Edomg

is an equalizer diagram of frames.

Remark
Given a site (C, J), a presheaf X is a J-sheaf if and only if for all covering
sieves S ↪→ yC the induced map X(C)→ {S,X} of weighted limits is an
isomorphism.
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Higher Topos Theory
Global notions

Definition (Lurie, Rezk)
An∞-category B is an∞-topos if it is equivalent to an accessible left
exact localization of the∞-category Ĉ = Fun(Cop,S) of presheaves
over a small∞-category C.

Given a small∞-category C, any accessible localization Ĉ → B is
reflective and hence may be presented by the∞-subcategory of E-local
objects in Ĉ.

Equivalent definitions have been given via accordingly defined Giraud
axioms as well as via Rezk’s notion of descent.
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Definition (Joyal)
Given an∞-category B, a pair (L,R) of classes of maps in B is a
factorisation system whenever

1. L ⊥ R,
2. every map in B has an (L,R)-factorisation,

3. each of the two classes L andR is closed under retracts.
A factorization system (L,R) is of small generation if there is a set
S ⊆ B∆1

such that L = (S⊥ ⊥).

Definition (RSS, ABFJ)
Let B be an∞-category with pullbacks. A factorization system (L,R) on
B is
1. a modality on B if the left class L is pullback stable.
2. a left exact modality if the full∞-subcategory L ⊆ B∆1

is closed
under finite limits.
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Proposition
Let B be a presentable∞-category with universal colimits. Then the
following structures stand in bijective correspondence to one another.

1. Equivalence classes of accessible left exact localizations of B.
2. Left exact modalities of small generation on B.

Proof.
Essentially ABFJ.
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Proposition

Let B be an∞-category with pullbacks. There are the following 1-1
correspondences.

1. Factorisation systems on B, and equivalence classes of fibered reflective
localizations

E

(( ((

� � // B∆1

t
����

`||

B

such that E ⊆ B∆1
is subfibration which contains all identities and is

closed under composition.



15 / 49

Proposition

Let B be an∞-category with pullbacks. There are the following 1-1
correspondences.

2. Modalities on B, and equivalence classes of fibered reflective
localizations

E

(( ((

� � // B∆1

t
����

`||

B

such that E ⊆ B∆1
is subfibration which contains all identities and is

closed under composition, and the fibered reflector is a cartesian
functor.
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Proposition

Let B be an∞-category with pullbacks. There are the following 1-1
correspondences.

3. Left exact modalities on D, and equivalence classes of fibered reflective
localizations

E

(( ((

� � // B∆1

t
����

`||

B

with (fiberwise) left exact cartesian reflector, such that E ⊆ B∆1
is

closed under composition.
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Proposition

Let B be a presentable∞-category with universal colimits. There are the
following 1-1 correspondences.

4. Modalities of small generation on B, and equivalence classes of fibered
reflective localizations

E

(( ((

� � // B∆1

t
����

`||

B

such that E ⊆ B∆1
is a fiberwise accessible subfibration which

contains all identities and is closed under composition, and the fibered
reflector is a cartesian functor.



18 / 49

Remark
A reflective localization as in the Proposition exhibits E as a cocartesian
fibration as well. Given a modality (L,R) on B, its associated right adjoint

B∆1 →
∑
B∈B
R(B)

is essentially the operation which makes
∑

B∈BR(B)� B into a full
cartesian Lawvere∞-category (Jacobs). The second part hence constitutes a
1-1 correspondence between modalities on B and “full cartesian Lawvere
∞-categories with strong sums” over B.

Lemma

Let ι : E ↪→ B∆1
be a fibered reflective localization. Then E ⊆ B∆1

is closed
under composition if and only if for every f : A→ B in B the cocartesian
action Σf : E(A)→ E(B) is conservative.
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Higher Topos Theory
Towards higher Lawvere-Tierney topologies

Fact
A fibered adjoint pair between cartesian fibrations

E1
R
⊥ 55

'' ''

E2

����

L
uu

B

over an∞-category B is a homotopy-coherent adjunction in the∞-cosmos
Cart(B) of cartesian fibrations over B if and only if the underlying maps L
and R are cartesian functors.

Beck Monadicity (Riehl-Verity): Adjunctions in Cart(B) correspond to
homotopy-coherent monads in Cart(B).
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Proposition
Let B be presentable. Then there is a 1-1 correspondence between the
following structures.

1. Fibered accessible reflective localizations E ↪→ B∆1
with left exact

reflector such that E is closed under composition.
2. Fibered accessible left exact idempotent (homotopy-coherent) monads
T on B∆1

such that T(g ◦ f ) ' T(g) ◦ T(ηg ◦ T(f )) for every pair of
composable arrows in B, where ηg is the unit of T applied to g.

Definition
A modal operator T on an∞-category B with pullbacks is a fibered left
exact idempotent monad on B∆1

.
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To internalize such operators, we make use of the following result.

Proposition
Let B be a presentable∞-category. The externalization functor

Ext : IntCat(B)→ Cart(B)

is a cosmological embedding.

Furthermore, whenever the base B is presentable, the target fibration
B∆1
� B can be filtrated by the subfibrations (B∆1

)κ � B of κ-small
maps for any cofinal sequence of large enough regular cardinals κ.

Proposition
Let B be an∞-topos. For every regular cardinal κ large enough, the object
classifier πκ for κ-small maps gives rise to an internal∞-category N(πκ)
such that Ext(N(πκ)) ' (B∆1

)κ in Cart(B).
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Theorem (Work in progress)
Let B be an∞-topos. Then there is a 1-1 correspondence between the
following structures.

1. Equivalence classes of accessible left exact localizations of B.
2. Equivalence classes of sequences of eventually pairwise compatible
modal operators Tλ on N(πλ) ∈ IntCat(B) which each satisfy the
composition formula and are accessible in a suitable sense.

Remark
The composition formula essentially seems to say that the underlying
endofunctor T : N(πλ)→ N(πλ) is determined by the unit of the monad and
its restriction T' : N(πλ)' → N(πλ)' to the core.
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Higher topos theory
The logical structure sheaf

Let C be a small∞-category, and consider the composition

Cop yop−→ (Ĉ)op
Ĉ/−−−→ CAT∞.

Here, CAT∞ is the∞-category of large∞-categories. Each such value

Ĉ/yC ' Ĉ/C ' RFib(C/C)

is an∞-topos, and the induced transition maps f ∗ : Ĉ/yD → Ĉ/yC for
f : C → D in C are part of the étale geometric morphisms (Σf , f ∗,Πf ).
We will denote the induced composition by

OC : Cop → (LTop,Et)

and refer to OC as the proof relevant logical structure sheaf.
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Definition
Let RTop be the∞-category of∞-toposes and geometric morphisms,
and LTop be its opposite. Thus, the arrows in LTop are the left exact
cocontinuous functors.
A geometric embedding is a geometric morphism between∞-toposes
with fully faithful right adjoint.
A geometric morphism f∗ : F → E between∞-toposes is étale if its left
adjoint f ∗ is equivalent to one of the form

( × E) : E → E/E

for some object E ∈ E .
Let (RTop,Et) be the∞-category of∞-toposes and étale geometric
morphisms between them, and let (LTop,Et) again be the opposite.
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Proposition (Recognition Criterion, Lurie)
A geometric morphism f∗ : F → E is étale if and only if the following three
conditions hold.

1. The left adjoint f ∗ admits a further left adjoint f! : F → E .
2. The left adjoint f! is conservative.

3. The pair (f!, f ∗) satisfies the projection formula, i.e. for every X → Y in
E , every object Z ∈ F and every morphism f!Z → Y, the induced square

f!(f ∗X ×f ∗Y Z) //

��

f!Z

��

X // Y

is cartesian in E .
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Definition
Let C be a small∞-category. A sheaf E of OC-ideals is a fiberwise
accessible full subfibration

E �
� ι //

    

OC

����

C

with a fibered cartesian left exact left adjoint such that the associated
indexed∞-topos E : Cop → LTop factors through (LTop,Et) as well.

 For f : C → D in C we obtain homotopy-commutative squares

ED

(Ef )∗

��

' �
ιD
++
Ĉ/yD

f ∗

��

(̄·)D
oo

EC
' �

ιC
++
Ĉ/yC

(̄·)C
oo
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Theorem
Let C be a small∞-category. Then the following structures stand in 1-1
correspondence to one another.

1. Left exact modalities (L,R) of small generation on Ĉ.
2. Sheaves E of OC-ideals.

Proof. ∑
C∈C
OC(C) �

�
//

����

·y
Ĉ∆1

����

∑
C∈C
E(C) �

�
//

, �

;;

** **

, �

;;

** **

·y
∑
X∈Ĉ
R(X)
. �

==

(( ((C �
�

y
// Ĉ

Essentially, left Kan extension/restriction along y + descent.
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Higher topos theory
Higher Grothendieck topologies

Given a sheaf E of OC-ideals, consider the classes of pointwise nullified
“predicates”:

J(C) = (̄·)−1C [{contractible objects}] ⊆ Ĉ/yC .

That is, the full∞-subcategory in Ĉ/yC generated by the preimage of the
contractible objects in E(C). These yield a notion of “higher’ or

’“proof-relevant” Grothendieck topologies when axiomatized abstractly.
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Definition

Let C be a small∞-category. A proof-relevant topology J =
⋃
C∈C J(C) on

C is a family of full∞-subcategories J(C) ⊆ Ĉ/yC such that the following
conditions hold.

1. 1yC ∈ J(C) for all C ∈ C (Unitality).
2. f ∗[J(C)] ⊆ J(D) for all maps f : D→ C in C (Stability).
3. Given a pair

B b−→ A a−→ C

such that C ∈ C, a ∈ J(C) and d∗b ∈ J(D) for all d : yD→ A, then the
composition ba is contained in J(C) as well (Transitivity).

4. The full∞-subcategory J(C) ⊆ Ĉ/yC is closed under pullbacks for all
C ∈ C (Local left exactness).
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Definition (Continuation)
5. Given a decomposition of a representable yC into a pushout A ∪C B,
and an extension of the span S = (A← C → B) to a span
s = (f ← h→ g) in (Jloc)/yC with t(s) = S, then the pushout f ∪h g
is contained in J(C) (Local right exactness).

Furthermore, let T be the (superlarge) class of all proof-relevant
topologies on C. Let G ⊂

∑
C∈C OC(C) be a set. Then

J(G) :=
⋂

J∈T ,G⊂J
J

is the smallest proof-relevant topology on C which contains G.
6. A proof-relevant topology J on C is of small generation if there is a
small set G ⊂

∑
C∈C OC(C) such that J = J(G).

We will refer to a tuple (C, J) where C is a small∞-category and J is a
proof-relevant topology of small generation on C as an (∞, 1)-site.
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Theorem

Let C be a small∞-category. Then there is a 1-1 correspondence between
the following structures.

1. Sheaves E of OC-ideals.
2. Proof-relevant topologies J of small generation on C.

Remark (Relation to “proof-irrelevant” Grothendieck topologies)
Every proof-relevant topology J (of small generation) induces a
Grothendieck topology J−1 := J ∩ {Monos} on the same∞-category
C. The respective localizations Ĉ → ShJ−1(C)→ ShJ(C) give a
factorization of the composite into a topological followed by a
cotopological localization.
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Remark
A Grothendieck topology J−1 on a small∞-category C is not quite a
proof-relevant topology itself because monomorphisms are not closed
under pushouts. But each such J−1 generates a proof-relevant topology
J on C such that J−1 = J ∩ {Monos}. This J yields the same left exact
(topological) localization on Ĉ , and hence the same notion of sheaf.
The definition of a proof-relevant topology however does yield the
definition of a Grothendieck topology “in the proof-irrelevant context”∑

C∈C Sub(yC) ⊆
∑

C∈C Ĉ/yC .

Lastly, to justify the “sheaf”-denotation, we have the following.
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Proposition

Given an (∞, 1)-site (C, J), its associated sheaf of OC-ideals

E : Cop → (LTop,Et)

is a J-stack in the following sense. Every J-cover s : S → yC of presheaves
induces an equivalence

EC ' {yC, E}
s∗−→ {S, E}

of weighted limits.

 Higher categorical version of the “local character” of an underlying
space-valued (and hence proof-relevant) sheaf semantics.
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Bases of topologies via modulators

Definition (Anel, Leena-Subramaniam)

A pre-modulator M on C is a collection of sets of objects M(C) ⊂ Ĉ/yC
such each M(C) contains the identity 1yC .
A modulator M on C is a full subfibration

M

)) ))

� � //
∑

C∈C OC(C)

����

·y
// Ĉ∆1

t
����

C y
// Ĉ

such that each fiber M(C) ⊂ Ĉ/yC is a small set and contains the identity
1yC .
A lex modulator M on C is a modulator whose fibers M(C) ⊂ OC(C) are
co-filtered.
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Bases of topologies via modulators
Id-modulators

Definition
A modulator M on C is an Id-modulator if for every m ∈ M(C) and every
pair of sections s1, s2 to m, the equalizer Eq(s1, s2)yC → yC in Ĉ/yC is
again contained in M(C).

Lemma

Let C be a small∞-category.
1. Every modulator on C which is fiberwise closed under finite limits (and
hence lex) is an Id-modulator.

2. Every Id-modulator on C is a ∆-modulator.
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Corollary

The factorization system on Ĉ generated by an Id-modulator M on C is a left
exact modality. The transfinitely iterated plus-construction associated to
such M computes the corresponding sheafification.

Proof.
Immediate from the Lemma and [AS].

Remark
Every proof-relevant topology of small generation on a small
∞-category C is generated by a lex modulator which is fiberwise closed
under finite limits.

Every Grothendieck topology J−1 is trivially an Id-modulator:
Given m ∈ J−1, there is at most one section to m up to homotopy, and so
Eq(s1, s2)/yC → yC is an equivalence for any two such sections s1, s2.

 Massive overkill. It would be enough for this equalizer to be covering.
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Examples
The extensive topology

Given a small∞-category C with finite coproducts, consider the
pre-modulator Mt defined at an object C ∈ C as

Mt(C) := {
∐
i∈I
yCi → y(

∐
i∈I
Ci) | I is a finite set, {Ci | i ∈ I} ⊆ C}.

Lemma

Let C be a small∞-category with finite coproducts. Then a presheaf X ∈ Ĉ
is Mt-local if and only if X : Cop → S preserves finite products. Whenever C
is extensive, the localization Sht(C) consists exactly of the sheaves for the
extensive Grothendieck topology.

Corollary

Let C be a small extensive∞-category. Then the localization Sht(C) of Ĉ at
Mt is topological (and left exact).
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Proposition
Let C be a small extensive∞-category. Then the∞-topos Sht(C) is
hypercomplete.

Proof.

The geometric inclusion ι : Sht(C) ↪→ Ĉ preserves sifted colimits. In
particular, it preserves effective epimorphisms.

Corollary

Let C be a small lextensive∞-category, i.e. C is extensive and left exact.
Then the∞-topos Sht(C) has enough points. These are up to equivalence
exactly the left exact and finite coproduct preserving functors of type C → S .

Proof.
The first statement follows immediately from the Proposition together
with the Lurie-Deligne Completeness Theorem. The second statement is
a standard argument via left Kan extension along y : C → Ĉ.
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Examples
The regular topology

Definition
An∞-category C is regular if it is finitely complete, the Čech nerve of
every morphism f ∈ C is effective, and effective epimorphisms in C are
pullback stable.

Given a small regular∞-category, consider

ME�(C) = {f : yD→ yC|f ∈ C is an effective epimorphism}.

The modulator ME� is not an Id-modulator. In fact, under further mild
assumptions on C, the left exact localization of Ĉ at ME� consists exactly
of the constant sheaves on C.
 What is the largest Id-modulator contained in ME�?
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Definition
A map f in a regular∞-category C is called∞-connected if all its higher
diagonals (including the 0-th) are effective epimorphisms. Let E�∞ be
the class of∞-connected maps in C.

Lemma
Let C be small regular. Then the collection y[E�∞] is a lex modulator.

Proposition

In general, for C small regular, the localization Ĉ → Shy[E�∞](C) is not
topological, and not sub-canonical.

Proof.
One can show that all representables are sheaves with respect to the
topological part of the localization, but only the representables of
hypercomplete objects in C are sheaves for y[E�∞].
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Remark
There is a diagram of localizations of the following form.

ShRegC

Ĉ // Shy[E�∞]−1(C)

77

''

Shy[E�∞]C

Generally, neither of the two leaves are contained in one another
Yet, the points of ShReg(C) are exactly the left exact functors C → S which
preserves effective epimorphisms. The points of ShE�∞(C) are exactly the
left exact functors C → S which preserves∞-connected maps. It follows
that pt(ShReg(C)) ⊆ ShE�∞(C).
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Examples
The colimit topology of covering diagrams

Recall that on a coherent category C, the coherent covering sieves are
generated by (finite) collections Xi of objects over a given object C whose
coproduct is epimorphic over C. ∐

i∈I Xi

����

D //

∃?
<<

C
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Given a small simplicial set I such that a given∞-category C admits
I-shaped colimits, we may instead consider covering maps of the form

ηF : colimyF → y(colimF)

for functors F : I→ C.
To obtain an Id-modulator M which contains such an ηF , we need that
each pullback Fi ×colimF Fj can be expressed as the colimit of a suitable
diagram Fij : Iij → C/(Fi×colimFFj) such that, universally,

Fi(k)

""||

Fij(k)

��

22

Fi

&&

Fj

xx

Fi ×colimF Fj

55 55

colimF
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Remark
Given a κ-coherent∞-category, the most straight-forward way to obtain
such a modulator M is the classical one:
Consider sets X ∈ Setκ and the Grothendieck construction of the simplicial
set

X |(·)| : ∆op → Setκ.

Let M be given by the functors
(
F :
∑

[n]∈∆op X |[n]|
)
→ C such that

F([n],
−→
i ) ' F([0], i0)×colimF · · · ×colimF F([0], in).

Then the lifts to zig-zags exist globally since the spans associated to the
pullback F([n],

−→
i )×colimF F([m],

−→
j ) are contained in the image of F.

Indeed, the set of maps colimyF → y(colimF) for tuples (X, F) as specified
above for a coherent∞-category C yields an Id-modulator, which generates
the κ-coherent Grothendieck topology on C.
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Generally, for a diagram F : I→ C we need to make the condition that
the natural map

colim
i←k→j

Fk → Fi ×colimF Fj

is an equivalence “stable under diagonals”. Therefore, we have to require
this condition for iterated spans and iterated pullbacks of components
over colimF as well.
Intuitively, we want the tuple (I, F) to be structured well enough so that
all higher homotopical data of colimF can be computed in the
components F(i), i ∈ I.
We therefore make the following definitions.
Let S∞ be the poset generated by the diagram

x0 x1oo

~~

x2oo

~~

. . .oo

}}
y0 y1oo

``

y2oo

``

. . .oo

aa
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Let Sn be the truncation of S∞ at stage n, and Dn+1 be ∆0 ∗ Sn, that is,
the poset given by

x0 x1oo

~~

x2oo

~~

. . .oo

~~

xnoo

}}

xn+1oo

||
y0 y1oo

``

y2oo

``

. . .oo

``

yn.oo

aa

Given a map p : Sn → I into an∞-category I, let

Fun(Dn+1, I)|Sn=p
//

��

·y
∗

{p}
��

Fun(Dn+1, I)
(ιn)∗

// Fun(Sn, I)
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Definition
Let C be an∞-category with pullbacks and κ-small colimits and I be a
κ-small∞-category with pullbacks. Let F : I→ C be a functor which
preserves pullbacks. Say that F is covering if for all n ≥ 0, and all maps
p : Sn → I, the natural map

colim
(
Fun(Dn+1, I)|Sn=p

evxn+1−−−−→ I F−→ C
)

��

F(p(xn))×F(p(xn−1)×...colimF
F(p(yn−1)


F(p(yn))

is an equivalence.
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Theorem
Let κ be a regular cardinal. Let C be a small∞-category with pullbacks and
universal κ-small colimits. Let

Mκ(C) := {colimyF → ycolimF|F : I→ C is a covering functor,
I is κ-small with pullbacks.}

Then M is an Id-modulator on C.

Remark
By construction, the sheaves for Mκ are exactly the presheaves X on C
which take colimits of covering functors to limits. It hence is
sub-canonical.

The slice (C/ )' is a sheaf for Mκ whenever C has descent (for
κ-small covering diagrams).
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Remark
Suppose that C has disjoint coproducts, so it is extensive. Sets are
∞-categories with pullbacks, and one easily sees that every set-indexed
functor is covering. It follows that the generating κ-extensive covers are
contained in Mκ, and so every Mκ-sheaf is a κ-extensive sheaf.

More generally, every κ-coherent cover is an Mκ-cover (when κ = ω,
need Mκ+ ). Thus, we obtain a factorization of localizations of the form

Ĉ → Shκ-coh(C)→ ShMκ(C).

The points of ShMκ(C) correspond to left exact functors C → S which
preserve colimits of covering functors.

 Towards models of intensional type theories with (higher) inductive types
and their classifying∞-toposes?

Thanks for your time!
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