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(Higher) Algebra in space theory

“Space theory” (HoTT) is dependently typed.

A:U, x, y:A ` IdA(x, y) : U

So algebra in space theory should use the full expressive power of

dependent types.

Thesis
The “natural” generalisations of multisorted algebraic theories from set

theory to space theory are dependently typed algebraic theories.

Question 1
What is a dependently typed algebraic theory?
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Follow-up question

Question 2
What is a space-valued model of a dependently typed algebraic theory?

Question 2 (reframed for this talk)

For a dependently typed algebraic theory T, is there a model category

that presents the (∞,1)-category of T-models in spaces?
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Many answers to Q1

I Cartmell’s generalised algebraic theories

I Makkai’s FOLDS vocabularies and theories

I Fiore’s Σn-models with substitution

I Palmgren’s DFOL signatures

I Others (Aczel, Belo, QIITs ...)

I’ll use a strictly less general definition1 than each of these, but one that:

I is Morita equivalent to GATs,

I that has a nice algebraic description,

I and a nice homotopy theory of models in spaces.

1These will be exactly Fiore’s Σ0-models with substitution.
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Fewer answers to Q2

(Kapulkin–Szumiło2) & (Kapulkin–LeFanu Lumsdaine3):

The space-valued models of a dependently typed algebraic theory form a

locally finitely presentable ∞-category.

This construction is very general but somewhat unwieldy: it results in a

quasicategory, but type theory is usually interpreted in a model category.

Is there a direct way to get from a syntactic presentation of a

dependently typed algebraic theory to a combinatorial model category of

its “models in spaces”?

2[KS17]
3[KL16] (“Homotopy theory of type theories”)
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Caveat: (higher) algebra in space theory

The theories in this talk are discrete dependently typed algebraic theories.

Just as

I ordinary multisorted algebraic theories (1-categories with finite

products) are discrete ∞-categories with finite products,

I and Set-operads are discrete ∞-operads.

Hope: Adding identity types gives all non-discrete dependently typed

algebraic theories.
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Today’s definition

A dependently typed algebraic theory is the data of:

I A type signature C,

I and a C-typed theory.
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Type signatures

A type signature is a small category C that is

1. direct (∃ an identity-reflecting functor C→ λ to some ordinal),

2. and “locally finite”: its slice categories are finite (every pullback

B = 1×C C→ as below in the 1-category Cat is a finite category).

B C→

1 C

y
t

Type signatures = “locally finite”, direct categories (lfd categories).
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C-typed theories

Let C be a type signature. A C-typed theory is a finitary4 monad on the

presheaf category Ĉ = [Cop,Set].

4One whose endofunctor preserves filtered colimits.
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Recall

A multisorted algebraic theory is the data of:

I A set S (of sorts),

I and a finitary monad T on Ŝ = Set/S (the S-sorted theory).

Rmk: Any set is a discrete (and hence lfd) category.
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Type dependence ∼ Cellularity

These definitions are based on a duality between cellular structures and

type dependency.

` V type x:V, y:V ` E(x, y) type

. . . is a graph (0-cells = nodes, 1-cells = arrows).

` X0 x, y:X0 ` X1(x, y)

x, y, z:X0, f:X1(x, y),g:X1(y, z),h:X1(x, z) ` X2(x, y, z, f, g,h)

. . . is a ∆′≤2-type (a 2-truncated semisimplicial type).
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Type dependence ∼ Cellularity

Multisorted algebraic theories are cartesian multicategories:

{• , • , • , •}

f

•

An operation/multimorphism takes a finite

coproduct of points as input, and outputs a

point.
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Type dependence ∼ Cellularity
Dependently typed algebraic theories are cellular cartesian
multicategories.

f

An operation/multimorphism takes a finite

cell complex as input, and outputs a cell.
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Intuition

C is an inverse category if Cop is direct.

I Objects of a direct category represent “cells” of some “shape” and

morphisms are subcell inclusions.

I Objects of an inverse category are “dependent types” and morphisms

are type dependencies.

I Local finiteness says that

1. every type/cell of the signature is of finite dimension,

2. and every type/cell of the signature depends on a finite context of

variables (has finitely many subcells).
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Examples of type signatures

1. Any set S (seen as a discrete category).

2. The ordinal ω (seen as a totally ordered poset).

3. The category G of globes :

D0 D1 D2 . . .
s

t

s

t

s

t
; ss = ts , st = tt

4. The category G≤n ⊂ G.
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Examples of type signatures

5. The category O of opetopes :
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Examples of type signatures

6. A Reedy category R has a wide direct subcategory R′. In many
examples, R′ is lfd:
I ∆′ = the semi-simplex category,
I Ω′

p = category of planar semi-dendrices,
I R = Θ, Joyal’s cell category .

(in each case R′ is the wide subcategory of monos.)

7. If C is lfd, then for every X : Cop → Set, the category of elements

C/X is lfd.
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The contextual category of cell complexes

CellC has a graded set of objects ob(CellC)
def
=

∐
n∈N(CellC)n

I (CellC)0 consists of the empty presheaf ∅ ∈ Ĉ,

I for ∅ → . . . X in (CellC)n, c in C and c←↩ ∂c→ X in Ĉ, we make a

choice of pushout square

∂c X

c Y
p

giving ∅ → . . .→ X → Y in (CellC)n+1.

We define CellC(∅ → . . . X, ∅ → . . . Y )
def
= Ĉ(X,Y ).
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The free C-typed algebraic theory

Fact
Cx(C)

def
= Cellop

C is the free contextual category on C (its syntactic

category).

Precisely, for any contextual category D, morphisms Cx(C)→ D

correspond to contextual functors Cop → D.

A functor F : Cop → D is contextual if

I for c in C, Fc is in Dk where k = |ob(C/c)|,

I and the “parent” projection Fc→ ft(Fc) in D is a morphism of

limits corresponding to C/∂c ↪→ C/c.

Example
A semisimplicial type in D is a contextual functor ∆′

op → D.
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Finitary monads on Ĉ

Since C is lfd, CellC is a completion of C under finite colimits.

A C-theory is an identity-on-objects, finitely cocontinuous functor

CellC → Θ. A morphism of C-theories is a triangle CellC → Θ→ Θ′.

Fact
The category of C-theories is equivalent to the category of finitary

monads on Ĉ (and monad morphisms).

21 / 51



Dependently typed algebraic theories

A C-contextual category is a morphism f : Cx(C)→ D in CxlCat

whose (id.-on-objects, f.f.) factorisation

Cx(C) ΘD D
jf

is such that for every diagram

Cx(C) ΘD D

D′

jf

g
h

∃!h̃

where g is in CxlCat and h is any functor, ∃!h̃ in CxlCat making the

diagram commute.

A morphism of C-contextual categories is a triangle Cx(C)→ D→ D′ in

CxlCat.
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Classification of dependently sorted algebraic theories

Theorem (LS–LeFanu Lumsdaine)

Given a type signature C, the categories

1. FinMnd(Ĉ) of finitary monads on Ĉ,

2. LawC of C-theories,

3. and CxlCatC of C-contextual categories,

are equivalent.
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Examples of dependently typed algebraic theories

Many well-known finitary monads are dependently typed algebraic

theories.

1. For S ∈ Set, every S-sorted algebraic theory.

2. The identity monads on Ĝ1 (graphs), Ĝ (globular sets),

Ô (opetopic sets), ∆̂′ (semi-simplicial sets).

3. The free-category monad on Ĝ1.

4. The free-strict-ω-category monad on Ĝ.

5. For T : Ĉ→ Ĉ a finitary cartesian monad, every Burroni–Leinster

T -operad T ′ → T (e.g. globular operads).

6. Every free-weak-ω-category monad on Ĝ (for a Gr-coherator).

and many more. . .
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Discrete models of C-contextual categories

Definition
A (Set-)model of a C-contextual category Cx(C)→ D is a presheaf

X : D→ Set such that the composite Cx(C)→ D
X−→ Set

1. takes ∅ ∈ CellC to 1 ∈ Set,

2. and takes every chosen pushout

∂c Xn

c Xn+1

p

in CellC to a pullback square in Set.

A morphism of models is just a natural transformation.
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Discrete models and algebras

Models of a C-contextual category Cx(C)→ D are equivalently:

1. algebras of the associated finitary monad on Ĉ,

2. Set-models of the underlying contextual category D.
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Morita equivalence with EATs

Theorem
C is locally finitely presentable iff it is the category of models of a

C-contextual category (for some type signature C).

Proof
One direction is obvious.

1. Every category of models of a C-contextual category is a category of

models of a finite-limit sketch.
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Conversely,

2. Consider the non-full inclusion i∆′ : ∆′ → Cat. It has an associated

semisimplicial nerve functor N∆′ : Cat→ ∆̂′

For A ∈ Cat, let ∆′↓A be the comma-category. Then ∆′↓A is the

category of elements ∆′/(N∆′A). Thus ∆′↓A is a type signature.

There is an obvious functor τA : ∆′↓A→ A taking {0 < . . . n} f−→ A

to f(n).

(Cisinski5) The pullback functor τ∗A : Â ↪→ ∆̂′↓A is fully faithful.

5[Cis03, Prop. 6.9]
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3. Every locally finitely presentable category C has an ω-accessible,

fully faithful right adjoint C ↪→ Â to a presheaf category. Then the

composite

C Â ∆̂′↓A
τ∗A

is fully faithful, monadic and ω-accessible. So C is the category of

algebras of a finitary (idempotent) monad on ∆̂′↓A.
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Models in spaces of multisorted algebraic theories

Let S be a set and T be an S-sorted algebraic theory.

A simplicial T-algebra is a finite-product-preserving functor F : T→ sSet

(equivalently, a simplicial diagram F : ∆op → T-Mod).

A homotopy model of T is a functor F : T→ sSet taking finite products

to homotopy limits.

Remark
All products in sSet are homotopy limits.

So F is a homotopy T-algebra if every

F (s1 × . . .× sk)→ Fs1 × . . .× Fsk is a weak equivalence in sSet.
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Models in spaces of C-contextual categories

Let C be a type signature.

Definition
A homotopical C-space is a simplicial presheaf F : Cellop

C → sSet

1. such that F∅ is contractible,

2. and F takes every chosen pushout

∂c Xn

c Xn+1

p

to a homotopy pullback square, i.e. FXn+1 ' FXn ×hF∂c Fc.
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Models in spaces of C-contextual categories

Definition
A homotopical model of a C-contextual category Cx(C)→ D is a

simplicial presheaf D→ sSet such that Cx(C)→ D→ sSet is a

homotopical C-space.

Remark
Pullbacks in sSet are not homotopy limits, so we cannot reformulate this

condition by requiring that the canonical map FXn+1 → FXn ×F∂c Fc
to the strict pullback be a weak equivalence.
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Flasque model structure

Due to this subtlety, we introduce an intermediate global model structure

on the simplicial presheaf category Sp(CellC)
def
= [Cellop

C , sSet].

Flasque boundaries
For c ∈ C, let “∂c” be the colimit of the composite

C−/c → C ↪→ CellC ↪→ ĈellC.

We have a composite inclusion in ĈellC

“δc” : “∂c” ∂c c
δc

where ∂c ↪→ c is representable in CellC.
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Definition
A map p : X → Y in Sp(CellC) is a ∂-flasque fibration if the

“pullback-hom” map

〈“δc”, p〉 : Xc −→ Map(“∂c”, X)×Map(“∂c”,Y ) Yc

in sSet is a Kan fibration.

Fact
The flasque model structure on Sp(CellC) whose weak equivalences are

the global (objectwise) weak equivalences, and whose fibrations are the

∂-flasque fibrations, exists. We write it Sp(CellC)∂ .
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Remarks

1. Sp(CellC)∂ is intermediate: the identity functor gives Quillen

equivalences

Sp(CellC)proj � Sp(CellC)∂ � Sp(CellC)inj

where (proj = projective) and (inj = injective) model structures.

2. For the inclusion i : C ↪→ CellC, both adjunctions

Sp(C)inj Sp(CellC)∂i∗
i!

i∗

are Quillen for the injective Reedy model structure Sp(C)inj .
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Model structure for homotopy C-spaces

For every object of CellC (a finite cell complex ∅ → Γ1 → . . .→ Γ) we

inductively define the subrepresentable “Γ” ↪→ Γ in ĈellC, by defining “∅”
to be the empty presheaf and by:

∂c Γn

c Γn+1

δc p

“∂c” “Γn”

∂c Γn

c “Γn+1”

c Γn+1

p
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Definition
The model structure for homotopy C-spaces is the left Bousfield

localisation of Sp(CellC)∂ at the set of maps (between cofibrant objects)

S∂
def
= {sΓ : “Γ” ↪→ Γ | Γ ∈ CellC}.

We write it as Sp(CellC)l∂ .

Fibrant objects of Sp(CellC)l∂ are called homotopy C-spaces.

Recall
X is a fibrant object of Sp(CellC)l∂ iff it is S∂-local : i.e. it is fibrant in
Sp(CellC)∂ and every 〈sΓ, X〉 : XΓ → Map(“Γ”, X) is a weak

equivalence in sSet.
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Fact
The adjunction i∗ : Sp(CellC)l∂

→←↩ Sp(C)inj : i∗ is a Quillen equivalence.

Thus Sp(CellC)l∂ presents the presheaf ∞-category P(C).

Theorem
If F is fibrant in Sp(CellC)l∂ (a homotopy C-space), then it is a

homotopical C-space.
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Proof

F is S∂-local, so F∅ → Map(“∅”, F ) = 1 is a weak equivalence.

We have the cube in sSet whose front face is cartesian.

FΓn+1 Fc

Map(“Γn+1”, F ) Fc

FΓn
F∂c

Map(“Γn”, F ) Map(“∂c”, F )

y

I All corners of the cube are fibrant objects,

I Fc → Map(“∂c”, F ) is a Kan fibration,

I so the front face is a homotopy pullback.

The intervening arrows are weak equivalences, so the back face is a

homotopy pullback.
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Homotopy models of any C-contextual category

Sp(CellC)l∂ is the model structure for homotopy models of the initial
C-contextual category.

For an arbitrary C-contextual category Cx(C)→ D, we consider the

(id-on-objects, f.f.) factorisation CellC
j−→ ΘD ↪→ Dop.

There is a model structure for homotopy D-algebras on Sp(Dop) whose

fibrant objects are homotopical models of D.

Rigidification
Is every homotopy D-algebra equivalent to a simplicial D-algebra?
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Rigidification for multisorted algebraic theories

Let S be a set and T be an S-sorted algebraic theory.

The projective, Reedy and injective model structures on SpS = sSetS

coincide.

(Quillen6) There is a “transferred” model structure on the category

sT-Alg of simplicial T-algebras. Its fibrations and weak equivalences are

created by the monadic functor sT-Alg→ sSetS .

The reflective adjunction Sp(Top)proj
→←↩ sT-Alg is a Quillen adjunction.

6[Qui67, II.4], [Ber06, Th. 4.7]
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The model structure Sp(CellS)∂ is just the projective model structure.

Write the free functor as j : CellS → Top.

We can left Bousfield localise Sp(CellS)proj and Sp(Top)proj at the sets

of maps S∂ and j!S∂ respectively.

The Bousfield localisation Sp(Top)l is the model structure for homotopy

T-algebras.
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We have an exact adjoint square

sSetS sT-Alg

Sp(CellS)lproj Sp(Top)lproj

j!

i∗

j∗

N

j!

i∗

j∗

h

in which the left vertical adjunction is a Quillen equivalence, and the

horizontal adjunctions are Quillen.

Theorem (Badzioch, Bergner7)

The right vertical adjunction is a Quillen equivalence.

7[Bad02, Ber06]
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Rigidification of homotopy Cx(C)-algebras

Let C be a type signature, so Ĉ is the category of Set-models of Cx(C).

Consider the weak factorisation system on Ĉ generated by the set

I = {∂c ↪→ c | c ∈ C} of boundary inclusions. This is the WFS

(mono, (mono)t).8

Along with the FS (iso, all), this defines a combinatorial premodel
structure [Bar19] on Ĉ whose cofibrations are the monomorphisms.

The algebra of CPM categories ensures that the tensor product of locally

presentable categories Ĉ ⊗ ∆̂ = SpC is a CPM category. This premodel

structure on SpC is exactly the Reedy (=injective) model structure.

We can see the Quillen equivalence Sp(CellC)l →←↩ SpCinj as a

rigidification theorem for homotopy Cx(C)-algebras.

8[Mak95] calls maps in (mono)t fiberwise surjective.
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Rigidification of homotopy D-algebras

Let Cx(C)→ D be a C-contextual category, and let ID be the image of I

in Dop ⊂ D-Mod.

Mutatis mutandis, there is a CPM structure on the category sD-Mod of

simplicial D-algebras.

It is moreover a weak model structure in the sense of [Hen20], and is

the weak model structure transferred along the monadic functor

sD-Mod→ SpCinj .

47 / 51



Rigidification of homotopy D-algebras

We can left Bousfield localise the projective model structure on Sp(Dop)

at the set of maps SD = {“Γ” → Γ | Γ ∈ D}.

Theorem (Rigidification for homotopy D-algebras)

The adjunction Sp(Dop)l →←↩ sD-Mod is a weak Quillen equivalence.
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What I’m thinking about

1. Dependently coloured operads :

Coloured operads  algebraic theories

vs. ???  dependently typed algebraic theories.

2. Polygraphs (contexts) of a C-contextual category D, and their

relation to generic-free factorisations in D.

3. Rezk completion and univalent algebras: Homotopy D-algebras are à

la Segal spaces, so what about complete Segal spaces? (jwipw M.

Shulman)
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Thank you!
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