Dependently typed algebraic theories and their homotopy algebras

Chaitanya Leena Subramaniam

University of San Diego

HoTTEST

17 March 2022

(Higher) Algebra in space theory

"Space theory" (HoTT) is dependently typed.

```
A: \mathsf{U}, x, y: A \vdash \mathrm{Id}_A(x, y) : \mathsf{U}
```

So algebra in space theory should use the full expressive power of dependent types.

Thesis

The "natural" generalisations of multisorted algebraic theories from set theory to space theory are **dependently typed algebraic theories**.

Question 1

What is a dependently typed algebraic theory?

Question 2

What is a space-valued model of a dependently typed algebraic theory?

Question 2 (reframed for this talk)

For a dependently typed algebraic theory \mathbf{T} , is there a model category that presents the $(\infty, 1)$ -category of \mathbf{T} -models in spaces?

Many answers to Q1

- Cartmell's generalised algebraic theories
- Makkai's FOLDS vocabularies and theories
- ▶ Fiore's Σ_n -models with substitution
- Palmgren's DFOL signatures
- Others (Aczel, Belo, QIITs ...)

I'll use a strictly less general definition¹ than each of these, but one that:

- ▶ is Morita equivalent to GATs,
- that has a nice algebraic description,
- and a nice homotopy theory of models in spaces.

¹These will be exactly Fiore's Σ_0 -models with substitution.

Fewer answers to Q2

(Kapulkin–Szumiło²) & (Kapulkin–LeFanu Lumsdaine³): The space-valued models of a dependently typed algebraic theory form a locally finitely presentable ∞ -category.

This construction is very general but somewhat unwieldy: it results in a quasicategory, but type theory is usually interpreted in a model category.

Is there a direct way to get from a syntactic presentation of a dependently typed algebraic theory to a combinatorial model category of its "models in spaces"?

²[KS17] ³[KL16] ("Homotopy theory of type theories")

Caveat: (higher) algebra in space theory

The theories in this talk are discrete dependently typed algebraic theories.

Just as

- ordinary multisorted algebraic theories (1-categories with finite products) are discrete ∞-categories with finite products,
- \blacktriangleright and Set-operads are discrete $\infty\text{-operads}.$

Hope: Adding identity types gives all non-discrete dependently typed algebraic theories.

Introduction

Dependently typed algebraic theories

Models and homotopy models of C-contextual categories

Rigidification of homotopy algebras (jwipw S. Henry)

Future work

A dependently typed algebraic theory is the data of:

► A type signature C,

► and a C-typed theory.

Type signatures

A type signature is a small category ${\rm C}$ that is

- 1. direct (\exists an identity-reflecting functor $C \rightarrow \lambda$ to some ordinal),
- 2. and "locally finite": its slice categories are finite (every pullback $B = 1 \times_{C} C^{\rightarrow}$ as below in the 1-category Cat is a finite category).

Type signatures = "locally finite", direct categories (lfd categories).

C-typed theories

Let C be a type signature. A C-typed theory is a finitary⁴ monad on the presheaf category $\widehat{C} = [C^{op}, Set]$.

⁴One whose endofunctor preserves filtered colimits.

A multisorted algebraic theory is the data of:

► A set S (of sorts),

▶ and a finitary monad T on $\widehat{S} = \text{Set}_{S}$ (the S-sorted theory).

Rmk: Any set is a discrete (and hence lfd) category.

Type dependence \sim Cellularity

These definitions are based on a duality between cellular structures and type dependency.

 $\vdash V$ type $x:V, y:V \vdash E(x, y)$ type

... is a graph (0-cells = nodes, 1-cells = arrows).

 $\vdash X_0 \qquad \mathbf{x}, \mathbf{y}: X_0 \vdash X_1(\mathbf{x}, \mathbf{y})$ $\mathbf{x}, \mathbf{y}, \mathbf{z}: X_0, \mathbf{f}: X_1(\mathbf{x}, \mathbf{y}), \mathbf{g}: X_1(\mathbf{y}, \mathbf{z}), \mathbf{h}: X_1(\mathbf{x}, \mathbf{z}) \vdash X_2(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{f}, \mathbf{g}, \mathbf{h})$

... is a $\mathbf{\Delta}_{\leq 2}'$ -type (a 2-truncated semisimplicial type).

Type dependence \sim Cellularity

Multisorted algebraic theories are cartesian multicategories:

An operation/multimorphism takes a finite coproduct of points as input, and outputs a point.

Type dependence \sim Cellularity

Dependently typed algebraic theories are **cellular** cartesian multicategories.

An operation/multimorphism takes a finite cell complex as input, and outputs a cell.

Intuition

C is an **inverse** category if C^{op} is direct.

- Objects of a direct category represent "cells" of some "shape" and morphisms are subcell inclusions.
- Objects of an inverse category are "dependent types" and morphisms are type dependencies.
- Local finiteness says that
 - 1. every type/cell of the signature is of finite dimension,
 - 2. and every type/cell of the signature depends on a finite context of variables (has finitely many subcells).

Examples of type signatures

- 1. Any set S (seen as a discrete category).
- 2. The ordinal ω (seen as a totally ordered poset).
- 3. The category \mathbb{G} of *globes* :

$$D^0 \xrightarrow[t]{s} D^1 \xrightarrow[t]{s} D^2 \xrightarrow[t]{s} \dots ; ss = ts, st = tt$$

4. The category $\mathbb{G}_{\leq n} \subset \mathbb{G}$.

Examples of type signatures

5. The category $\mathbb O$ of opetopes :

Examples of type signatures

- 6. A Reedy category R has a wide direct subcategory R'. In many examples, R' is lfd:
 - Δ' = the *semi-simplex* category,
 - Ω'_p = category of *planar semi-dendrices*,
 - $\blacktriangleright R = \Theta, \text{ Joyal's cell category }.$

(in each case R' is the wide subcategory of monos.)

7. If C is lfd, then for every $X \colon C^{op} \to Set$, the category of elements C/X is lfd.

The contextual category of cell complexes

 $\operatorname{Cell}_{\mathrm{C}}$ has a graded set of objects $\operatorname{ob}(\operatorname{Cell}_{\mathrm{C}}) \stackrel{\text{\tiny def}}{=} \coprod_{n \in \mathbb{N}} (\operatorname{Cell}_{\mathrm{C}})_n$

- $(Cell_C)_0$ consists of the empty presheaf $\emptyset \in \widehat{C}$,
- ▶ for $\emptyset \to \ldots X$ in $(Cell_C)_n$, c in C and $c \leftrightarrow \partial c \to X$ in \widehat{C} , we make a *choice* of pushout square

giving $\emptyset \to \ldots \to X \to Y$ in $(\operatorname{Cell}_{\mathcal{C}})_{n+1}$. We define $\operatorname{Cell}_{\mathcal{C}}(\emptyset \to \ldots X, \emptyset \to \ldots Y) \stackrel{\text{def}}{=} \widehat{\mathcal{C}}(X, Y)$.

The free C-typed algebraic theory

Fact

 $Cx(C) \stackrel{\mbox{\tiny def}}{=} Cell_C^{\it op}$ is the free contextual category on C (its syntactic category).

Precisely, for any contextual category D, morphisms $Cx({\rm C})\to D$ correspond to contextual functors ${\rm C}^{op}\to D.$

A functor $F \colon \mathbf{C}^{op} \to \mathbf{D}$ is **contextual** if

- for c in C, Fc is in D_k where $k = |ob(C_{/c})|$,
- ▶ and the "parent" projection $Fc \rightarrow ft(Fc)$ in D is a morphism of limits corresponding to $C/\partial c \hookrightarrow C_{/c}$.

Example

A semisimplicial type in D is a contextual functor ${\Delta'}^{op}
ightarrow \mathsf{D}.$

Since C is lfd, $\mathrm{Cell}_{\mathrm{C}}$ is a completion of C under finite colimits.

A C-**theory** is an identity-on-objects, finitely cocontinuous functor $\operatorname{Cell}_{\mathrm{C}} \to \Theta$. A morphism of C-theories is a triangle $\operatorname{Cell}_{\mathrm{C}} \to \Theta \to \Theta'$.

Fact

The category of C-theories is equivalent to the category of finitary monads on \widehat{C} (and monad morphisms).

Dependently typed algebraic theories

A C-contextual category is a morphism $f: Cx(C) \rightarrow D$ in CxlCat whose (id.-on-objects, f.f.) factorisation

$$Cx(C) \xrightarrow{j_f} \Theta_D \hookrightarrow D$$

is such that for every diagram

$$\begin{array}{ccc} \mathsf{Cx}(\mathsf{C}) \xrightarrow{j_f} \Theta_\mathsf{D} \hookrightarrow \mathsf{D} \\ &\searrow & \downarrow^h \swarrow \\ g \searrow & \downarrow^h \swarrow \\ \mathsf{D'} \end{array}$$

where g is in CxlCat and h is any functor, $\exists! \tilde{h}$ in CxlCat making the diagram commute.

A morphism of C-contextual categories is a triangle $Cx({\rm C})\to D\to D'$ in ${\rm CxlCat}.$

Classification of dependently sorted algebraic theories

Theorem (LS-LeFanu Lumsdaine)

Given a type signature $\mathrm{C},\ the\ categories$

- 1. $\operatorname{FinMnd}(\widehat{C})$ of finitary monads on \widehat{C} ,
- 2. Law_C of C-theories,
- 3. and $\mathrm{CxlCat}_\mathrm{C}$ of C-contextual categories,

are equivalent.

Examples of dependently typed algebraic theories

Many well-known finitary monads are dependently typed algebraic theories.

- 1. For $S \in Set$, every S-sorted algebraic theory.
- 2. The identity monads on $\widehat{\mathbb{G}_1}$ (graphs), $\widehat{\mathbb{G}}$ (globular sets), $\widehat{\mathbb{O}}$ (opetopic sets), $\widehat{\Delta'}$ (semi-simplicial sets).
- 3. The free-category monad on $\widehat{\mathbb{G}_1}$.
- 4. The free-strict- ω -category monad on $\widehat{\mathbb{G}}$.
- 5. For $T: \widehat{C} \to \widehat{C}$ a finitary cartesian monad, every Burroni–Leinster *T*-operad $T' \to T$ (e.g. globular operads).
- 6. Every free-*weak*- ω -category monad on $\widehat{\mathbb{G}}$ (for a Gr-coherator). and many more...

Introduction

Dependently typed algebraic theories

Models and homotopy models of C-contextual categories

Rigidification of homotopy algebras (jwipw S. Henry)

Future work

Discrete models of C-contextual categories

Definition

A (Set-)model of a C-contextual category $Cx(C) \rightarrow D$ is a presheaf

 $X\colon\mathsf{D}\to\operatorname{Set}$ such that the composite $\mathsf{Cx}(\mathrm{C})\to\mathsf{D}\xrightarrow{X}\operatorname{Set}$

- 1. takes $\emptyset \in \operatorname{Cell}_C$ to $1 \in \operatorname{Set}$,
- 2. and takes every chosen pushout

$$\begin{array}{ccc} \partial c & \longrightarrow & X_n \\ & & & & \downarrow \\ c & \longrightarrow & X_{n+1} \end{array}$$

in $\operatorname{Cell}_{\operatorname{C}}$ to a pullback square in Set.

A morphism of models is just a natural transformation.

Discrete models and algebras

Models of a C-contextual category $Cx(C) \rightarrow D$ are equivalently:

- 1. algebras of the associated finitary monad on $\widehat{C},$
- $2. \,\, {\rm Set}\text{-models}$ of the underlying contextual category D.

Morita equivalence with EATs

Theorem

 \mathfrak{C} is locally finitely presentable iff it is the category of models of a C-contextual category (for some type signature C).

Proof

One direction is obvious.

1. Every category of models of a C-contextual category is a category of models of a finite-limit sketch.

Conversely,

2. Consider the non-full inclusion $i_{\Delta'}: \Delta' \to \text{Cat.}$ It has an associated semisimplicial nerve functor $N_{\Delta'}: \text{Cat} \to \widehat{\Delta'}$

For $A \in \text{Cat}$, let $\Delta' \downarrow A$ be the comma-category. Then $\Delta' \downarrow A$ is the category of elements $\Delta' / (N_{\Delta'}A)$. Thus $\Delta' \downarrow A$ is a type signature.

There is an obvious functor $\tau_A \colon \mathbf{\Delta}' \downarrow A \to A$ taking $\{0 < \dots n\} \xrightarrow{f} A$ to f(n).

(Cisinski⁵) The pullback functor $\tau_A^* \colon \widehat{A} \hookrightarrow \widehat{\Delta' \downarrow A}$ is fully faithful.

3. Every locally finitely presentable category \mathcal{C} has an ω -accessible, fully faithful right adjoint $\mathcal{C} \hookrightarrow \widehat{A}$ to a presheaf category. Then the composite

is fully faithful, monadic and ω -accessible. So \mathcal{C} is the category of algebras of a finitary (idempotent) monad on $\widehat{\Delta' \downarrow A}$. \Box

Models in spaces of multisorted algebraic theories

Let S be a set and ${\bf T}$ be an $S\mbox{-sorted}$ algebraic theory.

A simplicial T-algebra is a finite-product-preserving functor $F: \mathbf{T} \to \mathrm{sSet}$ (equivalently, a simplicial diagram $F: \Delta^{op} \to \mathbf{T}\text{-}\mathrm{Mod}$).

A homotopy model of T is a functor $F: T \to sSet$ taking finite products to homotopy limits.

Remark

All products in sSet are homotopy limits.

So *F* is a homotopy **T**-algebra if every

 $F(s_1 \times \ldots \times s_k) \to Fs_1 \times \ldots \times Fs_k$ is a weak equivalence in sSet.

Models in spaces of C-contextual categories

Let ${\rm C}$ be a type signature.

Definition

A homotopical C-space is a simplicial presheaf $F \colon \operatorname{Cell}_{\mathrm{C}}^{op} \to \operatorname{sSet}$

- 1. such that $F\emptyset$ is contractible,
- 2. and F takes every chosen pushout

$$\begin{array}{ccc} \partial c & \longrightarrow & X_n \\ & & & & \downarrow \\ c & & & & X_{n+1} \end{array}$$

to a homotopy pullback square, i.e. $FX_{n+1} \simeq FX_n \times_{F\partial c}^h Fc$.

Models in spaces of C-contextual categories

Definition

A homotopical model of a C-contextual category $Cx(C) \to D$ is a simplicial presheaf $D \to \mathrm{sSet}$ such that $Cx(C) \to D \to \mathrm{sSet}$ is a homotopical C-space.

Remark

Pullbacks in sSet are not homotopy limits, so we cannot reformulate this condition by requiring that the canonical map $FX_{n+1} \rightarrow FX_n \times_{F\partial c} Fc$ to the strict pullback be a weak equivalence.

Flasque model structure

Due to this subtlety, we introduce an intermediate global model structure on the simplicial presheaf category $\operatorname{Sp}(\operatorname{Cell}_C) \stackrel{\text{def}}{=} [\operatorname{Cell}_C^{op}, \operatorname{sSet}].$

Flasque boundaries

For $c \in \mathbf{C}$, let " ∂c " be the colimit of the composite

$$\mathbf{C}^-_{/c} \to \mathbf{C} \hookrightarrow \operatorname{Cell}_{\mathbf{C}} \hookrightarrow \widehat{\operatorname{Cell}_{\mathbf{C}}}.$$

We have a composite inclusion in $\widehat{\mathrm{Cell}_\mathrm{C}}$

$$``\delta_c":``\partial c" \, \longleftrightarrow \, \partial c \, \stackrel{\delta_c}{\smile} \, c$$

where $\partial c \hookrightarrow c$ is representable in Cell_C.

Definition

A map $p\colon X\to Y$ in ${\rm Sp}({\rm Cell}_{\rm C})$ is a $\partial\text{-flasque fibration}$ if the "pullback-hom" map

$$\langle \delta_c, p \rangle : X_c \longrightarrow \operatorname{Map}(\partial c, X) \times_{\operatorname{Map}(\partial c, Y)} Y_c$$

in sSet is a Kan fibration.

Fact

The **flasque** model structure on $\operatorname{Sp}(\operatorname{Cell}_{C})$ whose weak equivalences are the global (objectwise) weak equivalences, and whose fibrations are the ∂ -flasque fibrations, exists. We write it $\operatorname{Sp}(\operatorname{Cell}_{C})_{\partial}$.

Remarks

1. $\rm Sp(Cell_C)_{\partial}$ is intermediate: the identity functor gives Quillen equivalences

$$\operatorname{Sp}(\operatorname{Cell}_{\operatorname{C}})_{\operatorname{\textit{proj}}} \rightleftharpoons \operatorname{Sp}(\operatorname{Cell}_{\operatorname{C}})_{\partial} \rightleftharpoons \operatorname{Sp}(\operatorname{Cell}_{\operatorname{C}})_{\operatorname{\textit{inj}}}$$

where (proj = projective) and (inj = injective) model structures.

2. For the inclusion $i: C \hookrightarrow Cell_C$, both adjunctions

$$\operatorname{Sp}(C)_{\operatorname{inj}} \xrightarrow[i_*]{i_1} \operatorname{Sp}(\operatorname{Cell}_C)_{\partial}$$

are Quillen for the injective Reedy model structure $Sp(C)_{inj}$.

Model structure for homotopy C-spaces

For every object of Cell_{C} (a finite cell complex $\emptyset \to \Gamma_{1} \to \ldots \to \Gamma$) we inductively define the subrepresentable " Γ " $\hookrightarrow \Gamma$ in $\widehat{\operatorname{Cell}_{C}}$, by defining " \emptyset " to be the empty presheaf and by:

Definition

The model structure for homotopy C-spaces is the left Bousfield localisation of $\operatorname{Sp}(\operatorname{Cell}_C)_\partial$ at the set of maps (between cofibrant objects)

$$S_{\partial} \stackrel{\text{\tiny def}}{=} \{ s_{\Gamma} \colon ``\Gamma" \hookrightarrow \Gamma \mid \Gamma \in \operatorname{Cell}_{\mathcal{C}} \}.$$

We write it as $\operatorname{Sp}(\operatorname{Cell}_{\mathbf{C}})^l_{\partial}$.

Fibrant objects of $\operatorname{Sp}(\operatorname{Cell}_{\operatorname{C}})^l_\partial$ are called homotopy C-spaces.

Recall

X is a fibrant object of $\operatorname{Sp}(\operatorname{Cell}_{\operatorname{C}})^l_{\partial}$ iff it is S_{∂} -local : i.e. it is fibrant in $\operatorname{Sp}(\operatorname{Cell}_{\operatorname{C}})_{\partial}$ and every $\langle s_{\Gamma}, X \rangle : X_{\Gamma} \to \operatorname{Map}(``\Gamma", X)$ is a weak equivalence in sSet.

Fact

The adjunction $i^* : \operatorname{Sp}(\operatorname{Cell}_{\operatorname{C}})^l_{\partial} \rightleftarrows \operatorname{Sp}(\operatorname{C})_{\mathit{inj}} : i_*$ is a Quillen equivalence. Thus $\operatorname{Sp}(\operatorname{Cell}_{\operatorname{C}})^l_{\partial}$ presents the presheaf ∞ -category $\operatorname{P}(\operatorname{C})$.

Theorem

If F is fibrant in $\text{Sp}(\text{Cell}_{C})^{l}_{\partial}$ (a homotopy C-space), then it is a homotopical C-space.

Proof

F is $S_\partial\operatorname{-local}$, so $F_\emptyset\to\operatorname{Map}(``\emptyset'',F)=1$ is a weak equivalence.

We have the cube in sSet whose front face is cartesian.

- All corners of the cube are fibrant objects,
- $F_c \to \operatorname{Map}("\partial c", F)$ is a Kan fibration,
- so the front face is a homotopy pullback.

The intervening arrows are weak equivalences, so the back face is a homotopy pullback. $\hfill\square$

Homotopy models of any C-contextual category

 ${\rm Sp}({\rm Cell}_{\rm C})^l_\partial$ is the model structure for homotopy models of the initial C-contextual category.

For an arbitrary C-contextual category $Cx(C) \rightarrow D$, we consider the (id-on-objects, f.f.) factorisation $\operatorname{Cell}_C \xrightarrow{j} \Theta_D \hookrightarrow D^{op}$.

There is a model structure for homotopy D-algebras on $\mathrm{Sp}(\mathsf{D}^{\mathit{op}})$ whose fibrant objects are homotopical models of D.

Rigidification

Is every homotopy D-algebra equivalent to a simplicial D-algebra?

Introduction

Dependently typed algebraic theories

Models and homotopy models of C-contextual categories

Rigidification of homotopy algebras (jwipw S. Henry)

Future work

Rigidification for multisorted algebraic theories

Let S be a set and ${\bf T}$ be an S-sorted algebraic theory.

The projective, Reedy and injective model structures on $\mathrm{Sp}S=\mathrm{sSet}^S$ coincide.

(Quillen⁶) There is a "transferred" model structure on the category sT-Alg of simplicial T-algebras. Its fibrations and weak equivalences are created by the monadic functor $sT-Alg \rightarrow sSet^S$.

The reflective adjunction $\operatorname{Sp}(\mathbf{T}^{op})_{\text{proj}} \rightleftarrows \operatorname{s}\mathbf{T}$ -Alg is a Quillen adjunction.

⁶[Qui67, II.4], [Ber06, Th. 4.7]

The model structure $\mathrm{Sp}(\mathrm{Cell}_S)_\partial$ is just the projective model structure.

Write the free functor as $j \colon \operatorname{Cell}_S \to \mathbf{T}^{op}$.

We can left Bousfield localise $\operatorname{Sp}(\operatorname{Cell}_S)_{\operatorname{proj}}$ and $\operatorname{Sp}(\mathbf{T}^{\operatorname{op}})_{\operatorname{proj}}$ at the sets of maps S_∂ and $j_!S_\partial$ respectively.

The Bousfield localisation ${\rm Sp}({\bf T}^{\it op})^l$ is the model structure for homotopy ${\bf T}\mbox{-algebras}.$

We have an exact adjoint square

in which the left vertical adjunction is a Quillen equivalence, and the horizontal adjunctions are Quillen.

Theorem (Badzioch, Bergner⁷)

The right vertical adjunction is a Quillen equivalence.

⁷[Bad02, Ber06]

Rigidification of homotopy Cx(C)-algebras

Let C be a type signature, so \widehat{C} is the category of Set-models of $\mathsf{Cx}(C).$

Consider the weak factorisation system on \widehat{C} generated by the set $I = \{\partial c \hookrightarrow c \mid c \in C\}$ of boundary inclusions. This is the WFS $(\text{mono}, (\text{mono})^{\uparrow}).^{8}$

Along with the FS (iso, all), this defines a combinatorial premodel structure [Bar19] on \widehat{C} whose cofibrations are the monomorphisms.

The algebra of CPM categories ensures that the tensor product of locally presentable categories $\widehat{C} \otimes \widehat{\Delta} = \operatorname{SpC}$ is a CPM category. This premodel structure on SpC is exactly the Reedy (=injective) model structure.

We can see the Quillen equivalence $\operatorname{Sp}(\operatorname{Cell}_{C})^{l} \rightleftharpoons \operatorname{SpC}_{inj}$ as a rigidification theorem for homotopy $\operatorname{Cx}(C)$ -algebras.

⁸[Mak95] calls maps in (mono)th fiberwise surjective.

Rigidification of homotopy D-algebras

Let $Cx(C) \to D$ be a C-contextual category, and let I_D be the image of I in $D^{op} \subset D$ -Mod.

Mutatis mutandis, there is a CPM structure on the category sD-Mod of simplicial D-algebras.

It is moreover a weak model structure in the sense of [Hen20], and is the weak model structure transferred along the monadic functor $sD-Mod \rightarrow SpC_{\textit{inj}}$.

Rigidification of homotopy D-algebras

We can left Bousfield localise the projective model structure on $\operatorname{Sp}(\mathsf{D}^{op})$ at the set of maps $S_{\mathsf{D}} = \{ ``\Gamma'' \to \Gamma \mid \Gamma \in \mathsf{D} \}.$

Theorem (Rigidification for homotopy D-algebras) The adjunction $\operatorname{Sp}(\mathsf{D}^{op})^l \rightleftharpoons \operatorname{sD-Mod}$ is a weak Quillen equivalence.

Introduction

Dependently typed algebraic theories

Models and homotopy models of C-contextual categories

Rigidification of homotopy algebras (jwipw S. Henry)

Future work

What I'm thinking about

 $1. \ \ Dependently \ coloured \ operads:$

Coloured operads \rightsquigarrow algebraic theories

vs. ??? \rightsquigarrow dependently typed algebraic theories.

- 2. *Polygraphs* (contexts) of a C-contextual category D, and their relation to generic-free factorisations in D.
- Rezk completion and univalent algebras: Homotopy D-algebras are à la Segal spaces, so what about complete Segal spaces? (jwipw M. Shulman)

Thank you!

Bernard Badzioch.

Algebraic theories in homotopy theory.

Annals of Mathematics, 155(3):895–913, 2002.

Reid William Barton.

A model 2-category of enriched combinatorial premodel categories. PhD thesis, Harvard University, 2019.

Julia E Bergner.

Rigidification of algebras over multi-sorted theories.

Algebraic & Geometric Topology, 6(4):1925–1955, 2006.

J. W. Cartmell.

Generalised algebraic theories and contextual categories. PhD thesis, University of Oxford, 1978.

Denis-Charles Cisinski.

Images directes cohomologiques dans les catégories de modèles. Annales Mathématiques Blaise Pascal, 10(2):195–244, 2003. Marcelo Fiore.

Second-order and dependently-sorted abstract syntax.

In 2008 23rd Annual IEEE Symposium on Logic in Computer Science, pages 57–68. IEEE, 2008.

Simon Henry.

Combinatorial and accessible weak model categories.

arXiv preprint arXiv:2005.02360, 2020.

- Chris Kapulkin and Peter LeFanu Lumsdaine. The homotopy theory of type theories. arXiv preprint arXiv:1610.00037, 2016.

Chris Kapulkin and Karol Szumiło.

Internal languages of finitely complete $(\infty, 1)$ -categories, 2017.

Tom Leinster.

Higher Operads, Higher Categories.

Cambridge University Press, 2004.

🔋 Michael Makkai.

First Order Logic with Dependent Sorts, with Applications to Category Theory.

Preprint, 1995.

math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf.

Daniel G. Quillen.

Homotopical Algebra.

Springer-Verlag, 1967.