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Definition
Brouwer’s principle states that all functions NN → N are
continuous.
Explicitly, for all F : NN → N and all α : N→ N, there merely
exists N such that for all β : N→ N, if β(n) = α(n) for n < N,
then F (α) = F (β).



Theorem (S.)

Working in a metatheory where Brouwer’s principle holds, all of the
following are false in cubical sets.
Choice principles:

1. A weak form of countable choice due to Escardó and Knapp.

2. A weak form of countable choice due to Bridges, Richman
and Schuster.

3. AC(N, 2)

Covering principles:

1. The product of countably many circles,
∏

N S1 is covered by
an hSet

2. Every hSet is covered by a constant cubical set

Collection principles:

1. Set theoretic and type theoretic versions of collection

2. Set theoretic and type theoretic versions of fullness

3. Weakly initial set of covers
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Definition
We say a map f : B → A is a surjection if every fibre is merely
inhabited:

∏
a:A ‖hFibref (a)‖. We will also say that the pair (B, f )

is a cover of A.
We say A is projective if every cover of A merely has a section.
The axiom of countable choice states that N is projective.



Definition (Escardó)

Suppose we are given a binary sequence α : N→ 2. We write 〈α〉
for the type

∑
n:N α(n) = 1.

We define N∞ to be the collection of binary sequences α : N→ 2
such that 〈α〉 is an hProposition.

For each n : N we can construct an element n of N∞ by

n(m) :=

{
1 m = n

0 m 6= n

There is also an element of N∞ defined as the sequence which is
constantly 0. We denote this element ∞.

Proposition

Suppose that F : N∞ → 2 is continuous. Then there is some N
such that that F (n) = F (∞) for n > N.
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Definition (Escardó-Knapp)

The Escardó-Knapp axiom of choice EKC states that for all
α : N∞, 〈α〉 is projective.

1. Since 〈α〉 is an hProposition and 0 and 1 are both projective,
EKC follows from the law of excluded middle. In fact LPO is
sufficient.

2. EKC follows from countable choice. In fact a weak form of
countable choice due to Bridges, Richman and Schuster is
sufficient.



Suppose we are given a family of types B : A→ U . A multi valued
section of B consists of a family of hPropositions
P : (a : A)→ Ba→ hProp together with a proof of

∏
a:A ∃b:BPab.

One can also use the more diagramatic version of the definition
from predicative algebraic set theory:

Definition (Van den Berg, Moerdijk)

A multi valued section of a map f : E → A consists of an
embedding i : P ↪→ E such that the composition f ◦ i is surjective:

P E

A

i

f



Definition
A multivalued function from A to B is a multivalued section of the
constant family of types λa.B.
Diagramatically, it is a multivalued section of the projection map
πA : A× B → A:

P A× B

A

i

πA



The axiom AC(A,B) states that every multivalued section can be
refined by a single valued section:

A

P A× B

A

1A

i

πA

AC(N, 2) holds in most realizability models, even if it does not hold
in the metatheory. It also follows from the law of excluded middle.



Definition
We say X : U0 is covered by a set if there exists a cover Y � X
where Y is an hSet. We say sets cover if every type X : U0 is
covered by an hSet.

Theorem
Suppose that countable choice holds. Then

∏
N S1 is covered by an

hSet.

Proof.
We have a constant map 1→

∏
N S1 given by λx , n.base. It

suffices to show this map is surjective. Let f : N→ S1. We need
to find an element of ‖

∏
n:N fn = base‖. Since S1 is 1-truncated,

fn = base is an hSet for all n, and since S1 is connected, we have
an element of

∏
n:N ‖fn = base‖, and so we can apply countable

choice.



Collection principles are used to show that the failure of the axiom
of choice does not cause “size issues.”
We will consider the following collection principles:

1. Collection

2. Fullness

3. Weakly initial set of covers (WISC)1

We will state them using the notion of weak initiality:

Definition
Let C be a category and let X : I → Ob(C). We say X is weakly
initial if for every object Y of C there merely exists i : I and a
morphism Xi → Y .

1WISC is usually considered a choice axiom.



Definition
The axiom of collection states that for every X the inclusion map
Cov0(X ) ↪→ Cov1(X ) is weakly initial.

Definition
The axiom weakly initial set of covers, WISC, states that there
merely exists I : U0 together with a weakly initial map
I → Cov0(X ).



Proposition

AC(B) is true if and only if the canonical map∏
a:A B(a)→ mvs(B) is weakly initial.

Definition
The axiom of fullness for maps E → A states that there merely a
type I (WLOG an hSet) and a weakly initial map I → mvs(B).

1. Fullness follows from AC(E ).

2. Fullness follows from propositional resizing.

3. It allows us to deal with “size issues” caused by working in a
setting where both choice and propositional resizing fail.
E.g. In constructive set theory it is used to show the class of
Dedekind reals is a set.



Aczel: Countable choice, WISC, fullness and collection hold in the
Aczel interpretation of set theory and type theory without
assuming they hold in the background universe.

Folklore: Countable choice, WISC, fullness and collection hold in
setoids without assuming they hold in the background universe.

Van den Berg, Moerdijk: (Algebraic set theory formulations of)
WISC, fullness and collection are preserved by “typical” topos
theoretic constructions: sheaf toposes, realizability toposes, slice
toposes.
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Independence results for WISC, fullness and collection in set theory
are possible but require sophisticated techniques.

Theorem (Van den Berg 2012, Karagila)

WISC is independent of ZF.

Van den Berg derived this as a corollary of a sophisticated result
due to Gitik using forcing and large cardinals. Karagila showed the
large cardinal assumption can be removed using class forcing.

Theorem (Friedman-Ščedrov 1985)

Collection is independent of IZFRep.

Friedman and Ščedrov’s proof uses forcing and a clever Kripke
model.

Theorem (Lubarsky 2006)

Fullness is independent of CZFExp.

Lubarksy developed a new kind of forcing for this result called
forcing with settling. It can also be proved using realizability (S).



Definition (Cohen, Coquand, Huber, Mörtberg)

The cube category is the category where N is the set of objects
and a morphism from m to n is a homomorphism from the free De
Morgan algebra on m elements to the free De Morgan algebra on n
elements. A cubical set is a functor from the cube category to sets.

Theorem (Cohen, Coquand, Huber, Mörtberg)

Cubical sets form a constructive model of homotopy type theory.
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The cube category is the category where N is the set of objects
and a morphism from m to n is a homomorphism from the free De
Morgan algebra on m elements to the free De Morgan algebra on n
elements. A cubical set is a functor from the cube category to sets.

Theorem (Cohen, Coquand, Huber, Mörtberg)
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In the interpretation of extensional type theory in a locally
cartesian closed category:

I Types in context Γ are interpreted as maps A→ Γ.

I Terms are interpreted as sections Γ→ A (we will also refer to
sections as points).

I Two terms are propositionally equal only if they are equal.

I Hence if a type is an hproposition it has at most one section.

I Propositional truncation “strictly identifies points.”
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In CCHM cubical sets (like with many other homotopical models)
we make use of an interval object δ0, δ1 : 1⇒ I.

Definition
A point of a cubical set X , is a map x : 1→ X .
A path in a cubical set X is a map p : I→ X .
A homotopy between two maps f , g : X → Y is a map h such that
the diagram below commutes:

X

I× X Y

X

δ0×X

f

h

δ1×X

g



In cubical sets:

I Types in context Γ are interpreted as maps A→ Γ together
with “fibration structure”.

I Terms are interpreted as sections Γ→ A (we will also refer to
sections as points).

I Two terms are propositionally equal only if they are
homotopic.

I An hProposition can have many different sections as long as
any two are homotopic.

I Proposition truncation keeps points separate, but adds new
paths between them.

This observation was also used in a previous result due to S. and
Uemura: Church’s thesis does not hold in cubical assemblies.
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Coquand, Huber and Mörtberg construct propositional truncation
for a family of types X in context Γ by an inductive definition:

1. For each x ∈ X (A, γ), ‖X‖(A, γ) contains an element |x |.

2. Whenever φ ∈ I(A) \ {0, 1}, ‖X‖(A, γ) contains an element
sq(x0, x1, φ).

3. Whenever φ ∈ F(A) \ {>}, and u is a φ-open box over γ in
‖X‖, ‖X‖(A, γ) contains an element hcomp(φ, u).

We can also consider the inductive definition obtained by removing
the sq elements, which we refer to as local fibrant replacement:

1. For each x ∈ X (A, γ), LFR(X )(A, γ) contains an element |x |.
2. Whenever φ ∈ F(A) \ {>}, and u is a φ-open box over γ in

LFR(X ), LFR(X )(A, γ) contains an element hcomp(φ, u).

We can clearly factor the map | − | : X → ‖X‖ as two
monomorphisms X � LFR(X )� ‖X‖ over Γ.
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‖X‖ and LFR(X ) have the following key properties:

1. LFR(X ) is equivalent to X .

2. LFR(X ) is a locally decidable subobject of ‖X‖ i.e. for every
A in the cube category and γ ∈ Γ(A), every element of
‖X‖(A, γ) either belongs to LFR(X )(A, γ) or does not.

3. Every point of ‖X‖ belongs to LFR(X ).



We can illustrate the key lemmas categorically as follows. Suppose
we are given a fibration f : X → Γ. Then we can define
propositional truncation and local fibrant replacement in the slice
category over Γ to get the diagram below:

X LFRΓ(X ) ‖X‖Γ

Γ

i

|−|

r



We say a map t : A→ ‖X‖Γ is squash free if it factors (necessarily
uniquely) through the monomorphism LFRΓ(X )� ‖X‖Γ.

A

X LFRΓ(X ) ‖X‖Γ

Γ

t′
t

r

If t is squash free, we write the composition r ◦ t ′ as t̄ and call this
the detruncation of t.
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Rephrasing two of the key lemmas, we get the following categorical
versions:

1. Any map 1→ ‖X‖Γ is squash free.

2. For any representable yA, any map yA→ ‖X‖Γ is either
sqaush free, or not.

Also, by diagram chasing we get the following lemma.

Lemma
Suppose we are given maps A

h→ A′
t→ ‖X‖Γ. If t is squash free,

then so is t ◦ h, and we have t ◦ h = t̄ ◦ h.
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We apply this to paths p : I→ ‖X‖Γ, noting that I is representable.
There are many examples of such paths that are not squash free
e.g. for any two points x , y : 1→ ‖X‖Γ we can use squash to
define a path making a homotopy from x to y .
However, we have

1. Any path p : I→ ‖X‖Γ is either squash free, or not (even
working constructively).

2. If p is degenerate, then it is squash free, and so p̄ : I→ X
exists.

3. The endpoints δi ◦ p are always squash free. When p is squash
free we have δi ◦ p̄ = δi ◦ p for i = 0, 1.



Theorem
Assume Brouwer’s principle. Then in the cubical set model of
HoTT there is no surjection f : B →

∏
N S1 where B is an hSet.

First construct B ′ :=
∑

z:
∏

N S1 hFibref (z), with f ′ : B ′ →
∏

N S1

the first projection. Then by the definition of surjection, the map
‖B ′‖∏

N S1 →
∏

N S1 has a section, giving us the map s in the
diagram:

B ′ LFR∏
N S1(B ′) ‖B ′‖∏

N S1

∏
N S1

r

s



Theorem
Assume Brouwer’s principle. Then in the cubical set model of
HoTT there is no surjection f : B →

∏
N S1 where B is an hSet.

First construct B ′ :=
∑

z:
∏

N S1 hFibref (z), with f ′ : B ′ →
∏

N S1

the first projection. Then by the definition of surjection, the map
‖B ′‖∏

N S1 →
∏

N S1 has a section, giving us the map s in the
diagram:

B ′ LFR∏
N S1(B ′) ‖B ′‖∏

N S1

∏
N S1

r

s



For each α : N∞, we define a map pα : I→
∏

N S1 by

pα(i)(n) :=

{
loop(i) α(n) = 1

base otherwise

Note that we constructed pα to have the following properties:

I Setting α =∞, the path p∞ is degenerate.

I Setting α = n for n : N we have a commutative triangle
below, where the right map is given by evaluation at n.

I
∏

N S1

S1

pn

loop
evaluate at n



We consider the path s ◦ pα : I→ ‖B ′‖. It is either squash free, or
not squash free, so we have a well defined function F : N∞ → 2
defined by:

F (α) :=

{
0 s ◦ pα is not squash free

1 s ◦ pα is squash free

Since p∞ is degenerate, so is s ◦ p∞.

Degenerate paths are squash free, so we have F (∞) = 1. By
continuity, there is some n : N such that F (n) = 1. So s ◦ pn is
squash free.
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Finally we get the diagram below:

B ′

I
∏

N S1

S1

pn

s◦pn

loop

Since B ′ is an hSet, we can contract the loop s ◦ pn to a point
keeping the base point constant.
Hence we can do the same for loop, which is provably false in
homotopy type theory.



By combining the technique before with other ideas, we can also
get the following theorems:

Theorem
The following are false in cubical sets, assuming Brouwer’s
principle. They are not provable in homotopy type theory.

1.
∏

N S1 is covered by an hset 0-Cov(
∏

N S1).

2. An Escardó-Knapp variant of fullness, Full(N, 2)EK

3. An Escardó-Knapp variant of collection, CollEK

NB: For proof theoretic reasons it is not necessary to assume
Brouwer’s principle to show they are not provable in HoTT.



Corollary

The following are false in cubical sets, assuming Brouwer’s
principle. They are not provable in homotopy type theory.

1. PAx

2. Dependent choice, DC

3. WISC

4. (Type theoretic) Fullness, Full

5. (Type theoretic) Collection, Coll

6.
∏

N S1 is connected,
∏

N S1-Conn

7. (Bridges-Richman-Schuster) Weak countable choice, WCC

8. ACN,2

9. Escardó-Knapp choice, EKC

Proof.
See next slide.



AC

PAx

WISC

DC

ACN ∏
N S1-Conn

0-Cov(
∏

N S1)

ACN,2

WCC

EKC

EKC2

Coll Full

CollEK

Full(N, 2)EK



Corollary

Work over CZFExp,Rep, the theory obtained by replacing subset
collection with exponentiation and strong collection with
replacement in CZF. The following are not provable.

1. PAx

2. Dependent choice, DC

3. WISC

4. Fullness, Full

5. Collection, Coll

6. (Bridges-Richman-Schuster) Weak countable choice, WCC

7. ACN,2

8. Escardó-Knapp choice, EKC

Proof.
The HIT cumulative hierarchy models CZFExp,Rep Full(N, 2)EK is
“absolute” for the HIT cumulative hierarchy, and CollEK is chosen
so that the set theoretic version also fails.



Open problems:

1. Is there a constructive model of homotopy type theory with
countable choice?

2. Are there any other applications of homotopy type theory to
constructive set theory? What about classical set theory?

And more philosophically: Is countable choice a reasonable axiom
for constructive mathematics?

Thank you for your attention!
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