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In the classical homotopy theory of simplicial sets, there are various
ways to define an important class of maps, known as Kan
fibrations.

Definition (Kan)

A map f : X → Y is a Kan fibration if it has the right lifting
property against a class of maps called Horn inclusions. That is for
every square below, we can find a diagonal map making two
commutative triangles:

Λk
n X

∆n Y



Theorem (Joyal)

f is a Kan fibration if and only if it has the right lifting property
against the pushout product of any cofibration m : A→ B and
endpoint inclusion of an interval δi : 1→ I:

A× I ∪ B × 1 X

∆n Y

m×̂δi f



In classical homotopy theory these definitions give the same class
of maps and are often treated as the same. However, they are
different in two ways:

1. Constructively: There is no way to prove the classes of maps
are the same without assuming the law of excluded middle.

2. Algebraically: If we consider not just the class of maps with
property, but use the same definitions to define structure (i.e.
choices of diagonal map not just mere existence), then they
are different, even in classical logic.



Theorem (Voevodsky)

Homotopy type theory can be modelled in simplicial sets, using the
law of excluded middle and the axiom of choice.

Types in Voevodsky’s model are implemented as maps with extra
structure (including Kan fibration structure).

Constructively, the situation is as follows.

Theorem (Cohen, Coquand, Huber and Mörtberg)

Homotopy type theory can be modelled in cubical sets, with
pushout product Kan fibration structure.

Theorem (Henry, Gambino, Sattler, Szumi lo)

Simplicial sets have a model structure and univalent universe,
using the “horn inclusion” definition of Kan fibration structure.



It is natural to ask why different definitions of Kan fibration were
used in each case:

1. Why couldn’t CCHM use the horn-inclusion definition of Kan
fibration?

2. If they needed to use a different definition of Kan fibration,
why did they also need to use cubical sets? Couldn’t they use
the pushout-product definition with simplicial sets?



CCHM defined Kan fibrations the way that they did in order to
ensure they are closed under dependent products. Constructively
this is not possible with the “horn-inclusion” definition of Kan
fibration (Bezem-Coquand-Palmgren).

We can illustrate this with a related but simpler fact.



We say an object X is fibrant if the unique map X → 1 is a
fibration.

Note that f : X → 1 has the right lifting property against horn
inclusions precisely if each map below has a section:

hom(∆n,X ) hom(Λi
n,X )

Say that X is strongly fibrant if each map below has a section.

X∆n XΛi
n



Theorem
If X is strongly fibrant, then so is XY for any Y .



In both cubical sets and simplicial sets there is a “well behaved”
universe U̇ → U: we have “forgetful” map to the (extensional)
Hofmann-Streicher universe U → V , such that U̇ is the pullback of
V̇ , and if X → Y is a pullback of V̇ → V along h : Y → V , then
Kan filling operations on f correspond precisely to maps Y → U
making a commutative triangle, as below

Y U

V
h

In particular U̇ → U itself has a canonical Kan filling operation
corresponding to the identity map.



Theorem (Licata-Orton-Pitts-Spitters, Awodey)

We can define a “well behaved” universe for Kan fibrations in any
topos with a universe for extensional type theory, as long as the
interval I appearing in the definition of Kan filling operation is
tiny, i.e. (−)I has a right adjoint.

They observe that the interval object in simplical sets is not tiny
and so their proof does not apply there.

Q. Is there an alternative construction of a universe for Kan
fibrations defined by pushout product that works for simplicial sets?
A: No! (As long as we want the universe to be “well behaved”)



Let C be a category with pullbacks. Write Cart(C→) for the wide
subcategory of C→ whose morphisms are pullback squares.

Definition (Shulman)

A notion of fibred structure on C is a discrete fibration,
χ : D→ Cart(C→).



Suppose we are given a notion of fibred structure
χ : D→ Cart(C→). For each f ∈ E, we can define a presheaf χ̄f

on C/ cod(f ) as follows. Given a map σ : I → cod(f ), we take
χ̄f (σ) to be the set of objects of χ−1(σ∗(f )).

Definition (Shulman)

We say χ is locally representable if it satisfies any of the equivalent
conditions below.

1. For every f ∈ C→ the presheaf χ̄f is representable.

2. χ has a right adjoint as a functor D→ Cart(C→) in Cat.

3. χ is comonadic as a functor D→ Cart(C→) in Cat.



Theorem (S)

None of the following definitions of Kan fibration on Set∆op
listed

below are locally representable as notions of fibred structure.

1. Right lifting property against pushout product of
monomorphism and interval endpoint inclusion1

2. Right lifting property against pushout product of boundary
inclusion and interval endpoint inclusion2

3. Monoidal lifting property against horn inclusions

1Definition of Kan fibration in cubical sets, B3 in Gabriel and Zisman
2B2 in Gabriel and Zisman



We illustrate the proof with the following simpler version of the
same idea. Note that we have an interval object ∂0, ∂1 : 1 ⇒ ∆1 in
simplicial sets.

Definition (Barthel-Riehl)

Let f : X → Y be a map in simplicial sets. A Hurewicz fibration
structure on f is a section of the map

X∆1 → X ×Y Y ∆1

Theorem
Hurewicz fibration structures are not locally representable as
notions of fibred structure in simplicial sets.



Lemma
Suppose we are given locally representable notion of fibred
structure F→ Cart(C→) and a commutative cube as below, where
the top and bottom faces are pushouts and the remaining side
faces are pullbacks.

Y0 P0

X0 Z0

Y1 P1

X1 Z1

y
p

x
z

If we are given structures on x , y and z that are preserved by the
pullback squares. Then there is a unique structure on p such that
the pullback squares preserve fibration structures.

Proof.
F→ Cart(C→) is comonadic and so creates colimits.



The second key observation is that the inclusion ∆1 has a linear
order in the internal language of Set∆op

. In fact this is a key
property of Set∆op

.

Theorem (Joyal)

Set∆op
is the classifying topos for linear orders with endpoints,

with universal model ∆2 � ∆1 ×∆1 (with inclusion specified by
the two degeneracy maps ∆2 → ∆1).

Hence we can write ∆1 ×∆1 as the union of two subobjects
T0 := {(x , y) | x ≤ y} and T1 := {(x , y) | x ≥ y}.



This is already enough to see (−)∆1 does not preserve the pushout
witnessing the union T0 ∪ T1:

Given a path p : ∆1 → ∆1 ×∆1, we write p ⊆ Tn as notation for
∀i .p(i) ∈ Tn for n = 0, 1.

Working in the internal language, we define a family of paths
pj : ∆1 → ∆1 ×∆1 by pj(i) := (j , i).

If pj ⊆ T0, then in particular pj(1) ∈ T0, so j ≤ 0, and we deduce
j = 0. Similarly if pj ⊆ T1 then j = 1.

We then have,

{j ∈ ∆1 | pj ⊆ T0 ∨ pj ⊆ T1} = {j ∈ ∆1 | j = 0 ∨ j = 1}
( ∆1



Key idea: We define a map f : X → ∆1 ×∆1 with two different
Hurewicz fibration structures that agree on paths belonging to
T∆1

0 ∪ T∆1
1 , but disagree for other paths.

We define X “fibrewise” in the internal language as follows. Each
fibre Xi ,j will be a subobject of Ω.

Xi ,j := {ϕ ∈ Ω | i ≥ j ⇒ ϕ}

We see that for (i , j) ∈ T1 we have Xi ,j = {>} and that X0,1 = Ω.
In between X is “wedge shaped.”



We define two Hurewicz fibration structures
α, β : X ×Y Y ∆1 ⇒ X∆1 as follows.

α(x , p)(i) := (p(i) ∈ T1) ∨ (i = 0 ∧ x) ∨ (π1(p(0)) = 0 ∧ π1(p(i)) = 1)

β(x , p)(i) := (p(i) ∈ T1) ∨ (i = 0 ∧ x) ∨ (p(0) = (0, 0) ∧ π1(p(i)) = 1)



If p ⊆ T1, then Xp(i) is contractible for all i , so α(x , p) = β(x , p).
If p ⊆ T0, then π1(p(i)) = 0 if and only if p(i) = (0, 0), so again
α(x , p) = β(x , p).
For j ∈ ∆1, define pj by pj(i) := (j , i). We have α(>, pj)(1) = >
and β(>, pj) = Jj = 0 ∨ j = 1K.



1. CCHM use the “pushout product” definition of Kan fibration
to ensure fibrations are closed under dependent product.

2. This definition of Kan fibration is locally representable in
cubical sets, but not in simplicial sets.

3. In order to get a well behaved definition of universe in
simplicial sets, we need to use the “horn inclusion” definition
of Kan fibration.

This will appear in a paper, alongside some more general theory
and other results, Locally representable algebraic weak factorisation
systems


